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Abstract.

We study the existence and asymptotic behavior of nonoscillatory solutions of Emden-Fowler dynamic
sytems on time scales. In order to show the existence, we use Schauder, Knaster and Tychonoff Fixed Point
Theorems. Some examples are illustrated as well.

1. Introduction

In this paper, we deal with the classification of nonoscillatory solutions of the Emden-Fowler system of first
order dynamic equations

{xA(t) = (%t))% v sgny(® M
yA(E) = =b(t) I ()P sgnx®(h),

wherea, > 0anda, b € Cy ([t, )1, R*). Whenever we write f > t;, we mean that t € [t;, 00)y := [, 00)NT.
A time scale T, a nonempty closed subset of real numbers, is introduced by Bohner and Peterson in [7]
and [8]. Throughout this paper, we assume that T is unbounded above. We call (x, y) a proper solution if
it is defined on [tg, co) and sup{|x(s), |y(s)| : s € [t, 00)1} > O for t > fy. A solution (x, y) of (1) is said to be
nonoscillatory if the component functions x and y are both nonoscillatory, i.e., either eventually positive or
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eventually negative. Otherwise it is said to be oscillatory. Throughout this paper without loss of generality
we assume that x is eventually positive in our proofs. Our results can be obtained similarly for the case that
x is eventually negative.

System (1) can be easily derived from the Emden Fowler dynamic equation

(a(t)IxA(t)lasgnxA(t))A + b(b)lx(t)Psgnx’(t) = 0 )

by letting x = x and y = [x%|*sgnx® in (2). If @ = B in (2), then it is called a half-linear dynamic equation.

If T=Rand T = Z, equation (2) reduces to the Emden Fowler differential equation
(a(t)lx (B sgnx’ () + b(b)lx(t)Psgnx(t) = 0,

see [12], and the Emden-Fowler difference equation
A (an|Axy|*sgnAxy) + bylxns Psgna,a =0,

see [9], respectively.

This paper is motivated by the papers [9], [14] and [11]. The related oscillation and nonoscillation results
for two and three dimensional dynamic systems are given in [6], [4], [5], and [2], respectively. The setup of
this paper is as follows: In Section 1, we give preliminary lemmas playing an important role in the further
sections. In Sections 2 and 3, we show the existence and asymptotic properties of nonoscillatory solutions
of system (1) by using certain improper integrals and fixed point theorems. In Section 4, we obtain some
conclusions. And finally, the paper concludes with some examples.

Let M be the set of all nonoscillatory solutions of system (1). One can easily show that any nonoscillatory
solution (x, y) of system (1) belongs to one of the following classes:

M* :={(x,y) e M : x(t)y(t) > 0 eventually}

M ={(x,y) e M: x(t)y(t) < 0 eventually}.
Lemma 1.1. [6, Lemma 2.1] Let (x,y) be a solution of system (1). Then the component functions x and y are
themselves nonoscillatory if (x, y) is a nonoscillatory solution of system (1).

Remark 1.1. Let (x, y) be a nonoscillatory solution of system (1). If x(t) is nonoscillatory for ¢t > t;, then the
other component function y(t) is also nonoscillatory for sufficiently large ¢.

For convenience, let us set

Y, = f AMAt  and Zp = f b(H)AL,

to fo
1
where A = (%)'

The following lemma gives some sufficient conditions for oscillation and nonoscillation of system (1).
Lemma 1.2. (a)[6, Lemma 2.3] If Y, < o0 and Z; < oo, then system (1) is nonoscillatory.
(b)[6, Lemma 2.2] If Y,; = oo and Z;, = oo, then system (1) is oscillatory.

In the next two lemmas we show that M* and M~ can be empty.
Lemma 1.3. IfY, = oo and Z;, < oo, then any nonoscillatory solution (x, y) of system (1) belongs to M*, i.e M~ = 0.

Proof. Suppose that Y, = co and Z;, < co. The proof is by contradiction. So assume that there exists a solution (x, y)
of system (1) such that (x,y) € M~. Without loss of generality assume that x(t) > 0 for t > t;. Then by integrating
the first equation of system (1) from t; to t and the monotonicity of y, we have

t t
x(f) = x(t) - ft A(s) (=y(s))* As < x(tr) = (—y(t))* | A(s)As.

3]
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Ast — oo, x — —oo. But this contradicts the positivity of x. Note that the proof can be done without the condition
Zy < oo. However in order for nonoscillatory solutions to exist, we need the assumption Z, < oo by Lemma 1.2
(b). O

Lemma1.4. IfY, < coand Zj, = oo, then any nonoscillatory solution (x, y) of system (1) belongs to M~ , i.e., M* = 0.

Proof. Suppose that Y, < co and Z, = co. The proof is by contradiction. So assume that there exists a
nonoscillatory solution (x, i) of system (1) such that xy > 0 eventually. Without loss of generality, assume
that x(t) > 0 for t > t;. So by integrating the second equation of system (1) from ¢; to t and the monotonicity
of x give us

f
y(h) < y(t) - (1)) f b(s)hs.

5]

Ast — oo, it follows that y(t) = —oo. But this contradicts that y is eventually positive. [J

The discrete version of the following lemmas can be found in [14].
Lemma 1.5. Let (x, y) be a nonoscillatory solution of system (1).

(a) If Y, < oo, then the component function x has a finite limit.

(b) If Y, = o0 or Z}, < o0, then the component function y has a finite limit.

Proof. (a) Suppose that Y, < oo and (x, y) is a nonoscillatory solution of system (1). Then by Lemma 1.1, x
and y are themselves nonoscillatory. Without loss of generality, assume that there exists t; > t such that
x(t) > 0 for t > ;. If (x, y) € M~, then by the first equation of system (1), x*(t) < 0 for t > t;. Therefore, limit
of x exists. So let us show that the assertion follows if (x, y) € M*. From the first equation of system (1), we
have x2(t) > 0 for t > t;. Hence two things might happen: The limit of the component function x exists or
blows up. Now let us show that tli_)rgx(t) = oo cannot happen. Assume x(tf) — oo as t — oco. By integrating

the first equation of system (1) from t; to t and using the monotonicity of y, we get

t
xX(t) < x(t1) + y# () f A(S)As.
31

Taking the limit as t — oo, it follows that Y, = co, which is a contradiction. This completes the proof.

(b) Suppose that Y, = co or Z;, < o0 and (x, ) is a nonoscillatory solution of system (1). The case Z;, < oo can
be proved similar to part (a). For Y, = oo, assume that x is eventually positive. Then proceeding as in the
proof of Lemma 1.3, it can be shown that y is eventually positive. Then by the second equation of system
(1), it follows that y has a finite limit. O

In the following lemmas, we find upper and lower bounds for the component function x of a nonoscillatory
solution (x, y) of system (1).

Lemma 1.6. Let Y, < oo. If (x, y) is a nonoscillatory solution of system (1), then there exist c,d > 0 and t; > ty such
that

cfoo A(s)As < x(t) <d

or
—d<x(t) < —c fooA(s)As
t

fort >ty
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Proof. Suppose that Y, < oo and (x, y) is a nonoscillatory solution of system (1). Without loss of generality,
let us assume that x is eventually positive. Then by Lemma 1.5 (a), we have x(t) < d for t > t;. If y(t) > 0 for
t > t1, then x is eventually increasing by the first equation of system (1). So for large t, the assertion follows.
If y(t) < O for t > t;, then integrating the first equation of system (1) from ¢ to co and the monotonicity of y
give

x(t) = x(c0) + ft A(s)(=y(s))+ As > ft A()(=y(s))* As

> (—y(h)s | Als)As

Setting ¢ = (—y(tl))i in the last inequality proves the assertion. Assuming x is eventually negative gives the
second part of the proof. [

Lemma 1.7. Let Y, = oo and Z; < oo. If (x,y) is a nonoscillatory solution of system (1), then there exist ki, kp > 0
and t1 > to such that

¢
ki <x(t) < sz A(s)As
5]
or
¢
—sz A(s)As < x(t) < -k
t
fort > ty.
Proof. Suppose that Y, = o and Z; < o, and (x, y) is a nonoscillatory solution of system (1). Then by
Lemma 1.1, x and y are themselves nonoscillatory. Without loss of generality let us assume that x(¢) > 0 for

t > t;. Then by Lemma 1.3, (x, y) must be in M*. Hence, there is a constant k; > 0 such that x(t) > k; for
t > t1. Integrating the first equation of system (1) and the monotonicity of y give

t t
() = 5t + [ AGAOAs < 3t + ) [ s

j: A(s)As.

Since Y, = oo, we can choose t, > t; such that

| x(t)

= + oyt
ftltA(s)As y=é)

t
f ABAt>1 for t>t.

153

So this implies that

£
x() < (x(h) + y* (1)) f A(s)As

ty

and the assertion follows by letting k, = x(t1) + y% (t1). Assuming that x is eventually negative proves the
second part of the proof. [
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2. The Case Y, = c0oand Z; < o

In this section, we show that M* can be divided into some sub-classes under the case Y, = . By Lemma
1.2(b), in order to obtain the existence of nonoscillatory solutions, we also have to assume Z, < co. So
throughout this section, we suppose that Y, = o and Z, < oo hold. Then by Lemma 1.3, (x,y) € M"*.
Without loss of generality we suppose that x > 0 eventually. Then by the second equation of system (1), y is
positive and decreasing eventually. In addition to that, by using the first equation of system (1) and taking
Lemma 1.5(b) into consideration we have that x(t) — c or o0, and y(t) > dorOast — oo for 0 < ¢ < oo and
0<d< oo

Lemma 2.1. Ifx(t) — ¢, then y(t) > 0ast — 0forc <0 < oo.

Proof. Suppose that x(t) — c as t — co. Assume the contrary. So y(t) — d for 0 < d < co as t — oco. Then
since y(t) > 0 and decreasing eventually, there exists t; > ty such that y(t) > d for t > t;. By the first equation
of system (1), we have

XAt = Aty (t) > A(B)d= for t> . 3)

Integrating (3) from f; to t yields

t
x(t) = x(t) + d+ f A(s)As.

ty

As t — oo, this gives us a contradiction to the fact x(t) — c. So the assertion follows. [

In light of Lemma 2.1 and the explanation above, we have the following lemma.
Lemma 2.2. For 0 < ¢ < coand 0 < d < oo, any nonoscillatory solution in M* must belong to one of the following
sub-classes:

Mo ={(o) € M* Tim e =, lim y(0) =0,
M2 = {6 ) € M7 lim [0) = oo, Jim ly(o) = d,

Mo ={(ow) € M7 Jim (0] = oo, Jim y(0)] = 0}.

In the literature, solutions in My ., M , and M  are called subdominant solutions, dominant solutions and

intermediate solutions, respectively.

The following theorems show the existence of nonoscillatory solutions in sub-classes mentioned above by
using the improper integrals:

Jo = j:o A(b) (f;m b(s)As)i At

p

00 a(t)
Kp =j; b(t) (ft A(s)As) At.

Theorem 2.1. M}, # 0 if and only if ], < co.
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Proof. Suppose that M, # 0. Then there exists (x,y) € M" such that [x(t)] — ¢ > 0 and |y(t)| = O as t — oo.
Without loss of generality let us assume that x(t) > 0 for t > t;. Integrating the second equation of system
(1) from ¢ to oo gives us

y(t) = f b(s) (°(5))° . @

Solving the first equation of system (1) for y, substituting the resulting equation into (4) and by the
monotonicity of i, we obtain

M) > A ( T A)“.
) = A () f (5)As ©)

Integrating (5) from t; to t gives

x(t) > x(h) + f A(s)xﬁ(s)( f mb(T)Ar)aAs

f
, t oo i
> xi(h) f A(s)( f b(T)AT) As.

As t — oo, the assertion follows.

Conversely, suppose that J, < co. Choose t; > t; so large that

f:mt) (ftm b(s)As)i At < (%)Clﬁ ©

for arbitrarily given c > 0. Let X be the set of all bounded, continuous, real valued functions with the norm
llx]l = sup {lx(#)|}. Itis clear that X is a Banach Space, see [10]. Let us define a subset Q of X such that

te[ty,00)

Q:={xeX: <x(t)<c, t=t}.

NI

It is clear that Q) is closed, bounded and convex. Define an operator F : QO — X by

(Fx)(t) = ¢ — j; mA(s) ( f ) b(7) (x° (7)) Ar)a As for t>#. (7)

By inequality (6), we have
> (Fx)(t) = ¢ — OOA mb o ﬁA)ﬂA
¢ > (Fx)(0) c[ (S)(fs (0) (D) At As

>c—ch fooA(s) (fw b(T)AT)A As >
t s

and so F : O — Q. Since

IExn)(®) - EXO
( f " b () m)“ - ( f " b)) () AT)“

< LMA(S)

7

NI o

As,
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where x,, is a sequence of functions converging to x. Hence, the Lebesque Dominated Convergence Theorem
yields

I(Fx)(£) = (Fx)(B)I| = O,

which implies the continuity of F on Q. Also

a

0 < —[FQ)®]* = A®) ( f: ) b(t) (x° (7)) Ar)a < CRA() ( j; ) b(r)m) < oo

implies that F is equibounded and equicontinuous. Therefore by Schauder’s Fixed Point Theorem, there
exists ¥ € Q) such that X = Fx. Then

X(t)=c— ft ooA(s) ( f ) b(7) (x°(7))F AT)“ As. 8)

So ast — oo, X(t) — c. Note that ¥*(t) > 0 for t > t;. So it is eventually monotone, i.e., ¥ is nonoscillatory.
Therefore, taking the derivative of (8) and using the first equation of system (1) give us

0= [ M@ s
t
It follows that j(t) > 0 for t > ty, i.e.,, (¥, ¥) is nonoscillatory and then by Remark 1.1 and Lemma 1.3,
(%, ) € M". Taking the limit as t — oo yields j(f) — 0. Hence My, # 0. O
Theorem 2.2. M7  # 0 if and only if Ky < co.
Proof. Suppose that M7, ;, # 0. Then there exists (x, y) € M* such that [x(t)] — coand |y(t)] — d, for0 < d < co.

Without loss of generality assume that x(f) > 0 for t > t; Integrating the first equation from t; to o(t) and the
second equation from #; to ¢ of system (1) give us

a(t) a(t)
Xt = x°(H) + f A(s)y (s)As > di f A(S)As. 9)
tl tl
and
t
vt -y = [ 006 as, (10)
31
respectively. Then by (9) and (10), we have
f a(s) B » !
f b(s) (f A(T)AT) As <d= f b(s) (x°(s))f As
t t1 5]
<d (y(t) - y()
So as t goes to oo, it follows that Ky < 0.

Conversely, suppose that Kz < co. Choose t; > tj so large that

00 a(s) B d
1;1 -
ftl b(s) ( ftl (T)AT) As < oaF (11)
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for arbitrarily given d > 0. Let X be the partially ordered Banach Space of all real-valued continuous

functions with the norm ||x|| = sup G

; and the usual pointwise ordering <. Define a subset Q) of X as
t>ip ffl A(s)As

follows:
1 t 1 t
Q:{xeX: do f A(s)As < x(t) < (2d)= f A(s)As for t > t}.
t1 ty

First since every subset of Q has a supremum and infimum in Q, (Q, <) is a complete lattice. Define an
operator F: Q — X as

¢ oo i
(Fx)(t) = f A(s)(d+ f b(T)(x”(T))ﬁm) As. 12)

51
It can be shown that F : O — Q is an increasing mapping for t > t;.

So by the Knaster Fixed Point Theorem, we have that there exists & € Q) such that

¢ o0 i
x(t) = f A(s)(d+ f b(T)(xﬁ(T))ﬁm) As for t> . (13)

S

Hence ¥ is eventually positive, and hence nonoscillatory. Then by taking the derivative of (13) and using
the first equation of system (1) give us

70 = () a0 =d+ [ 0 @@ ar (14)

Then it follows that 7 is eventually positive, i.e., nonoscillatory. Hence, (%, 7) is a nonoscillatory solution of
system (1) and by Lemma 1.3 we have (%, 7) € M*. For x € Q, we also have

¢ oo 0 B
() > ft AGs)|d + f b(T)(di f A(/\)A/\) AT

As t — oo, the right hand side of the last inequality goes to co since Y, = co. Therefore X(t) — oo as t — oo.
Taking the limit as t — oo of (14) gives that y has a finite limit. Therefore M , # 0. [

1
a

As

Theorem 2.3. If |, = co and Kg < oo, then M, ; # 0.

Proof. Suppose that ], = co and Ky < 0. Since Y,; = oo, we can choose t1,t, > ty so large that

0 () B
ftz b(t) ( ft A(s)As) At <1 (15)
and
t>
f A(s)As > 1. (16)
5]

Let X be the Fréchet Space of all continuous functions on [t;, o) endowed with the topology of uniform
convergence on compact subintervals of [t1, o). Set

¢
Q:={xeX: 1Sx(t)§fA(s)As for t > t1}

51
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and define an operator T : O — X by

t 00 «
(Tx)(t) =1+ f A(s)( f b(T)(xJ(T))ﬁm) . (17)

15}

We can show that T : (0 — Q) is continuous on ) C X by the Lebesque Dominated Convergence Theorem.
Since

0 < [(T0(®)]* = Ah) ( j; i b(v) (& (1))’ AT)H

0 o(T) B a
b ANAL] At| < oo,
| (T)(L o T] <

it follows that T is equibounded and equicontinuous. Then by Tychonoff Fixed Point Theorem, there exists
% € Q such that

<A(Y)

¢ o0 3
() = (TR =1+ f A(s)( f b(T)(J_CU(T))ﬁAT) for t > t. (18)

t

Therefore, it follows that ¥ is eventually positive, i.e nonoscillatory. Then integrating (18) and by the first
equation of system (1), we have

7(t) = a(t) (v )" = ft b(r) (2 () A 19)

It follows that 7 is eventually positive, and hence (x, y) is a nonoscillatory solution of system (1). So by
Lemma 1.3 it follows that (%, 7) € M*. Also by monotonicity of ¥, we have

t 00 % t 00 a
() =1+ ft A(s)( f b(T)(J_CJ(T))ﬁAT) > (x(t))f ft A(s)( f b(T)AT) .

Hence as t — o, it follows that X(f) — co. And by (19), we have §(t) — 0 as t — oo. Therefore M7 ; # 0. O

Next we give the integral relationships between J,, Kg, Y, and Z; and obtain a conclusion for the existence
and non-existence of solution (x, y) of system (1) based on a and . The proof of the following lemma is
similar to the proofs of Lemma 1.1, Lemma 3.2, Lemma 3.3, Lemma 3.6 and Lemma 3.7 in [3].

Lemma 2.3. (a) If ], < co or K3 < co then Z;, < co.

(b) If Kg = o0, then Y, = 0o or Z;, = o0.

(c)If J, = 0o, then Y, = oo or Z;, = oo.

(d) Leta = 1. If ], < 0, then K,, < co.

(e) Letﬁ <1 IfKﬁ < oo, then ]ﬁ < 00.

(f) Let a < B. If Kg < o0, then ], < oo and K,, < o0.

(g) Leta > B. If [, < oo, then Kg < co and Jg < co.

The following corollaries give the existence and nonexistence of nonoscillatory solutions (x, y) of system (1)
in our subclasses by Lemma 2.3 and our main theorems presented in this section.
Corollary 2.1. Suppose that Y, = co and Z, < oo. Then

(@) Mg, # 0 if any of the followings hold:

(1) ]a/ < OO,
(i) a <pand Kz < oo,
(iii) a <B,B=1and Jg < oo,
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(iv) a <land K, < oo.
(b) MY, , # 0 if any of the followings hold:
(i) Kg < oo,
(ii) a > Band J, < oo,
(iii) @ > 1and Jg < co.
(c) Mg, = 0 if any of the followings hold:
(1) Ja =0,
(ii) a > pand either Jg = oo or Kg = oo,
(iii) a > 1and K, = oo.
(d) M, = 0 if any of the followings hold:
(1)’ K,B =,
(ii) a < pand either |, = 0o or K, = oo,
(iii) p <1land Jp = oo.

3. The Case Y, < coand Z; < oo

In this section, we show the existence of a solution (x, y) of system (1) by assuming Y, < co. Since we
investigate a solution (x, y) in M*, we also have to assume that Z, < oo because of Lemma 1.4. Recall
that M* is the set of nonoscillatory solutions (x, y) such that x and y have the same sign. Without loss of
generality let us assume that x > 0 eventually. Then by the first equation of system (1), x is eventually
increasing and by Lemma 1.5 the limit of x approaches a positive constant and the limit of y exists. Also by
the second equation of system (1) y is eventually decreasing and approaches a nonnegative constant.

In light of this information, one can easily prove the following lemma.
Lemma 3.1. For 0 < c < oo and 0 < d < oo, any nonoscillatory solution in M* belongs to the following subclasses:

Mip={cop eM®: fmi®i=c, Jim yol=d}

M = {0 y) € M* : lim )] =, Jim ()] = 0}.

The following theorems show the existence of nonoscillatory solutions (x, y) in these subclasses of M*.
Theorem 3.1. (a) M}, # 0if Y; < o0 and Z; < oo.
(b) If M, # 0, then [, < co.

Proof. (a) Suppose that Y, < oo and Z, < co. Then J, < o0 by Lemma 2.3 (c). Since Y, < oo, for arbitrarily
given ¢, d > 0 there exists t; > t; such that

¢ oo x
f A(s) (d + f cﬁb(s)As) < % for t > t. (20)
t S
Let X be the Banach space of all real-valued continuous functions endowed with the norm ||x|| = sup |x(t)]
te[t,00)r

and with the usual pointwise ordering <. Define a subset Q of X such that

sz{xEX: Sx(t)ﬁcfortztl}.

<
2

For any subset Q) € Q, it is obvious that inf Q € Q and sup Q € Q. Define an operator F : Q — X as

¢ oo i
(Fx)(t):§+ f A(s)(d+ f b(T)(xU(T))ﬂAT) As.

51



Ozkan Oztiirk et al. / Filomat 31:6 (2017), 1529-1541 1539

One can show that F : O — Q and F is an increasing mapping. So by the Knaster Fixed point theorem [13],
there exists ¥ € Q such that

¢ oo i
x(t)=(Fx)(t)=§+ ft A(s)(d+ f b(T)(xU(T))ﬁAT) As. (1)

Therefore, it follows that %(t) > 0 for t > t;. So by the first equation of system (1), we have #(t) > 0 for ¢ > t;,
ie., (%, ) € M*. From (21), we have

t 00 %
T<i+ f A(s)(d+cﬁ f b(T)AT) As.
2 t s

So as t — oo, it follows that the limit of ¥ is finite. By taking the derivative of (21) and the first equation of
system (1), we have

70 = (#0) a0 =d+ [ b0 @@ ac @)

Taking the limit of (22) as t — oo yields that §(t) — d. Therefore, we conclude that (%, i) € ME,B 0.

(b) Suppose that My , # 0. Without loss of generality assume that x is eventually positive. Then there exists
t1 > fpand (x,y) € M* such thatx - candy > dast — oo for 0 < ¢ < ocoand 0 < d < co. Integrating the
second equation of system (1) from ¢ to oo and using the monotonicity of x give us

y(t) > (x(1)f ft ) b(s)As for t >t

or

yi () > (x(B)* ( f ) b(s)As)a for > H. (23)
t

Substituting (23) into the first equation of system (1) yields

AH) > A ﬁ( 7 A)“. 24
A0 > Al f (5)s 24)

Integrating (24) from #; to t and by the monotonicity of x give us

5 t 00 %
a A b(T)A A 25
x() > ¥ (1) f (s)( f () T) 5 (25)

As t — oo, the assertion follows. [J

The following theorem can be proved similar to Theorem 2.1.
Theorem 3.2. (a) My, # 0if Y, < 00 and Z; < co.
(b) If Mg, # 0, then ], < 0.

By Lemma 2.1 and from our main results in Sections 2 and 3, one can have the following corollaries.
Corollary 3.1. If Y, < coand Z; < oo, then any nonoscillatory solution in M* of system (1) belongs to My » or
Mg ie, MJ g =M, =0.

Corollary 3.2. If Y, = oo and Z < oo, then M ; = 0.
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4. Examples

In this section, we give three examples to illustrate Theorem 2. 2 and Theorem 2.3.
Example 41. Let T = qNU, g>1a=1 A1) = 1+2t, bt) = W, =g" and t = ", where m,n € [Ny, in
system (1). It is easy to show that Y, = co and Z;, < co. Let us show that Ky < co.

T o(t) B p(T) 1 t $2(q — B
q—-1)
b(t) ( f A(S)As) At = (g - Dt
fto . L g2 | = Tr2s | )

(T) t P(T)
(7 -1 § g-1%1
ST s g+ ;t1+ﬁ ZS < q e

s=1

We also have
p(T)

im ). Z—<oo

by the geometric series test. So we have that Kg < co. It can be verified that (t, 1 + 2) is a nonoscillatory
solution of

A — 1
yA = =k 1 sgnx

{xA = 7ix |y| sgny

1
in M* such that tlimt = oo and tlim(; +2)=2ie, M, #0.

Example 4.2. Let T = R,a > g with g < 1, A(t) = ¢* and b(t) = ae™"@*P in system (1). Clearly, Y, = oo and
Zp < 0. One can show that

1
Ja =f e (f ae‘s(“ﬁ)ds) dt = o0
to t
00 f ﬁ
Ky =f ae~H@HP) (f ezsds) dt < co.
fo to

—zxt)

and

It is easy to verify that (¢!, ™) is a nonoscillatory solution of

1
* sgny
v = —ae B |y sgnx

in M* such that hm ¢l = o0 and 11m e =0,ie., M, 07 0.

Example 4.3. Let T= qNO, q> 1, a=1,B8<1,A{t)=1+tDbt) = W
that Y, = co and Z; < 0. Letting s = g™ and t = 4", where m, n € Ny, gives

T T L p(T) p(D) (q _ 1)
fto A(t) ( ft b(s)As) At—Z(1+t) Z I (G-t

p(T)

p(T)
t
z(q—l)z (1+t)(—+)t:(q— .
; 1+nH1+ t‘q)}g 1 Z 1+ tq)ﬁ 1

in system (1). It is easy to verify
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So we have

p(T) 2 2n

%1_{1202 (1 + tq)ﬁﬂ Z (1 + qn+1)ﬁ+1 =0

by the Test for Divergence and 8 < 1. Now let us show that K < c0. One can show that

a(t) t
f A(s)As = Z(l +5)(q—1)s < tg(1 + tq)

fo s=1

and so we have

o(T) p(T)

T a () B 1 ; ; i
[roof [ acnd a <X a0 - 0D Y

Therefore,

T n
. th
lim ¢°(q = 1) ;1— =@~ 1)2 (1((12”)

by the Ratio Test and § < 1. It can also be verified that (1 +t 3 +1) is a nonoscillatory solution of

XA =(1+¢4) |y|‘l' sgny

A _ 1
Y* = oy 11 sgnx

1
in M* such that tlim(l +f) = ocoand tlimm =0,ie, M, #0.
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