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Abstract.

We study the existence and asymptotic behavior of nonoscillatory solutions of Emden-Fowler dynamic
sytems on time scales. In order to show the existence, we use Schauder, Knaster and Tychonoff Fixed Point
Theorems. Some examples are illustrated as well.

1. Introduction

In this paper, we deal with the classification of nonoscillatory solutions of the Emden-Fowler system of first
order dynamic equationsx∆(t) =

(
1

a(t)

) 1
α
∣∣∣y(t)

∣∣∣ 1
α s1ny(t)

y∆(t) = −b(t) |xσ(t)|β s1nxσ(t),
(1)

where α, β > 0 and a, b ∈ Crd ([t0,∞)T,R+). Whenever we write t ≥ t1, we mean that t ∈ [t1,∞)T := [t1,∞)∩T.
A time scale T, a nonempty closed subset of real numbers, is introduced by Bohner and Peterson in [7]
and [8]. Throughout this paper, we assume that T is unbounded above. We call (x, y) a proper solution if
it is defined on [t0,∞)T and sup{|x(s)|, |y(s)| : s ∈ [t,∞)T} > 0 for t ≥ t0. A solution (x, y) of (1) is said to be
nonoscillatory if the component functions x and y are both nonoscillatory, i.e., either eventually positive or
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Özkan Öztürk et al. / Filomat 31:6 (2017), 1529–1541 1530

eventually negative. Otherwise it is said to be oscillatory. Throughout this paper without loss of generality
we assume that x is eventually positive in our proofs. Our results can be obtained similarly for the case that
x is eventually negative.

System (1) can be easily derived from the Emden Fowler dynamic equation(
a(t)|x∆(t)|αs1nx∆(t)

)∆
+ b(t)|x(t)|βs1nxσ(t) = 0 (2)

by letting x = x and y = |x∆
|
αs1nx∆ in (2). If α = β in (2), then it is called a half-linear dynamic equation.

If T = R and T = Z, equation (2) reduces to the Emden Fowler differential equation(
a(t)|x′(t)|αs1nx′(t)

)′ + b(t)|x(t)|βs1nx(t) = 0,

see [12], and the Emden-Fowler difference equation

∆
(
an|∆xn|

αs1n∆xn
)

+ bn|xn+1|
βs1nxn+1 = 0,

see [9], respectively.

This paper is motivated by the papers [9], [14] and [11]. The related oscillation and nonoscillation results
for two and three dimensional dynamic systems are given in [6], [4], [5], and [2], respectively. The setup of
this paper is as follows: In Section 1, we give preliminary lemmas playing an important role in the further
sections. In Sections 2 and 3, we show the existence and asymptotic properties of nonoscillatory solutions
of system (1) by using certain improper integrals and fixed point theorems. In Section 4, we obtain some
conclusions. And finally, the paper concludes with some examples.

Let M be the set of all nonoscillatory solutions of system (1). One can easily show that any nonoscillatory
solution (x, y) of system (1) belongs to one of the following classes:

M+ := {(x, y) ∈M : x(t)y(t) > 0 eventually}
M− := {(x, y) ∈M : x(t)y(t) < 0 eventually}.

Lemma 1.1. [6, Lemma 2.1] Let (x, y) be a solution of system (1). Then the component functions x and y are
themselves nonoscillatory if (x, y) is a nonoscillatory solution of system (1).
Remark 1.1. Let (x, y) be a nonoscillatory solution of system (1). If x(t) is nonoscillatory for t ≥ t0, then the
other component function y(t) is also nonoscillatory for sufficiently large t.

For convenience, let us set

Ya =

∫
∞

t0

A(t)∆t and Zb =

∫
∞

t0

b(t)∆t,

where A =
(

1
a

) 1
α .

The following lemma gives some sufficient conditions for oscillation and nonoscillation of system (1).
Lemma 1.2. (a)[6, Lemma 2.3] If Ya < ∞ and Zb < ∞, then system (1) is nonoscillatory.
(b)[6, Lemma 2.2] If Ya = ∞ and Zb = ∞, then system (1) is oscillatory.

In the next two lemmas we show that M+ and M− can be empty.
Lemma 1.3. If Ya = ∞ and Zb < ∞, then any nonoscillatory solution (x, y) of system (1) belongs to M+, i.e M− = ∅.

Proof. Suppose that Ya = ∞ and Zb < ∞. The proof is by contradiction. So assume that there exists a solution (x, y)
of system (1) such that (x, y) ∈ M−. Without loss of generality assume that x(t) > 0 for t ≥ t1. Then by integrating
the first equation of system (1) from t1 to t and the monotonicity of y, we have

x(t) = x(t1) −
∫ t

t1

A(s)
(
−y(s)

) 1
α ∆s ≤ x(t1) −

(
−y(t1)

) 1
α

∫ t

t1

A(s)∆s.
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As t → ∞, x → −∞. But this contradicts the positivity of x. Note that the proof can be done without the condition
Zb < ∞. However in order for nonoscillatory solutions to exist, we need the assumption Zb < ∞ by Lemma 1.2
(b).

Lemma 1.4. If Ya < ∞ and Zb = ∞, then any nonoscillatory solution (x, y) of system (1) belongs to M−, i.e., M+ = ∅.

Proof. Suppose that Ya < ∞ and Zb = ∞. The proof is by contradiction. So assume that there exists a
nonoscillatory solution (x, y) of system (1) such that xy > 0 eventually. Without loss of generality, assume
that x(t) > 0 for t ≥ t1. So by integrating the second equation of system (1) from t1 to t and the monotonicity
of x give us

y(t) ≤ y(t1) − (xσ(t1))β
∫ t

t1

b(s)∆s.

As t→∞, it follows that y(t)→ −∞. But this contradicts that y is eventually positive.

The discrete version of the following lemmas can be found in [14].
Lemma 1.5. Let (x, y) be a nonoscillatory solution of system (1).
(a) If Ya < ∞, then the component function x has a finite limit.
(b) If Ya = ∞ or Zb < ∞, then the component function y has a finite limit.

Proof. (a) Suppose that Ya < ∞ and (x, y) is a nonoscillatory solution of system (1). Then by Lemma 1.1, x
and y are themselves nonoscillatory. Without loss of generality, assume that there exists t1 ≥ t0 such that
x(t) > 0 for t ≥ t1. If (x, y) ∈M−, then by the first equation of system (1), x∆(t) < 0 for t ≥ t1. Therefore, limit
of x exists. So let us show that the assertion follows if (x, y) ∈M+. From the first equation of system (1), we
have x∆(t) > 0 for t ≥ t1. Hence two things might happen: The limit of the component function x exists or
blows up. Now let us show that lim

t→∞
x(t) = ∞ cannot happen. Assume x(t) → ∞ as t → ∞. By integrating

the first equation of system (1) from t1 to t and using the monotonicity of y, we get

x(t) ≤ x(t1) + y
1
α (t1)

∫ t

t1

A(s)∆s.

Taking the limit as t→∞, it follows that Ya = ∞, which is a contradiction. This completes the proof.

(b) Suppose that Ya = ∞ or Zb < ∞ and (x, y) is a nonoscillatory solution of system (1). The case Zb < ∞ can
be proved similar to part (a). For Ya = ∞, assume that x is eventually positive. Then proceeding as in the
proof of Lemma 1.3, it can be shown that y is eventually positive. Then by the second equation of system
(1), it follows that y has a finite limit.

In the following lemmas, we find upper and lower bounds for the component function x of a nonoscillatory
solution (x, y) of system (1).
Lemma 1.6. Let Ya < ∞. If (x, y) is a nonoscillatory solution of system (1), then there exist c, d > 0 and t1 ≥ t0 such
that

c
∫
∞

t
A(s)∆s ≤ x(t) ≤ d

or

−d ≤ x(t) ≤ −c
∫
∞

t
A(s)∆s

for t ≥ t1.
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Proof. Suppose that Ya < ∞ and (x, y) is a nonoscillatory solution of system (1). Without loss of generality,
let us assume that x is eventually positive. Then by Lemma 1.5 (a), we have x(t) ≤ d for t ≥ t1. If y(t) > 0 for
t ≥ t1, then x is eventually increasing by the first equation of system (1). So for large t, the assertion follows.
If y(t) < 0 for t ≥ t1, then integrating the first equation of system (1) from t to∞ and the monotonicity of y
give

x(t) = x(∞) +

∫
∞

t
A(s)(−y(s))

1
α ∆s ≥

∫
∞

t
A(s)(−y(s))

1
α ∆s

≥ (−y(t1))
1
α

∫
∞

t
A(s)∆s.

Setting c = (−y(t1))
1
α in the last inequality proves the assertion. Assuming x is eventually negative gives the

second part of the proof.

Lemma 1.7. Let Ya = ∞ and Zb < ∞. If (x, y) is a nonoscillatory solution of system (1), then there exist k1, k2 > 0
and t1 ≥ t0 such that

k1 ≤ x(t) ≤ k2

∫ t

t1

A(s)∆s

or

−k2

∫ t

t1

A(s)∆s ≤ x(t) ≤ −k1

for t ≥ t1.

Proof. Suppose that Ya = ∞ and Zb < ∞, and (x, y) is a nonoscillatory solution of system (1). Then by
Lemma 1.1, x and y are themselves nonoscillatory. Without loss of generality let us assume that x(t) > 0 for
t ≥ t1. Then by Lemma 1.3, (x, y) must be in M+. Hence, there is a constant k1 > 0 such that x(t) ≥ k1 for
t ≥ t1. Integrating the first equation of system (1) and the monotonicity of y give

x(t) = x(t1) +

∫ t

t1

A(s)y
1
α (s)∆s ≤ x(t1) + y

1
α (t1)

∫ t

t1

A(s)∆s

=

 x(t1)∫ t

t1
A(s)∆s

+ y
1
α (t1)


∫ t

t1

A(s)∆s.

Since Ya = ∞, we can choose t2 ≥ t1 such that∫ t

t2

A(t)∆t ≥ 1 for t ≥ t2.

So this implies that

x(t) ≤
(
x(t1) + y

1
α (t1)

) ∫ t

t1

A(s)∆s

and the assertion follows by letting k2 = x(t1) + y
1
α (t1). Assuming that x is eventually negative proves the

second part of the proof.
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2. The Case Ya = ∞ and Zb < ∞

In this section, we show that M+ can be divided into some sub-classes under the case Ya = ∞. By Lemma
1.2(b), in order to obtain the existence of nonoscillatory solutions, we also have to assume Zb < ∞. So
throughout this section, we suppose that Ya = ∞ and Zb < ∞ hold. Then by Lemma 1.3, (x, y) ∈ M+.
Without loss of generality we suppose that x > 0 eventually. Then by the second equation of system (1), y is
positive and decreasing eventually. In addition to that, by using the first equation of system (1) and taking
Lemma 1.5(b) into consideration we have that x(t)→ c or∞, and y(t)→ d or 0 as t→ ∞ for 0 < c < ∞ and
0 < d < ∞.
Lemma 2.1. If x(t)→ c , then y(t)→ 0 as t→ 0 for c < 0 < ∞ .

Proof. Suppose that x(t) → c as t → ∞. Assume the contrary. So y(t) → d for 0 < d < ∞ as t → ∞. Then
since y(t) > 0 and decreasing eventually, there exists t1 ≥ t0 such that y(t) ≥ d for t ≥ t1. By the first equation
of system (1), we have

x∆(t) = A(t)y
1
α (t) ≥ A(t)d

1
α for t ≥ t1. (3)

Integrating (3) from t1 to t yields

x(t) ≥ x(t1) + d
1
α

∫ t

t1

A(s)∆s.

As t→∞, this gives us a contradiction to the fact x(t)→ c. So the assertion follows.

In light of Lemma 2.1 and the explanation above, we have the following lemma.
Lemma 2.2. For 0 < c < ∞ and 0 < d < ∞, any nonoscillatory solution in M+ must belong to one of the following
sub-classes:

M+
B,0 =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = 0

}
,

M+
∞,B =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|y(t)| = d

}
,

M+
∞,0 =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|y(t)| = 0

}
.

In the literature, solutions in M+
B,0, M+

∞,B and M+
∞,0 are called subdominant solutions, dominant solutions and

intermediate solutions, respectively.

The following theorems show the existence of nonoscillatory solutions in sub-classes mentioned above by
using the improper integrals:

Jα =

∫
∞

t0

A(t)
(∫

∞

t
b(s)∆s

) 1
α

∆t

Kβ =

∫
∞

t0

b(t)
(∫ σ(t)

t0

A(s)∆s
)β

∆t.

Theorem 2.1. M+
B,0 , ∅ if and only if Jα < ∞.
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Proof. Suppose that M+
B,0 , ∅. Then there exists (x, y) ∈ M+ such that |x(t)| → c > 0 and |y(t)| → 0 as t→ ∞.

Without loss of generality let us assume that x(t) > 0 for t ≥ t1. Integrating the second equation of system
(1) from t to∞ gives us

y(t) =

∫
∞

t
b(s) (xσ(s))β ∆s. (4)

Solving the first equation of system (1) for y, substituting the resulting equation into (4) and by the
monotonicity of y, we obtain

x∆(t) ≥ A(t)x
β
α (t)

(∫
∞

t
b(s)∆s

) 1
α

. (5)

Integrating (5) from t1 to t gives

x(t) ≥ x(t1) +

∫ t

t1

A(s)x
β
α (s)

(∫
∞

s
b(τ)∆τ

) 1
α

∆s

≥ x
β
α (t1)

∫ t

t0

A(s)
(∫

∞

s
b(τ)∆τ

) 1
α

∆s.

As t→∞, the assertion follows.

Conversely, suppose that Jα < ∞. Choose t1 ≥ t0 so large that∫
∞

t1

A(t)
(∫

∞

t
b(s)∆s

) 1
α

∆t <
( c

2

) 1

c
β
α

(6)

for arbitrarily given c > 0. Let X be the set of all bounded, continuous, real valued functions with the norm
‖x‖ = sup

t∈[t1,∞)T
{|x(t)|}. It is clear that X is a Banach Space, see [10]. Let us define a subset Ω of X such that

Ω := {x ∈ X :
c
2
≤ x(t) ≤ c, t ≥ t1}.

It is clear that Ω is closed, bounded and convex. Define an operator F : Ω→ X by

(Fx)(t) = c −
∫
∞

t
A(s)

(∫
∞

s
b(τ) (xσ(τ))β ∆τ

) 1
α

∆s for t ≥ t1. (7)

By inequality (6), we have

c ≥ (Fx)(t) = c −
∫
∞

t
A(s)

(∫
∞

s
b(τ) (xσ(τ))β ∆τ

) 1
α

∆s

≥ c − c
β
α

∫
∞

t
A(s)

(∫
∞

s
b(τ)∆τ

) 1
α

∆s ≥
c
2
,

and so F : Ω→ Ω. Since

||(Fxn)(t) − (Fx)(t)||

≤

∫
∞

t1

A(s)

∣∣∣∣∣∣∣
(∫

∞

s
b(τ)

(
xσn(τ)

)β ∆τ

) 1
α

−

(∫
∞

s
b(τ) (xσ(τ))β ∆τ

) 1
α

∣∣∣∣∣∣∣∆s,
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where xn is a sequence of functions converging to x. Hence, the Lebesque Dominated Convergence Theorem
yields

||(Fxn)(t) − (Fx)(t)|| → 0,

which implies the continuity of F on Ω. Also

0 ≤ − [F(x)(t)]∆ = A(t)
(∫

∞

t
b(τ) (xσ(τ))β ∆τ

) 1
α

≤ c
β
α A(t)

(∫
∞

t
b(τ)∆τ

) 1
α

< ∞

implies that F is equibounded and equicontinuous. Therefore by Schauder’s Fixed Point Theorem, there
exists x̄ ∈ Ω such that x̄ = Fx̄. Then

x̄(t) = c −
∫
∞

t
A(s)

(∫
∞

s
b(τ) (x̄σ(τ))β ∆τ

) 1
α

∆s. (8)

So as t → ∞, x̄(t) → c. Note that x̄∆(t) > 0 for t ≥ t1. So it is eventually monotone, i.e., x̄ is nonoscillatory.
Therefore, taking the derivative of (8) and using the first equation of system (1) give us

ȳ(t) =

∫
∞

t
b(τ) (x̄σ(τ))β ∆τ.

It follows that ȳ(t) > 0 for t ≥ t1, i.e., (x̄, ȳ) is nonoscillatory and then by Remark 1.1 and Lemma 1.3,
(x̄, ȳ) ∈M+. Taking the limit as t→∞ yields ȳ(t)→ 0. Hence M+

B,0 , ∅.

Theorem 2.2. M+
∞,B , ∅ if and only if Kβ < ∞.

Proof. Suppose that M+
∞,B , ∅. Then there exists (x, y) ∈M+ such that |x(t)| → ∞ and |y(t)| → d, for 0 < d < ∞.

Without loss of generality assume that x(t) > 0 for t ≥ t1 Integrating the first equation from t1 to σ(t) and the
second equation from t1 to t of system (1) give us

xσ(t) = xσ(t1) +

∫ σ(t)

t1

A(s)y
1
α (s)∆s > d

1
α

∫ σ(t)

t1

A(s)∆s. (9)

and

y(t1) − y(t) =

∫ t

t1

b(s) (xσ(s))β ∆s, (10)

respectively. Then by (9) and (10), we have∫ t

t1

b(s)
(∫ σ(s)

t1

A(τ)∆τ
)β

∆s < d
−β
α

∫ t

t1

b(s) (xσ(s))β ∆s

< d
−β
α
(
y(t1) − y(t)

)
So as t goes to∞, it follows that Kβ < ∞.

Conversely, suppose that Kβ < ∞. Choose t1 ≥ t0 so large that

∫
∞

t1

b(s)
(∫ σ(s)

t1

A(τ)∆τ
)β

∆s <
d

(2d)β
(11)
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for arbitrarily given d > 0. Let X be the partially ordered Banach Space of all real-valued continuous
functions with the norm ‖x‖ = sup

t>t1

|x(t)|∫ t
t1

A(s)∆s
and the usual pointwise ordering ≤. Define a subset Ω of X as

follows:

Ω : {x ∈ X : d
1
α

∫ t

t1

A(s)∆s ≤ x(t) ≤ (2d)
1
α

∫ t

t1

A(s)∆s for t > t1}.

First since every subset of Ω has a supremum and infimum in Ω, (Ω,≤) is a complete lattice. Define an
operator F : Ω→ X as

(Fx)(t) =

∫ t

t1

A(s)
(
d +

∫
∞

s
b(τ) (xσ(τ))β ∆τ

) 1
α

∆s. (12)

It can be shown that F : Ω→ Ω is an increasing mapping for t ≥ t1.

So by the Knaster Fixed Point Theorem, we have that there exists x̄ ∈ Ω such that

x̄(t) =

∫ t

t1

A(s)
(
d +

∫
∞

s
b(τ) (x̄σ(τ))β ∆τ

) 1
α

∆s for t > t1. (13)

Hence x̄ is eventually positive, and hence nonoscillatory. Then by taking the derivative of (13) and using
the first equation of system (1) give us

ȳ(t) =
(
x̄∆(t)

)α
a(t) = d +

∫
∞

t
b(τ) (x̄σ(τ))β ∆τ. (14)

Then it follows that ȳ is eventually positive, i.e., nonoscillatory. Hence, (x̄, ȳ) is a nonoscillatory solution of
system (1) and by Lemma 1.3 we have (x̄, ȳ) ∈M+. For x̄ ∈ Ω, we also have

x̄(t) ≥
∫ t

t1

A(s)

d +

∫
∞

s
b(τ)

(
d

1
α

∫ σ(τ)

t1

A(λ)∆λ
)β

∆τ


1
α

∆s

As t→ ∞, the right hand side of the last inequality goes to∞ since Ya = ∞. Therefore x̄(t)→ ∞ as t→ ∞.
Taking the limit as t→∞ of (14) gives that y has a finite limit. Therefore M+

∞,B , ∅.

Theorem 2.3. If Jα = ∞ and Kβ < ∞, then M+
∞,0 , ∅.

Proof. Suppose that Jα = ∞ and Kβ < ∞. Since Ya = ∞, we can choose t1, t2 ≥ t0 so large that∫
∞

t2

b(t)
(∫ σ(t)

t0

A(s)∆s
)β

∆t ≤ 1 (15)

and ∫ t2

t1

A(s)∆s ≥ 1. (16)

Let X be the Fréchet Space of all continuous functions on [t1,∞)T endowed with the topology of uniform
convergence on compact subintervals of [t1,∞)T. Set

Ω := {x ∈ X : 1 ≤ x(t) ≤
∫ t

t1

A(s)∆s for t ≥ t1}
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and define an operator T : Ω→ X by

(Tx)(t) = 1 +

∫ t

t2

A(s)
(∫

∞

s
b(τ) (xσ(τ))β ∆τ

) 1
α

. (17)

We can show that T : Ω→ Ω is continuous on Ω ⊂ X by the Lebesque Dominated Convergence Theorem.
Since

0 ≤ [(Tx)(t)]∆ = A(t)
(∫

∞

t
b(τ) (xσ(τ))β ∆τ

) 1
α

≤ A(t)

∫ ∞

t
b(τ)

(∫ σ(τ)

t1

A(λ)∆λ
)β

∆τ


1
α

< ∞,

it follows that T is equibounded and equicontinuous. Then by Tychonoff Fixed Point Theorem, there exists
x̄ ∈ Ω such that

x̄(t) = (Tx̄)(t) = 1 +

∫ t

t2

A(s)
(∫

∞

s
b(τ) (x̄σ(τ))β ∆τ

) 1
α

for t ≥ t2. (18)

Therefore, it follows that x̄ is eventually positive, i.e nonoscillatory. Then integrating (18) and by the first
equation of system (1), we have

ȳ(t) = a(t)
(
x∆(t)

)α
=

∫
∞

t
b(τ) (x̄σ(τ))β ∆τ. (19)

It follows that ȳ is eventually positive, and hence (x, y) is a nonoscillatory solution of system (1). So by
Lemma 1.3 it follows that (x̄, ȳ) ∈M+. Also by monotonicity of x̄, we have

x̄(t) = 1 +

∫ t

t2

A(s)
(∫

∞

s
b(τ) (x̄σ(τ))β ∆τ

) 1
α

≥ (x̄(t2))β
∫ t

t2

A(s)
(∫

∞

s
b(τ)∆τ

) 1
α

.

Hence as t→∞, it follows that x̄(t)→∞. And by (19), we have ȳ(t)→ 0 as t→∞. Therefore M+
∞,0 , ∅.

Next we give the integral relationships between Jα, Kβ, Ya, and Zb and obtain a conclusion for the existence
and non-existence of solution (x, y) of system (1) based on α and β. The proof of the following lemma is
similar to the proofs of Lemma 1.1, Lemma 3.2, Lemma 3.3, Lemma 3.6 and Lemma 3.7 in [3].
Lemma 2.3. (a) If Jα < ∞ or Kβ < ∞ then Zb < ∞.
(b) If Kβ = ∞, then Ya = ∞ or Zb = ∞.
(c) If Jα = ∞, then Ya = ∞ or Zb = ∞.
(d) Let α ≥ 1. If Jα < ∞, then Kα < ∞.
(e) Let β ≤ 1. If Kβ < ∞, then Jβ < ∞.
(f) Let α < β. If Kβ < ∞, then Jα < ∞ and Kα < ∞.
(g) Let α > β. If Jα < ∞, then Kβ < ∞ and Jβ < ∞.

The following corollaries give the existence and nonexistence of nonoscillatory solutions (x, y) of system (1)
in our subclasses by Lemma 2.3 and our main theorems presented in this section.
Corollary 2.1. Suppose that Ya = ∞ and Zb < ∞. Then

(a) M+
B,0 , ∅ if any of the followings hold:
(i) Jα < ∞,

(ii) α < β and Kβ < ∞,
(iii) α < β, β ≥ 1 and Jβ < ∞,
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(iv) α ≤ 1 and Kα < ∞.
(b) M+

∞,B , ∅ if any of the followings hold:
(i) Kβ < ∞,

(ii) α > β and Jα < ∞,
(iii) α ≥ 1 and Jβ < ∞.

(c) M+
B,0 = ∅ if any of the followings hold:
(i) Jα = ∞,

(ii) α > β and either Jβ = ∞ or Kβ = ∞,
(iii) α ≥ 1 and Kα = ∞.

(d) M+
∞,B = ∅ if any of the followings hold:
(i) Kβ = ∞,

(ii) α < β and either Jα = ∞ or Kα = ∞,
(iii) β ≤ 1 and Jβ = ∞.

3. The Case Ya < ∞ and Zb < ∞

In this section, we show the existence of a solution (x, y) of system (1) by assuming Ya < ∞. Since we
investigate a solution (x, y) in M+, we also have to assume that Zb < ∞ because of Lemma 1.4. Recall
that M+ is the set of nonoscillatory solutions (x, y) such that x and y have the same sign. Without loss of
generality let us assume that x > 0 eventually. Then by the first equation of system (1), x is eventually
increasing and by Lemma 1.5 the limit of x approaches a positive constant and the limit of y exists. Also by
the second equation of system (1) y is eventually decreasing and approaches a nonnegative constant.

In light of this information, one can easily prove the following lemma.
Lemma 3.1. For 0 < c < ∞ and 0 < d < ∞, any nonoscillatory solution in M+ belongs to the following subclasses:

M+
B,B =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = d

}
M+

B,0 =
{
(x, y) ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = 0

}
.

The following theorems show the existence of nonoscillatory solutions (x, y) in these subclasses of M+.
Theorem 3.1. (a) M+

B,B , ∅ if Ya < ∞ and Zb < ∞.
(b) If M+

B,B , ∅, then Jα < ∞.

Proof. (a) Suppose that Ya < ∞ and Zb < ∞. Then Jα < ∞ by Lemma 2.3 (c). Since Ya < ∞, for arbitrarily
given c, d > 0 there exists t1 ≥ t0 such that∫ t

t1

A(s)
(
d +

∫
∞

s
cβb(s)∆s

) 1
α

≤
c
2

for t ≥ t1. (20)

Let X be the Banach space of all real-valued continuous functions endowed with the norm ‖x‖ = sup
t∈[t1,∞)T

|x(t)|

and with the usual pointwise ordering ≤. Define a subset Ω of X such that

Ω :=
{
x ∈ X :

c
2
≤ x(t) ≤ c for t ≥ t1

}
.

For any subset Ω̃ ∈ Ω, it is obvious that inf Ω̃ ∈ Ω and sup Ω̃ ∈ Ω. Define an operator F : Ω→ X as

(Fx)(t) =
c
2

+

∫ t

t1

A(s)
(
d +

∫
∞

s
b(τ) (xσ(τ))β ∆τ

) 1
α

∆s.
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One can show that F : Ω→ Ω and F is an increasing mapping. So by the Knaster Fixed point theorem [13],
there exists x̄ ∈ Ω such that

x̄(t) = (Fx̄)(t) =
c
2

+

∫ t

t1

A(s)
(
d +

∫
∞

s
b(τ) (x̄σ(τ))β ∆τ

) 1
α

∆s. (21)

Therefore, it follows that x̄(t) > 0 for t ≥ t1. So by the first equation of system (1), we have ȳ(t) > 0 for t ≥ t1,
i.e., (x̄, ȳ) ∈M+. From (21), we have

x̄ ≤
c
2

+

∫ t

t1

A(s)
(
d + cβ

∫
∞

s
b(τ)∆τ

) 1
α

∆s.

So as t→ ∞, it follows that the limit of x̄ is finite. By taking the derivative of (21) and the first equation of
system (1), we have

ȳ(t) =
(
x̄∆(t)

)α
a(t) = d +

∫
∞

t
b(τ) (x̄σ(τ))β ∆τ. (22)

Taking the limit of (22) as t→∞ yields that ȳ(t)→ d. Therefore, we conclude that (x̄, ȳ) ∈M+
B,B , ∅.

(b) Suppose that M+
B,B , ∅. Without loss of generality assume that x is eventually positive. Then there exists

t1 ≥ t0 and (x, y) ∈ M+ such that x → c and y → d as t → ∞ for 0 < c < ∞ and 0 < d < ∞. Integrating the
second equation of system (1) from t to∞ and using the monotonicity of x give us

y(t) > (x(t))β
∫
∞

t
b(s)∆s for t ≥ t1

or

y
1
α (t) > (x(t))

β
α

(∫
∞

t
b(s)∆s

) 1
α

for t ≥ t1. (23)

Substituting (23) into the first equation of system (1) yields

x∆(t) > A(t)x
β
α

(∫
∞

t
b(s)∆s

) 1
α

. (24)

Integrating (24) from t1 to t and by the monotonicity of x give us

x(t) > x
β
α (t1)

∫ t

t1

A(s)
(∫

∞

s
b(τ)∆τ

) 1
α

∆s (25)

As t→∞, the assertion follows.

The following theorem can be proved similar to Theorem 2.1.
Theorem 3.2. (a) M+

B,0 , ∅ if Ya < ∞ and Zb < ∞.
(b) If M+

B,0 , ∅, then Jα < ∞.

By Lemma 2.1 and from our main results in Sections 2 and 3, one can have the following corollaries.
Corollary 3.1. If Ya < ∞ and Zb < ∞, then any nonoscillatory solution in M+ of system (1) belongs to M+

B,B or
M+

B,0, i.e., M+
∞,B = M+

∞,0 = ∅.
Corollary 3.2. If Ya = ∞ and Zb < ∞, then M+

B,B = ∅.
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4. Examples

In this section, we give three examples to illustrate Theorem 2.2 and Theorem 2.3.
Example 4.1. Let T = qN0 , q > 1, α = 1, A(t) = t

1+2t , b(t) = 1
q1+βtβ+2 , s = qm and t = qn, where m,n ∈ N0, in

system (1). It is easy to show that Ya = ∞ and Zb < ∞. Let us show that Kβ < ∞.

∫ T

t0

b(t)
(∫ σ(t)

t0

A(s)∆s
)β

∆t =

ρ(T)∑
t=1

1
q1+βtβ+2

 t∑
s=1

s2(q − 1)
1 + 2s


β

(q − 1)t

<
(q − 1)β+1

q1+β

ρ(T)∑
t=1

1
t1+β

 t∑
s=1

s


β

<
q − 1

q

ρ(T)∑
t=1

1
t
.

We also have

lim
T→∞

ρ(T)∑
t=1

1
t

=

∞∑
n=0

1
qn < ∞

by the geometric series test. So we have that Kβ < ∞. It can be verified that (t, 1
t + 2) is a nonoscillatory

solution ofx∆ = t
1+2t

∣∣∣y∣∣∣ s1ny
y∆ = − 1

q1+βtβ+2 |xσ|β s1nx

in M+ such that lim
t→∞

t = ∞ and lim
t→∞

(
1
t

+ 2) = 2, i.e., M+
∞,B , ∅.

Example 4.2. Let T = R, α > β with β < 1, A(t) = e2t and b(t) = αe−t(α+β) in system (1). Clearly, Ya = ∞ and
Zb < ∞. One can show that

Jα =

∫
∞

t0

e2t
(∫

∞

t
αe−s(α+β)ds

) 1
α

dt = ∞

and

Kβ =

∫
∞

t0

αe−t(α+β)

(∫ t

t0

e2sds
)β

dt < ∞.

It is easy to verify that (et, e−αt) is a nonoscillatory solution ofx′ = e2t
∣∣∣y∣∣∣ 1

α s1ny
y′ = −αe−t(α+β)

|x|β s1nx

in M+ such that lim
t→∞

et = ∞ and lim
t→∞

e−αt = 0, i.e., M+
∞,0 , ∅.

Example 4.3. Let T = qN0 , q > 1, α = 1, β < 1, A(t) = 1 + t, b(t) = 1
(1+t)(1+tq)β+1 in system (1). It is easy to verify

that Ya = ∞ and Zb < ∞. Letting s = qm and t = qn, where m,n ∈N0, gives

∫ T

t0

A(t)
(∫ T

t
b(s)∆s

) 1
α

∆t =

ρ(T)∑
t=1

(1 + t)


ρ(T)∑
s=t

(q − 1)s
(1 + s)(1 + sq)β+1

 (q − 1)t

≥ (q − 1)2
ρ(T)∑
t=1

(1 + t)
(

t
(1 + t)(1 + tq)β+1

)
t = (q − 1)2

ρ(T)∑
t=1

t2

(1 + tq)β+1 .
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So we have

lim
T→∞

ρ(T)∑
t=1

t2

(1 + tq)β+1 =

∞∑
n=0

q2n

(1 + qn+1)β+1 = ∞

by the Test for Divergence and β < 1. Now let us show that Kβ < ∞. One can show that∫ σ(t)

t0

A(s)∆s =

t∑
s=1

(1 + s)(q − 1)s ≤ tq(1 + tq)

and so we have∫ T

t0

b(t)
(∫ σ(t)

t0

A(s)∆s
)β

∆t ≤
ρ(T)∑
t=1

1
(1 + t)(1 + tq)β+1

(
tq(1 + tq)

)β t(q − 1)qβ(q − 1)
ρ(T)∑
t=1

tβ

1 + t
.

Therefore,

lim
T→∞

qβ(q − 1)
T∑

t=1

tβ

1 + t
= qβ(q − 1)

∞∑
n=0

(qn)β

(1 + qn)
< ∞

by the Ratio Test and β < 1. It can also be verified that
(
1 + t, 1

t+1

)
is a nonoscillatory solution ofx∆ = (1 + t)

∣∣∣y∣∣∣ 1
α s1ny

y∆ = − 1
(1+t)(1+tq)β+1 |xσ|β s1nx

in M+ such that lim
t→∞

(1 + t) = ∞ and lim
t→∞

1
t + 1

= 0, i.e., M+
∞,0 , ∅.
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