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An Application of Power Increasing Sequences
to Infinite Series and Fourier Series

Hüseyin Bora

aP. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract. In this paper, we proved a known theorem under more weaker conditions dealing with absolute
Riesz summability of infinite series involving a quasi-σ-power increasing sequence. And we applied it to
the trigonometric Fourier series.

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive increasing
sequence cn and two positive constants M and N such that Mcn ≤ bn ≤ Ncn (see [1]). A positive sequence
(Xn) is said to be quasi-σ-power increasing sequence if there exists a constant K = K(σ,X) ≥ 1 such that
KnσXn ≥ mσXm for all n ≥ m ≥ 1. Every almost increasing sequence is a quasi-σ-power increasing sequence
for any non-negative σ, but the converse is not true for σ > 0 (see [10]). For any sequence (λn) we write that
∆2λn = ∆λn −∆λn+1 and ∆λn = λn − λn+1. The sequence (λn) is said to be of bounded variation, denoted by
(λn) ∈ BV, if

∑
∞

n=1 |∆λn| < ∞. Let
∑

an be a given infinite series with the partial sums (sn). By uαn and tαn we
denote the nth Cesàro means of order α, with α > −1, of the sequences (sn) and (nan), respectively, that is
(see [5])

uαn =
1

Aα
n

n∑
v=0

Aα−1
n−vsv and tαn =

1
Aα

n

n∑
v=0

Aα−1
n−vvav, (tn

1 = tn) (1)

where

Aα
n =

(α + 1)(α + 2)....(α + n)
n!

= O(nα), Aα
−n = 0 f or n > 0. (2)

The series
∑

an is said to be summable |C, α|k , k ≥ 1, if (see [7], [9])

∞∑
n=1

nk−1
∣∣∣uαn − uαn−1

∣∣∣k =

∞∑
n=1

1
n

∣∣∣tαn ∣∣∣k < ∞. (3)
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H. Bor / Filomat 31:6 (2017), 1543–1547 1544

If we take α = 1, then |C, α|k summability reduces to |C, 1|k summability. Let (pn) be a sequence of positive
real numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞,
(
P−i = p−i = 0, i ≥ 1

)
. (4)

The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv (5)

defines the sequence (wn) of the Riesz mean or simply the
(
N̄, pn

)
mean of the sequence (sn), generated by

the sequence of coefficients (pn) (see [8]). The series
∑

an is said to be summable
∣∣∣N̄, pn

∣∣∣
k, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn

pn

)k−1

|wn − wn−1|
k < ∞.

In the special case when pn = 1 for all values of n (resp. k = 1), |N̄, pn|k summability is the same as |C, 1|k,
(resp. |N̄, pn|) summability.

2. Known Result

The following theorem is known dealing with the |N̄, pn|k summability factors of infinite series.
Theorem 2.1 ([11]). Let (Xn) be an almost increasing sequence. If the sequences (Xn), (λn), and (pn) satisfy
the conditions

λmXm = O(1) as m→∞, (6)

m∑
n=1

nXn|∆
2λn| = O(1) as m→∞, (7)

m∑
n=1

Pn

n
= O(Pm) as m→∞, (8)

m∑
n=1

pn

Pn
|tn|

k = O(Xm) as m→∞, (9)

m∑
n=1

| tn |
k

n
= O(Xm) as m→∞, (10)

are satisfied, then the series
∑

anλn is summable | N̄, pn |k, k ≥ 1.
It should be remarked that Theorem A also implies the known result of Bor dealing with the absolute |N̄, pn|k
summability factors of infinite series (see [3]).

3. Main Result

The aim of this paper is to prove Theorem 2.1 under more weaker conditions. Now we shall prove the
following theorem.
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Theorem 3.1 Let (Xn) be a quasi-σ-power increasing sequence. If the sequences (Xn), (λn), and (pn) satisfy
the conditions (6), (7), (8), and

m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(Xm) as m→∞, (11)

m∑
n=1

|tn|
k

nXn
k−1

= O(Xm) as m→∞, (12)

then the series
∑

anλn is summable |N̄, pn|k, k ≥ 1.
Remark 3.2 It should be noted that condition (11) is reduced to the condition (9), when k=1. When k > 1,
condition (11) is weaker than condition (9) but the converse is not true. As in [12] we can show that if (9) is
satisfied, then we get that

m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(
1

Xk−1
1

)
m∑

n=1

pn

Pn
|tn|

k = O(Xm).

If (11) is satisfied, then for k > 1 we obtain that
m∑

n=1

pn

Pn
|tn|

k =

m∑
n=1

Xk−1
n

pn

Pn

|tn|
k

Xn
k−1

= O(Xk−1
m )

m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(Xk
m) , O(Xm).

The similar argument is also valid for the conditions (12) and (10). Also it should be noted that if we take
(Xn) as an almost increasing sequence, then we get some new results.
We need the following lemma for the proof of our theorem.
Lemma 3. 3 ([4]) Under the conditions of Theorem 3.1, we have that

∞∑
n=1

Xn|∆λn| < ∞, (13)

nXn|∆λn| = O(1) as n→∞. (14)

4. Proof of Theorem 3.1 Let (Tn) be the sequence of (N̄, pn) mean of the series
∑

anλn. Then, by definition,
we have

Tn =
1

Pn

n∑
v=0

pv

v∑
r=0

arλr =
1

Pn

n∑
v=0

(Pn − Pv−1)avλv. (15)

Then, for n ≥ 1, we get

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1λv

v
vav. (16)

Applying Abel’s transformation to the right-hand side of (16), we have

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

∆
(Pv−1λv

v

) v∑
r=1

rar +
pnλn

nPn

n∑
r=1

vav

=
(n + 1)pntnλn

nPn
−

pn

PnPn−1

n−1∑
v=1

pvtvλv
v + 1

v

+
pn

PnPn−1

n−1∑
v=1

Pv∆λvtv
v + 1

v
+

pn

PnPn−1

n−1∑
v=1

Pvλv+1tv
1
v

= Tn,1 + Tn,2 + Tn,3 + Tn,4.
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To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that
∞∑

n=1

(
Pn

pn

)k−1 ∣∣∣Tn,r

∣∣∣k < ∞, f or r = 1, 2, 3, 4.

Firstly, we have that
m∑

n=1

(
Pn

pn

)k−1

|Tn,1|
k = O(1)

m∑
n=1

|λn|
k−1
|λn|

pn

Pn
|tn|

k = O(1)
m∑

n=1

|λn|
pn

Pn

|tn|
k

Xn
k−1

= O(1)
m−1∑
n=1

∆|λn|

n∑
v=1

pv

Pv

|tv|
k

Xv
k−1

+ O(1)|λm|

m∑
n=1

pn

Pn

|tn|
k

Xn
k−1

= O(1)
m−1∑
n=1

|∆λn|Xn + O(1)|λm|Xm = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Also, as in Tn,1, we have that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,2|
k = O(1)

m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

pv|tv|
k
|λv|

k

 ×
 1

Pn−1

n−1∑
v=1

pv


k−1

= O(1)
m∑

v=1

|λv|
k−1
|λv|pv|tv|

k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

|λv|
pv

Pv

|tv|
k

Xv
k−1

= O(1) as m→∞.

Again, by using (8), we get that

m+1∑
n=2

(
Pn

pn

)k−1 ∣∣∣Tn,3

∣∣∣k = O(1)
m+1∑
n=2

pn

PnPk
n−1

n−1∑
v=1

Pv|∆λv||tv|


k

= O(1)
m+1∑
n=2

pn

PnPk
n−1

n−1∑
v=1

Pv

v
v|∆λv||tv|


k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

Pv

v
(v|∆λv|)k

|tv|
k

 ×
 1

Pn−1

n−1∑
v=1

Pv

v


k−1

= O(1)
m∑

v=1

Pv

v
(v|∆λv|)k−1v|∆λv|pv|tv|

k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

v|∆λv|
|tv|

k

vXv
k−1

= O(1)
m−1∑
v=1

∆ (v|∆λv|)
v∑

r=1

|tr|
k

rXr
k−1

+ O(1)m|∆λm|

m∑
v=1

|tv|
k

vXv
k−1

= O(1)
m−1∑
v=1

|∆ (v|∆λv|)|Xv + O(1)m|∆λm|Xm

= O(1)
m−1∑
v=1

vXv|∆
2λv| + O(1)

m−1∑
v=1

Xv|∆λv| + O(1)m|∆λm|Xm

= O(1) as m→∞,
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by virtue of the hypotheses of Theorem 3.1 and and Lemma 3.3. Finally, by using (8), we have that

m+1∑
n=2

(
Pn

pn

)k−1 ∣∣∣Tn,4

∣∣∣k ≤

m+1∑
n=2

pn

PnPk
n−1

n−1∑
v=1

Pv

v
|λv+1||tv|


k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

Pv

v
|λv+1|

k
|tv|

k

 ×
 1

Pn−1

n−1∑
v=1

Pv

v


k−1

= O(1)
m∑

v=1

Pv

v
|λv+1|

k−1
|λv+1||tv|

k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

|λv+1|
|tv|

k

vXv
k−1

= O(1) as m→∞.

This completes the proof of Theorem 3.1.

5. Let f (t) be a periodic function with period 2π and integrable (L) over (−π, π). Write

f (x) ∼
1
2

a0 +

∞∑
n=1

(an cos nx + bn sin nx) =

∞∑
n=0

Cn(x),

φ(t) = 1
2 { f (x + t) + f (x − t)}, and φα(t) = α

tα
∫ t

0 (t − u)α−1φ(u)du, (α > 0).
It is well know that if φ1(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the sequence
(nCn(x)) (see [6]). Using this fact, we get the following main result dealing with the trigonometric Fourier
series.
Theorem 5.1 Let (Xn) be a quasi-σ-power increasing sequence. If φ1(t) ∈ BV(0, π), and the sequences (pn),
(λn), and (Xn) satisfy the conditions of Theorem 3.1, then the series

∑
Cn(x)λn is summable

∣∣∣N̄, pn

∣∣∣
k, k ≥ 1.
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