
Filomat 31:6 (2017), 1595–1600
DOI 10.2298/FIL1706595A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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On the Generalization of a Theorem of Bor

Tuba Arıa

aP. O. Box 23, TR-38002 Kayseri, Turkey

Abstract. In [6], Bor proved a theorem dealing with absolute Riesz summability factors of infinite series.
In this paper, we generalize that result for the absolute matrix summability factors of infinite series. Some
new results are also obtained.

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive increasing
sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). A sequence (λn) is said
to be of bounded variation, denoted by (λn) ∈ BV, if

∑
n |∆λn| =

∑
n | λn − λn+1 |< ∞. A positive sequence

X = (Xn) is said to be a quasi-f-power increasing sequence if there exists a constant K = K(X, f ) ≥ 1 such
that K fnXn ≥ fmXm for all n ≥ m ≥ 1, where f = ( fn) = {nδ(log n)σ, σ ≥ 0, 0 < δ < 1} (see [12]). If we take
σ = 0, then we get a quasi-δ-power increasing sequence (see [10]). Let

∑
an be a given infinite series with

partial sums (sn). We denote by (un) and (tn) the nth (C, 1) means of the sequence (sn) and (nan), respectively.
The series

∑
an is said to be summable |C, 1|k, k ≥ 1, if (see [7], [9])

∞∑
n=1

nk−1
|un − un−1|

k =

∞∑
n=1

1
n
|tn|

k < ∞. (1)

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (2)

The sequence-to-sequence transformation

vn =
1

Pn

n∑
v=0

pvsv (3)
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defines the sequence (vn) of the Riesz mean or simply the (N̄, pn) mean of the sequence (sn), generated by
the sequence of coefficients (pn) (see [8]). The series

∑
an is said to be summable | N̄, pn |k, k ≥ 1, if (see [2])

∞∑
n=1

(Pn/pn)k−1
| vn − vn−1 |

k< ∞. (4)

In the special case pn = 1 for all values of n | N̄, pn |k summability is the same as | C, 1 |k summability.
Given a normal matrix A = (anv), we associate two lower semi-matrices A = (anv) and Â = (̂anv) as follows:

anv =

n∑
i=v

ani, n, v = 0, 1, ... (5)

and

â00 = a00 = a00, ânv = anv − an−1,v, n = 1, 2, ... (6)

It may be noted that A and Â are the well-known matrices of series-to-sequence and series-to-series trans-
formations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... (7)

and

An(s) − An−1(s) =

n∑
v=0

ânvav. (8)

The series
∑

an is said to be summable |A, pn|k, k ≥ 1, if (see [11])

∞∑
n=1

(Pn/pn)k−1
| ∆An(s) |k< ∞, (9)

where

∆An(s) = An(s) − An−1(s).

In the special case, for anv = pv/Pn, |A, pn|k summability is the same as | N̄, pn |k summability.

2. The Known Result

Quite recently, Bor has proved the following theorem dealing with | N̄, pn |k summability factors of
infinite series.
Theorem 2.1 ([6]). Let (λn) ∈ BV and let (Xn) be a quasi-f-power increasing sequence for some δ (0 < δ < 1)
and σ ≥ 0. Suppose that there exists sequences (βn) and (λn) such that

| ∆λn |≤ βn, (10)

βn → 0 as n→∞, (11)
∞∑

n=1

n | ∆βn | Xn < ∞, (12)

| λn | Xn = O(1). (13)
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If
n∑

v=1

| tv |
k

v
= O(Xn) as n→∞, (14)

and (pn) is a sequence such that

Pn = O(npn), (15)

Pn∆pn = O(pnpn+1), (16)

are satisfied, then the series
∑
∞

n=1 an
Pnλn
npn

is summable | N̄, pn |k, k ≥ 1.
It should be noted that if we take σ = 0, then we get a result which was proved in [4].

3. The Main Result

The aim of this paper is to generalize Theorem 2.1 by using absolute matrix summability factors. Now,
we shall prove the following theorem.
Theorem 3.1. Let A = (anv) be a positive normal matrix such that

ān0 = 1, n = 0, 1, 2, ..., (17)

an−1,v ≥ anv, f or n ≥ v + 1 (18)

ann = O
( pn

Pn

)
(19)

nann = O(1) (20)
ân,v+1 = O (v|∆vânv|) . (21)

Let (λn) ∈ BV and let (Xn) be a quasi-f-power increasing sequence for some δ (0 < δ < 1) and σ ≥ 0. If the
conditions (10)-(16) are satisfied, then the series

∑
∞

n=1 an
Pnλn
npn

is summable | A, pn |k, k ≥ 1.
It should be noted that if we take anv =

pv

Pn
, then we get Theorem 2.1.

We require the following lemmas for the proof of our theorem.
Lemma 3.2 ([3]). If the conditions (15) and (16) are satisfied, then ∆

(
Pn

n2pn

)
= O

(
1
n2

)
.

Lemma 3.3 ([5]). Except for the condition (λn) ∈ BV under the conditions on (Xn), (βn) and (λn) as expressed
in the statement of the theorem, we have the following;

nXnβn = O(1), (22)
∞∑

n=1

βnXn < ∞. (23)

Proof of Theorem 3.1. Let (Tn) be the A-transform of the series
∑
∞

n=1
anPnλn

npn
. Then, we have

Tn − Tn−1 =

n∑
v=1

ânv
avPvvλv

v2pv
.

Using Abel’s transformation, we get that

Tn − Tn−1 =

n−1∑
v=1

∆v

(
ânv

Pvλv

v2pv

) v∑
r=1

rar +
ânnPnλn

n2pn

n∑
v=1

vav

=

n−1∑
v=1

∆v(ânv)
Pv

pv
(v + 1)

λv

v2 tv +

n−1∑
v=1

ân,v+1(v + 1)
tv

v2

Pv

pv
∆λv

+

n−1∑
v=1

ân,v+1λv+1(v + 1)tv∆

(
Pv

v2pv

)
+

annPnλn

n2pn
(n + 1)tn

= Tn,1 + Tn,2 + Tn,3 + Tn,4
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To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)k−1

| Tn,r |
k< ∞, f or r = 1, 2, 3, 4. (24)

When k > 1, we can apply Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1 and so we get that

m+1∑
n=2

(
Pn

pn

)k−1

| Tn,1 |
k = O(1)

m+1∑
n=2

(
Pn

pn

)k−1
n−1∑

v=1

|∆v(ânv)||λv||tv|


k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
n−1∑

v=1

|∆vânv||λv|
k
||tv|

k


n−1∑

v=1

|∆vânv|


k−1

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1

(ann)k−1
n−1∑
v=1

|∆vânv||λv|
k
|tv|

k

= O(1)
m∑

v=1

|λv|
k
|tv|

k
m+1∑

n=v+1

|∆vânv|

= O(1)
m∑

v=1

|λv||tv|
kavv = O(1)

m∑
v=1

|λv||tv|
k pv

Pv

= O(1)
m−1∑
v=1

∆|λv|

v∑
r=1

pr

Pr
|tr|

k + O(1)|λm|

m∑
v=1

pv

Pv
|tv|

k

= O(1)
m−1∑
v=1

|∆λv|Xv + O(1) | λm | Xm

= O(1)
m−1∑
v=1

βvXv + O(1) | λm | Xm = O(1)

as m→∞, by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3.
Now, by using (15), we have that

m+1∑
n=2

(
Pn

pn

)k−1

| Tn,2 |
k = O(1)

m+1∑
n=2

(
Pn

pn

)k−1
n−1∑

v=1

| ân,v+1 || ∆λv || tv |


k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
n−1∑

v=1

v|∆vânv||∆λv||tv|


k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
n−1∑

v=1

(v|∆vânv|)k(βv)k
|tv|

k


n−1∑

v=1

|∆vânv|


k−1

= O(1)
m∑

v=1

(vβv)(vβv)k−1
|tv|

k
m+1∑

n=v+1

(
Pn

pn

)k−1

(ann)k−1
|∆vânv|

= O(1)
m∑

v=1

vβv|tv|
kavv(vβv)k−1

= O(1)
m∑

v=1

vk−1vβv
1
vk
| tv |

k= O(1)
m∑

v=1

vβv
| tv |

k

v
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= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

| tr |
k

r
+ O(1)mβm

m∑
v=1

| tv |
k

v

= O(1)
m−1∑
v=1

| (v + 1)∆βv − βv | Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

v | ∆βv | Xv + O(1)
m−1∑
v=1

βvXv + O(1)mβmXm = O(1), as m→∞,

by virtue of hypotheses of Theorem 3.1 and Lemma 3.3.
Now, since ∆

(
Pv

v2pv

)
= O

(
1
v2

)
, by Lemma 3.2, we have

m+1∑
n=2

(
Pn

pn

)k−1

| Tn,3 |
k = O(1)

m+1∑
n=2

(
Pn

pn

)k−1
n−1∑

v=1

|ân,v+1||λv+1||tv|
1
v


k

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1
n−1∑

v=1

|∆vânv||λv+1|
k
|tk

v|


n−1∑

v=1

|∆vânv|


k−1

= O(1)
m+1∑
n=2

(
Pn

pn

)k−1

(ann)k−1
n−1∑
v=1

|∆vânv||λv+1|
k
|tv|

k

= O(1)
m∑

v=1

|λv+1|
k
|tv|

k
m+1∑

n=v+1

|∆vânv|

= O(1)
m∑

v=1

|λv+1|
k
|tv|

kavv

= O(1)
m−1∑
v=1

∆|λv+1|

v∑
r=1

|tr|
k

r
+ O(1)|λm+1|

m∑
v=1

|tv|
k

v

= O(1)
m−1∑
v=1

∆|λv|Xv + O(1)|λm+1|Xm

= O(1)
m∑

v=1

βvXv + O(1)|λm+1|Xm+1 = O(1)

as m→∞ by (10), (13), (14), (15), (20) and (21).
Finally, as in Tn,3, we have

m∑
n=1

(
Pn

pn

)k−1

| Tn,4 |
k = O(1)

m∑
n=1

nk−1 1
nk
| λn |

k−1
| λn || tn |

k

= O(1)
m∑

n=1

| tn |
k

n
= O(1), as m→∞.

This completes the proof of Theorem 3.1. If we take anv =
pv

Pn
and pn = 1 for all values of n, then we obtain a

new result concerning the | C, 1 |k summability factors of infinite series.
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