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Abstract. In this paper we study the existence of positive solutions for the fractional p-Laplacian boundary
value problem Dβ

0+
(φp(Dα

0+u(t))) = f (t,u(t)), t ∈ (0, 1),

u(0) = u′(0) = 0,u′(1) = au′(ξ),Dα
0+u(0) = 0,Dα

0+u(1) = bDα
0+u(η),

where 2 < α ≤ 3, 1 < β ≤ 2, Dα
0+
,Dβ

0+
are the standard Riemann-Liouville fractional derivatives, φp(s) =

|s|p−2s, p > 1, φ−1
p = φq, 1/p+1/q = 1, 0 < ξ, η < 1, 0 ≤ a < ξ2−α, 0 ≤ b < η

1−β
p−1 and f ∈ C([0, 1]×[0,+∞), [0,+∞)).

Using the monotone iterative method and the fixed point index theory in cones, we establish two new
existence results when the nonlinearity f is allowed to grow (p− 1)-sublinearly and (p− 1)-superlinearly at
infinity.

1. Introduction

In this paper we discuss the existence of positive solutions for the fractional p-Laplacian boundary value
problem Dβ

0+
(φp(Dα

0+u(t))) = f (t,u(t)), t ∈ (0, 1),

u(0) = u′(0) = 0,u′(1) = au′(ξ),Dα
0+u(0) = 0,Dα

0+u(1) = bDα
0+u(η),

(1)

where 2 < α ≤ 3, 1 < β ≤ 2, Dα
0+
,Dβ

0+
are the standard Riemann-Liouville fractional derivatives, φp(s) =

|s|p−2s, p > 1, φ−1
p = φq, 1/p+1/q = 1, 0 < ξ, η < 1, 0 ≤ a < ξ2−α, 0 ≤ b < η

1−β
p−1 and f ∈ C([0, 1]×[0,+∞), [0,+∞)).
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Fractional differential equations arise naturally for example in physics, chemistry, diffusion and transport
theory, chaos and turbulence, viscoelastic mechanics and non-newtonian fluid mechanics; for more details
on fractional applications, we refer the reader to [1–3]. There are many papers in the literature on the
existence of solutions for fractional boundary value problems; see for example [4–12] and the references
therein. In [4], the authors investigated the existence of positive solutions for the fractional differential
equation with integral boundary conditions

Dα
0+u(t) + q(t) f (t,u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0,u(1) =

∫ 1

0
1(s)u(s)ds,

and obtained an existence result if the following condition is satisfied:
(H f ) there exist a,Λ > 0 such that f (t, x) ≤ f (t, y) ≤ Λa, for 0 ≤ x ≤ y ≤ a, t ∈ [0, 1].
Note for multi-point boundary value problems the Green’s functions may be complicated. Bai [5]

considered the fractional three point boundary value problemDα
0+

u(t) + f (t,u(t)) = 0, 0 < t < 1,
u(0) = 0, βu(η) = u(1),

(2)

where α ∈ (1, 2], βηα−1, η ∈ (0, 1). The Green’s function is

G(t, s) =



[t(1−s)]α−1
−βtα−1(η−s)α−1

−(t−s)α−1(1−βηα−1)
(1−βηα−1)Γ(α) , 0 ≤ s ≤ t ≤ 1, s ≤ η,

[t(1−s)]α−1
−(t−s)α−1(1−βηα−1)

(1−βηα−1)Γ(α) , 0 < η ≤ s ≤ t ≤ 1,

[t(1−s)]α−1
−βtα−1(η−s)α−1

(1−βηα−1)Γ(α) , 0 ≤ t ≤ s ≤ η < 1,

[t(1−s)]α−1

(1−βηα−1)Γ(α) , 0 ≤ t ≤ s ≤ 1, η ≤ s.

(3)

Note if β = 0, then (2) reduces to the problemDα
0+

u(t) + f (t,u(t)) = 0, 0 < t < 1,
u(0) = u(1) = 0.

(4)

The Green’s function is

1(t, s) =
1

Γ(α)

[t(1 − s)]α−1
− (t − s)α−1, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−1 0 ≤ t ≤ s ≤ 1.
(5)

Now if the three point problem (2) is considered as a perturbation of the two point problem (4), we can use
(5) to obtain (3), i.e.,

G(t, s) = 1(t, s) +
βtα−1

1 − βηα−1 1(η, s).

This simple idea motivates our study in Section 2.
In this paper we first obtain an existence result with f growing (p− 1)-sublinearly at infinity. Moreover,

we establish an iterative sequence for approximating the solution. Next, using the fixed point index theory,
we obtain an existence result with f growing (p − 1)-superlinearly at infinity.
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2. Preliminaries

For convenience, in this section we present some basic definitions and notations from fractional calculus.
Definition 2.1(see [3, page 36-37]) The Riemann-Liouville fractional derivative of order α > 0 of a

continuous function f : (0,+∞)→ (−∞,+∞) is given by

Dα
0+ f (t) =

1
Γ(n − α)

( d
dt

) ∫ t

0

f (s)
(t − s)α−n+1 ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right side is pointwise
defined on (0,+∞).

Definition 2.2(see [3, Definition 2.1]) The Riemann-Liouville fractional integral of order α > 0 of a
function f : (0,+∞)→ (−∞,+∞) is given by

Iα0+ f (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds,

provided that the right side is pointwise defined on (0,+∞).
From the definition of the Riemann-Liouville derivative one obtains the following result.
Lemma 2.1(see [6]) Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional differential equation

Dα
0+

u(t) = 0 has a unique solution

u(t) = c1tα−1 + c2tα−2 + . . . + cNtα−N, ci ∈ R, i = 1, 2, . . . ,N,

where N is the smallest integer greater than or equal to α.
Lemma 2.2(see [6]) Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0 that

belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+Dα
0+u(t) = u(t) + c1tα−1 + c2tα−2 + . . . + cNtα−N, for some ci ∈ R, i = 1, 2, . . . ,N,

where N is the smallest integer greater than or equal to α.
Lemma 2.3 Let α, ξ, a be as in (1) and y ∈ C[0, 1]. Then solvingDα

0+
u(t) + y(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0,u′(1) = au′(ξ),
(6)

is equivalent to solving

u(t) =

∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) = 11(t, s) +
atα−1

1 − aξα−1 12(ξ, s),

11(t, s) =
1

Γ(α)

tα−1(1 − s)α−2
− (t − s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−2, 0 ≤ t ≤ s ≤ 1,

12(t, s) =
1

Γ(α)

tα−2(1 − s)α−2
− (t − s)α−2, 0 ≤ s ≤ t ≤ 1,

tα−2(1 − s)α−2, 0 ≤ t ≤ s ≤ 1.

(7)

Proof. It is enough to consider the case when u is a solution of (2.1). From Definition 2.2 and Lemma
2.2 we have

u(t) = c1tα−1 + c2tα−2 + c3tα−3
−

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds,
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for some constants ci ∈ R, i = 1, 2, 3.
From u(0) = u′(0) = 0 we have c2 = c3 = 0. Hence

u(t) = c1tα−1
−

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds,

and

u′(t) = c1(α − 1)tα−2
− (α − 1)

∫ t

0

(t − s)α−2

Γ(α)
y(s)ds.

Consequently, we obtain

u′(1) = c1(α − 1) − (α − 1)
∫ 1

0

(1 − s)α−2

Γ(α)
y(s)ds,

and

u′(ξ) = c1(α − 1)ξα−2
− (α − 1)

∫ ξ

0

(ξ − s)α−2

Γ(α)
y(s)ds.

Then u′(1) = au′(ξ) implies that

c1 −

∫ 1

0

(1 − s)α−2

Γ(α)
y(s)ds = c1aξα−2

− a
∫ ξ

0

(ξ − s)α−2

Γ(α)
y(s)ds,

and

c1 =
1

1 − aξα−2

∫ 1

0

(1 − s)α−2

Γ(α)
y(s)ds −

a
1 − aξα−2

∫ ξ

0

(ξ − s)α−2

Γ(α)
y(s)ds.

As a result,

u(t) =
1

1 − aξα−2

∫ 1

0

tα−1(1 − s)α−2

Γ(α)
y(s)ds −

atα−1

1 − aξα−2

∫ ξ

0

(ξ − s)α−2

Γ(α)
y(s)ds −

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds

=

∫ 1

0

tα−1(1 − s)α−2

Γ(α)
y(s)ds −

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds +

atα−1

1 − aξα−2

∫ 1

0

ξα−2(1 − s)α−2

Γ(α)
y(s)ds

−
atα−1

1 − aξα−2

∫ ξ

0

(ξ − s)α−2

Γ(α)
y(s)ds

=

∫ 1

0
G(t, s)y(s)ds.

This completes the proof. �
Lemma 2.4 Let α, β, ξ, η, a, b be as in (1) and y ∈ C[0, 1]. Then solving Dβ

0+
(φp(Dα

0+u(t))) = y(t), t ∈ (0, 1),

u(0) = u′(0) = 0,u′(1) = au′(ξ),Dα
0+u(0) = 0,Dα

0+u(1) = bDα
0+u(η),

(8)

is equivalent to solving

u(t) =

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ)y(τ)dτ

)
ds,
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where G is defined in (7) and

H(t, s) = h1(t, s) +
bp−1tβ−1

1 − bp−1ηβ−1 h1(η, s),

h1(t, s) =
1

Γ(β)

tβ−1(1 − s)β−1
− (t − s)β−1, 0 ≤ s ≤ t ≤ 1,

tβ−1(1 − s)β−1, 0 ≤ t ≤ s ≤ 1.

(9)

Proof. It is enough to consider the case when u is a solution of (2.3). From Lemma 2.2 we have

Iβ0+
Dβ

0+
(φp(Dα

0+u(t))) = φp(Dα
0+u(t)) + c1tβ−1 + c2tβ−2,

for some constants ci ∈ R, i = 1, 2. In view of (8), we obtain

Iβ0+
Dβ

0+
(φp(Dα

0+u(t))) = Iβ0+
y(t).

Also we find

φp(Dα
0+u(t)) = Iβ0+

y(t) + c1tβ−1 + c2tβ−2

=

∫ t

0

(t − s)β−1

Γ(β)
y(s)ds + c1tβ−1 + c2tβ−2.

Then Dα
0+

u(0) = 0 implies that c2 = 0. Hence,

φp(Dα
0+u(1)) =

∫ 1

0

(1 − s)β−1

Γ(β)
y(s)ds + c1,

and

φp(Dα
0+u(η)) =

∫ η

0

(η − s)β−1

Γ(β)
y(s)ds + c1η

β−1.

Consequently, Dα
0+

u(1) = bDα
0+

u(η) implies that∫ 1

0

(1 − s)β−1

Γ(β)
y(s)ds + c1 = bp−1

∫ η

0

(η − s)β−1

Γ(β)
y(s)ds + c1bp−1ηβ−1,

and

c1 =
bp−1

1 − bp−1ηβ−1

∫ η

0

(η − s)β−1

Γ(β)
y(s)ds −

1
1 − bp−1ηβ−1

∫ 1

0

(1 − s)β−1

Γ(β)
y(s)ds.

Therefore,

φp(Dα
0+u(t)) =

∫ t

0

(t − s)β−1

Γ(β)
y(s)ds +

bp−1tβ−1

1 − bp−1ηβ−1

∫ η

0

(η − s)β−1

Γ(β)
y(s)ds

−
1

1 − bp−1ηβ−1

∫ 1

0

tβ−1(1 − s)β−1

Γ(β)
y(s)ds

=

∫ t

0

(t − s)β−1

Γ(β)
y(s)ds −

∫ 1

0

tβ−1(1 − s)β−1

Γ(β)
y(s)ds +

bp−1tβ−1

1 − bp−1ηβ−1

∫ η

0

(η − s)β−1

Γ(β)
y(s)ds

−
bp−1tβ−1

1 − bp−1ηβ−1

∫ 1

0

ηβ−1(1 − s)β−1

Γ(β)
y(s)ds

= −

∫ 1

0
H(t, s)y(s)ds.
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Also we have

Dα
0+u(t) + φq

(∫ 1

0
H(t, s)y(s)ds

)
= 0.

Note Lemma 2.3 and the boundary conditions u(0) = u′(0) = 0,u′(1) = au′(ξ), so we have

u(t) =

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ)y(τ)dτ

)
ds.

This completes the proof. �
Lemma 2.5 The functions G,H have the following properties:
(i) G,H ∈ C([0, 1] × [0, 1], [0,+∞)) and G(t, s),H(t, s) > 0 for t, s ∈ (0, 1),
(ii) G(t, s) ≤ δ1tα−1 for t, s ∈ [0, 1], where δ1 := 1

Γ(α)

[
1 + aξα−3

1−aξα−1

]
> 0.

(iii) δ2tα−1s(1 − s)α−2
≤ G(t, s) ≤ δ1s(1 − s)α−2 for t, s ∈ [0, 1], where δ2 := a(α−2)ξα−2(1−ξ)

Γ(α)(1−aξα−1) .
Proof. From [7–10] we have 11, 12, h1 ∈ C([0, 1] × [0, 1], [0,+∞)) and 11(t, s), h1(t, s) > 0 for t, s ∈ (0, 1), so

G,H have these properties.
From [10, Lemma 4] we have

11(t, s) ≤
1

Γ(α)
s(1 − s)α−2, 11(t, s) ≤

1
Γ(α)

tα−1, for t, s ∈ [0, 1],

and

(α − 2)tα−2(1 − t)s(1 − s)α−2

Γ(α)
≤ 12(t, s) ≤

1
Γ(α)

tα−3s(1 − s)α−2
≤

1
Γ(α)

tα−3, for t, s ∈ [0, 1].

Consequently,

G(t, s) = 11(t, s) +
atα−1

1 − aξα−1 12(ξ, s) ≤
1

Γ(α)

[
1 +

aξα−3

1 − aξα−1

]
tα−1,

G(t, s) = 11(t, s) +
atα−1

1 − aξα−1 12(ξ, s) ≤
1

Γ(α)

[
1 +

aξα−3

1 − aξα−1

]
s(1 − s)α−2,

G(t, s) = 11(t, s) +
atα−1

1 − aξα−1 12(ξ, s) ≥
a(α − 2)ξα−2(1 − ξ)

Γ(α)(1 − aξα−1)
tα−1s(1 − s)α−2.

This completes the proof. �
Let E := C[0, 1], ‖u‖ := maxt∈[0,1] |u(t)|, P := {u ∈ E : u(t) ≥ 0,∀t ∈ [0, 1]}. Then (E, ‖ · ‖) is a real Banach

space and P is a cone on E. We let Bρ := {u ∈ E : ‖u‖ < ρ} for ρ > 0 in the sequel. Define A : P→ P by

(Au)(t) =

∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ) f (τ,u(τ))dτ

) 1
p−1

ds.

Then, by Lemma 2.4 the existence of solutions for (1) is equivalent to the existence of fixed points for the
operator A. Furthermore, in view of the continuity G,H and f , we can use the Ascoli-Arzela theorem to
show that A is a completely continuous operator.

Lemma 2.6 Let P0 := {u ∈ P : mint∈[θ1,θ2] u(t) ≥
δ2θα−1

1
δ1
‖u‖}, where 0 < θ1 < θ2 ≤ 1. Then A(P) ⊂ P0.

Proof. For any u ∈ P, from (iii) of Lemma 2.5 we have

(Au)(t) =

∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ) f (τ,u(τ))dτ

) 1
p−1

ds

≤ δ1

∫ 1

0
s(1 − s)α−2

(∫ 1

0
H(s, τ) f (τ,u(τ))dτ

) 1
p−1

ds.
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Also for t ∈ [θ1, θ2], we obtain

(Au)(t) =

∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ) f (τ,u(τ))dτ

) 1
p−1

ds

≥

∫ 1

0
δ2tα−1s(1 − s)α−2

(∫ 1

0
H(s, τ) f (τ,u(τ))dτ

) 1
p−1

ds

≥ δ2θ
α−1
1

∫ 1

0
s(1 − s)α−2

(∫ 1

0
H(s, τ) f (τ,u(τ))dτ

) 1
p−1

ds.

Consequently,

(Au)(t) ≥
δ2θα−1

1

δ1
δ1

∫ 1

0
s(1 − s)α−2

(∫ 1

0
H(s, τ) f (τ,u(τ))dτ

) 1
p−1

ds ≥
δ2θα−1

1

δ1
‖Au‖.

This completes the proof. �
Lemma 2.7(see [13, Lemma 2.6]) Let θ > 0 and ϕ ∈ P. Then(∫ 1

0
ϕ(t)dt

)θ
≤

∫ 1

0
(ϕ(t))θdt, ∀θ ≥ 1,

(∫ 1

0
ϕ(t)dt

)θ
≥

∫ 1

0
(ϕ(t))θdt, ∀0 < θ ≤ 1.

Lemma 2.8(see [14]) Let R > 0 and A : BR ∩ P → P a continuous compact operator. If there exists
u0 ∈ P \ {0} such that u − Au , µu0 for all µ ≥ 0 and u ∈ ∂BR ∩ P, then i(A,BR ∩ P,P) = 0 , where i denotes
the fixed point index on P.

Lemma 2.9(see [14]) Let r > 0 and A : Br ∩ P → P a continuous compact operator. If ‖Au‖ ≤ ‖u‖ and
Au , u for u ∈ ∂Br ∩ P, then i(A,Br ∩ P,P) = 1.

Let p∗ = min{p − 1, 1}, p∗ = max{p − 1, 1}, γ(t) = tα−1 for t ∈ [0, 1], and t0 ∈ (0, 1) is a given point. For
convenience, we put

κ1 := 2
p∗

p−1−1
∫ 1

0

∫ 1

0
H

p∗

p−1 (s, τ)γp∗ (τ)dτds, κ2 := 2
p∗

p−1−1
∫ 1

0

∫ 1

0
H

p∗

p−1 (s, τ)dτds.

λ1 :=
1

δ1
p∗
√
κ1
, λ2 = p∗

√√
2∫ 1

0 Gp∗ (t0, s)
∫ θ2

θ1
H

p∗
p−1 (s, τ)dτds

δ1

δ2θα−1
1

,

and

λ3 :=
1(

δ1

∫ 1

0 s(1 − s)α−2
(∫ 1

0 H(s, τ)dτ
) 1

p−1

ds
)p−1 .

We now list our hypotheses:
(H1) f (t,u) ∈ C([0, 1] × [0,+∞), [0,+∞)).
(H2) f (t,u) is nondecreasing with respect to u and f (t, 0) . 0 for t ∈ [0, 1].
(H3) lim supu→+∞

f (t,u)
up−1 < λ

p−1
1 uniformly on t ∈ [0, 1].

(H4) lim infu→+∞
f (t,u)
up−1 > λ

p−1
2 uniformly on t ∈ [θ1, θ2].

(H5) there exists ζ > 0 such that f (t,u) ≤ φp(ζ)λ3, ∀0 ≤ u ≤ ζ, t ∈ [0, 1].
Example 2.10 (1) Let

f (t,u) = et +

n∑
i=1

miu
p−1

i for t ∈ [0, 1] and u ∈ R+,
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where m1 ∈ (0, λp−1
1 ), mi ≥ 0 for i = 2, 3, . . . ,n.

Let p = 2, α = 2.5, β = 1.5, ξ = 0.5, a = 1 and b = 0. Note,

δ1 =
4

3
√
π

2
√

2 + 3

2
√

2 − 1
, κ1 =

∫ 1

0

∫ 1

0
H(s, τ)γ(τ)dτds =

5
√
π

96
,

and λ1 ≈ 4.5. Let m1 ∈ (0, 4.5). Note (H1)-(H3) hold.
(2) Let ζ = 1. Then φp(ζ) = 1. Let

f (t,u) =

n∑
i=1

miui(p−1) for t ∈ [0, 1] and u ∈ R+,

where mi are nonnegative numbers such that
∑n

i=1 mi ≤ λ3.
Using the above values for p, α, β, ξ, a, b, we have

λ3 =

(
δ1

∫ 1

0
s(1 − s)α−2

∫ 1

0
H(s, τ)dτds

)−1

=
βΓ(β)
δ1

[
Γ(β + 1)Γ(α − 1)

Γ(α + β)
−

Γ(β + 2)Γ(α − 1)
Γ(α + β + 1)

]−1

≈ 7.5.

Let
∑n

i=1 mi ≤ 7.5. Note (H1), (H4) and (H5) hold.

3. Main Results

Theorem 3.1 Suppose that (H1)-(H3) are satisfied. Then (1) has at least a positive solution u∗. Moreover,
there exists a monotone non-increasing sequence {un}

∞

n=1 such that limn→∞ un = u∗, where u0(t) = Mγ(t), t ∈
[0, 1], (M is defined in the proof), and un+1 = Aun for n = 0, 1, 2, . . ..

Proof. From (H3) there exist ε1 ∈ (0, λ1) and c1 > 0 such that

f (t,u) ≤ (λ1 − ε1)p−1up−1 + c1, ∀u ∈ [0,+∞), t ∈ [0, 1]. (10)

Take M ≥ c
1

p−1

1 ε−1
1

p∗
√

κ2
κ1

, where ε1, c1 are defined in (10) and let u0 = Mγ. Hence,

[
(AMγ(t))(t)

]p∗ =


∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ) f (τ,Mγ(τ))dτ

) 1
p−1

ds


p∗

≤


∫ 1

0
δ1γ(t)

(∫ 1

0
H(s, τ) f (τ,Mγ(τ))dτ

) 1
p−1

ds


p∗

≤ δp∗

1 [γ(t)]p∗
∫ 1

0

(∫ 1

0
H(s, τ) f (τ,Mγ(τ))dτ

) p∗

p−1

ds

≤ δp∗

1 [γ(t)]p∗
∫ 1

0

∫ 1

0
H

p∗

p−1 (s, τ)
[
(λ1 − ε1)p−1(Mγ(τ))p−1 + c1

] p∗

p−1 dτds

≤ 2
p∗

p−1−1δp∗

1 [γ(t)]p∗
∫ 1

0

∫ 1

0
H

p∗

p−1 (s, τ)
[
(λ1 − ε1)p∗ (Mγ(τ))p∗ + c

p∗

p−1

1

]
dτds

= δp∗

1 (λ1 − ε1)p∗Mp∗ [γ(t)]p∗κ1 + c
p∗

p−1

1 δp∗

1 [γ(t)]p∗κ2.

Then we have

(AMγ(t))(t) ≤
[
δp∗

1 (λ1 − ε1)p∗Mp∗ [γ(t)]p∗κ1 + c
p∗

p−1

1 δp∗

1 [γ(t)]p∗κ2

] 1
p∗

≤

(
δ1(λ1 − ε1)M p∗

√
κ1 + c

1
p−1

1 δ1
p∗
√
κ2

)
γ(t)

≤Mγ(t).
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This implies that

u1 = Au0 ≤ u0.

Also we have from (H2),

u2(t) = (Au1)(t) =

∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ) f (τ,u1(τ))dτ

) 1
p−1

ds

≤

∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ) f (τ,u0(τ))dτ

) 1
p−1

ds

= (Au0)(t) = u1(t).

By induction, un+1 ≤ un,n = 0, 1, 2, . . .. Also 0 ≤ un(t) ≤ Mγ(t) ≤ M for t ∈ [0, 1] and n = 0, 1, 2, . . .. From
the monotone bounded theorem we can take the limit as n → ∞ in un+1 = Aun and we obtain u∗ = Au∗.
Furthermore, because the zero function is not a solution of the problem (1), u∗ is a positive solution for (1).
This completes the proof. �

Theorem 3.2 Suppose that (H1), (H4) and (H5) are satisfied. Then (1) has at least a positive solution.
Proof. From (H4) there exist ε2 > 0 and c2 > 0 such that

f (t,u) ≥ (λ2 + ε2)p−1up−1
− c2,∀u ∈ [0,+∞), t ∈ [θ1, θ2]. (11)

From (11) we have

(λ2 + ε2)p∗up∗ = ((λ2 + ε2)p−1up−1)
p∗

p−1 ≤ ( f (t,u) + c2)
p∗

p−1 ≤ f
p∗

p−1 (t,u) + c
p∗

p−1

2 .

Hence,

f
p∗

p−1 (t,u) ≥ (λ2 + ε2)p∗up∗ − c
p∗

p−1

2 . (12)

In what follows, we shall show that there exists a large positive number R > ζ(ζ is defined in (H5)) such
that

u − Au , µu0 for all µ ≥ 0 and u ∈ ∂BR ∩ P, (13)

where u0 is a fixed element in P0. If not, there exist µ ≥ 0 and u ∈ ∂BR ∩ P such that u − Au = µu0, i.e.,
u(t) = (Au)(t) + µu0(t) for t ∈ [0, 1]. Hence ‖u‖ = ‖Au + µu0‖ ≥ ‖Au‖. Moreover, note that if u ∈ P, by Lemma
2.6 we have Au + µu0 ∈ P0 and also u ∈ P0.

Consequently, from (12), for a fixed point t0 ∈ (0, 1), we have

[(Au)(t0)]p∗ =


∫ 1

0
G(t0, s)

(∫ 1

0
H(s, τ) f (τ,u(τ))dτ

) 1
p−1

ds


p∗

≥

∫ 1

0
Gp∗ (t0, s)

(∫ 1

0
H(s, τ) f (τ,u(τ))dτ

) p∗
p−1

ds

≥

∫ 1

0
Gp∗ (t0, s)

∫ 1

0
H

p∗
p−1 (s, τ) f

p∗
p−1 (τ,u(τ))dτds

≥

∫ 1

0
Gp∗ (t0, s)

∫ θ2

θ1

H
p∗

p−1 (s, τ)
[
(λ2 + ε2)p∗up∗ − c

p∗
p−1

2

]
dτds

≥

(λ2 + ε2)p∗

δ2θα−1
1

δ1

p∗

Rp∗

 ∫ 1

0
Gp∗ (t0, s)

∫ θ2

θ1

H
p∗

p−1 (s, τ)dτds − c3,
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where c3 = c
p∗

p−1

2

∫ 1

0 Gp∗ (t0, s)
∫ θ2

θ1
H

p∗
p−1 (s, τ)dτds. Therefore, if R is large enough we have

‖Au‖p∗ ≥ [(Au)(t0)]p∗ > λp∗
2

δ2θα−1
1

δ1

p∗

Rp∗

∫ 1

0
Gp∗ (t0, s)

∫ θ2

θ1

H
p∗

p−1 (s, τ)dτds − c3

= 2Rp∗ − c3 ≥ Rp∗ = ‖u‖p∗ ,

i.e., ‖Au‖ > ‖u‖, and this contradicts ‖u‖ ≥ ‖Au‖. Thus (13) holds true and Lemma 2.8 yields

i(A,BR ∩ P,P) = 0. (14)

From (H5) for u ∈ ∂Bζ ∩ P we have

‖Au‖ = max
t∈[0,1]

(Au)(t) = max
t∈[0,1]

∫ 1

0
G(t, s)

(∫ 1

0
H(s, τ) f (τ,u(τ))dτ

) 1
p−1

ds

≤ ζλ
1

p−1

3 δ1

∫ 1

0
s(1 − s)α−2

(∫ 1

0
H(s, τ)dτ

) 1
p−1

ds

= ζ.

Hence, ‖Au‖ ≤ ‖u‖, for u ∈ ∂Bζ ∩ P, and Lemma 2.9 implies that

i(A,Bζ ∩ P,P) = 1. (15)

Combining (14) and (15) gives

i(A, (BR \ Bζ) ∩ P,P) = i(A,BR ∩ P,P) − i(A,Bζ ∩ P,P) = −1. (16)

Consequently the operator A has at least one fixed point on (BR \ Bζ) ∩ P, and hence (1) has at least one
positive solution. This completes the proof. �
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[11] S. Araci, E. Şen, M. Açikgöz, H. M Srivastava, Existence and uniqueness of positive and nondecreasing solutions for a class of

fractional boundary value problems involving the p-Laplacian operator, Advances in Difference Equations (2015) 2015:40.
[12] B. Ahmad, J. Nieto, Boundary value problems for a class of sequential integrodifferential equations of fractional order, Journal of

Function Spaces and Applications, Vol. 2013, Article ID 149659, 8 pages.
[13] J. Xu, Z. Yang, Positive solutions for a fourth order p-Laplacian boundary value problem, Nonlinear Analysis 74 (2011) 2612–2623.
[14] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.


