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On star-K-Hurewicz spaces
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Abstract. A space X is star-K-Hurewicz if for each sequence (Un : n ∈ N) of open covers of X there exists
a sequence (Kn : n ∈ N) of compact subsets of X such that for each x ∈ X, x ∈ St(Kn,Un) for all but finitely
many n. In this paper, we investigate the relationship between star-K-Hurewicz spaces and related spaces
by giving some examples, and also study topological properties of star-K-Hurewicz spaces.

1. Introduction

By a space we mean a topological space. We give definitions of terms which are used in this paper. Let
N denote the set of positive integers. Let X be a space and U a collection of subsets of X. For A ⊆ X, let
St(A,U) = ∪{U ∈ U : U ∩ A , ∅}. As usual, we write St(x,U) instead of St({x},U).

Let O be collection of open covers of a space X. Then
The symbol S1(O,O) denotes the selection hypothesis that for each sequence (Un : n ∈ N) of elements

of O there exists a sequence (Un : n ∈N) such that for each n ∈N, Un ∈ Un and {Un : n ∈N} ∈ O.
The symbol S f in(O,O) denotes the selection hypothesis that for each sequence (Un : n ∈N) of elements

of A there exists a sequence (Vn : n ∈ N) such that for each n ∈ N, Vn is a finite subset of Un and⋃
n∈NVn ∈ O (see [7,12]).

Kočinac [8,9] introduced star selection hypothesis similar to the previous ones.
(A) The symbol S∗f in(O,O) denotes the selection hypothesis that for each sequence (Un : n ∈ N) of

elements of O there exists a sequence (Vn : n ∈N) such that for each n ∈N,Vn is a finite subset ofUn and⋃
n∈N{St(V,Un) : V ∈ Vn} ∈ O.

(B) The symbol SS∗f in(O,O) (SS∗comp(O,O)) denotes the selection hypothesis that for each sequence (Un :
n ∈N) of elements of O there exists a sequence (Kn : n ∈ N) of finite (resp., compact) subsets of X such that
{St(Kn,Un) : n ∈N} ∈ O.

Let Γ be denote the collection of γ-covers of X. An open coverU of X is said to be a γ-cover if each point
of X does not belong to at most finitely many elements ofU.

Definition 1.1. ([8,9]) A space X is said to be star-Menger (strongly star-Menger, star-K-Menger) if it satisfies
the selection hypothesis S∗f in(O,O) (resp., SS∗f in(O,O), SS∗comp(O,O)).
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In 1925, Hurewicz [5](see also [2,6]) introduced the Hurewicz covering property for a space X in the
following way:

H: A space X satisfies the Hurewicz property if for each sequence (Un : n ∈ N) of open covers of X there
exists a sequence (Vn : n ∈ N) such that for each n,Vn is a finite subset ofUn and {

⋃
Vn : n ∈N} ∈ Γ.

Two star versions of the Hurewicz property was introduced in [8, Definition 1.2] (see also [1,10]) and
further studied in [1].

SH: A space X satisfies the star-Hurewicz propertyif for each sequence (Un : n ∈ N) of open covers of X
there exists a sequence (Vn : n ∈ N) such that for each n,Vn is a finite subset ofUn and {St(∪Vn,Un) : n ∈
N} ∈ Γ.

SSH: A space X satisfies the strongly star-Hurewicz property if for each sequence (Un : n ∈ N) of open
covers of X there exists a sequence (An : n ∈ N) of finite subsets of X such that {St(An,Un) : n ∈N} ∈ Γ.

SKH: A space X satisfies the star-K-Hurewicz property (see [8]) if for each sequence (Un : n ∈ N) of open
covers of X there exists a sequence (An : n ∈ N) of compact subsets of X such that {St(An,Un) : n ∈N} ∈ Γ.

From the above definitions, it is clear that every Hurewicz space is strongly star-Hurewicz, every
strongly star-Hurewicz space is star-K-Hurewicz and every star-K-Hurewicz space is star-Hurewicz. But
the converses do not hold (see Examples 2.1, 2.4 and 2.7 below).

In [1] and [14] star-Hurewicz and related spaces have been studied. The purpose of this paper is to
investigate the relationships between star-K-Hurewicz spaces and related spaces by giving some examples,
and also to study topological properties of star-K-Hurewicz spaces.

Throughout this paper, let ω denote the first infinite cardinal, ω1 the first uncountable cardinal, c the
cardinality of the set of all real numbers. For a cardinal κ, let κ+ be the smallest cardinal greater than
κ. For each pair of ordinals α, β with α < β, we write [α, β) = {γ : α ≤ γ < β}, (α, β] = {γ : α < γ ≤ β},
(α, β) = {γ : α < γ < β} and [α, β] = {γ : α ≤ γ ≤ β}. As usual, a cardinal is an initial ordinal and an ordinal
is the set of smaller ordinals. A cardinal is often viewed as a space with the usual order topology. Other
terms and symbols that we do not define follow [4].

2. Star-K-Hurewicz Spaces

We give some examples showing that the relationship between star-K-Hurewicz spaces and other related
spaces. Recall from [3,11] that a space X is said to be strongly starcompact if for every open cover U of X
there exists a finite F of X such that St(F,U) = X. Clearly, every strongly starcompact space is strongly
star-Hurewicz. It is well known that strongly starcompactness is equivalent to countably compactness for
Hausdorff spaces (see [3,11]).

Example 2.1. There exists a Tychonoff strongly star-Hurewicz space X which is not Menger (hence not Hurewicz).

Proof. Let X = [0, ω1) with the usual order topology. Then X is countably compact. Hence X is strongly star-
Hurewicz, since every countably compact space is strongly starcompact and every strongly starcompact
space is strongly star-Hurewicz. It is well known that X is not Lindelöf, thus X is not Menger, since every
Menger space is Lindelöf. Thus we complete the proof.

For the next example, we need a lemma from [2].

Lemma 2.2. A space X is strongly star-Hurewicz iff for every sequence (Un : n ∈N) of open covers of X there exists
a sequence (An : n ∈N) of finite subsets of X such that for every x ∈ X, St(x,Un) ∩ An , ∅ for all but finitely many
n ∈N.

For a Tychonoff space X, let βX denote the Čech-Stone compactification of X. Recall from [3,11] that a
space X is said to be K-starcompact if for every open coverU of X there exists a compact subset F of X such
that St(F,U) = X. It is clear that every K-starcompact space is star-K-Hurewicz. For the next example, we
need the following lemma.

Lemma 2.3. Let κ be infinite cardinal and D = {dα : α < κ} be a discrete space of cardinality κ. Then the subspace
X = (βD × [0, κ+)) ∪ (D × {κ+

}) of the product space βD × [0, κ+] is star-K-Hurewicz.
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Proof. We show that X is star-K-Hurewicz. We only show that X is K-starcompact, since every K-starcompact
space is star-K-Hurewicz. To this end, let U be an open cover of X. For each α < κ+, there exists Uα ∈ U

such that 〈dα, κ+
〉 ∈ Uα, then we can find βα < κ+ such that {dα} × (βα, κ+] ⊆ Uα. Let β = sup{βα : α < κ}.

Then β < κ+. Let K1 = βD × {β + 1}. Then K1 is compact and Uα ∩ K1 , ∅ for each α < κ. Hence

D × {κ+
} ⊆ St(K1,U).

On the other hand, since βD × [0, κ+) is countably compact and consequently βD × [0, κ+) is strongly
starcompact, hence there exists a finite subset K2 of βD × [0, κ+) such that

βD × [0, κ+) ⊆ St(K2,U).

If we put K = K1 ∪ K2, then K is a compact subset of X such that X = St(K,U), which shows that X is
K-starcompact.

Example 2.4. There exists a Tychonoff star-K-Hurewicz space X which is not strongly star-Hurewicz.

Proof. Let D = {dα : α < c} be a discrete space of cardinality c and let

X = (βD × [0, c+)) ∪ (D × {c+})

be the subspace of the product space βD × [0, c+]. Then X is a Tychonoff star-K-Hurewicz space by Lemma
2.3.

Similar to the proof that X is not strongly star-Hurewicz of Example 2.2 [14], we can prove that X is not
strongly star-Hurewicz.

For the next example, we need the following lemmas.

Lemma 2.5. If X is a σ-compact space, then X is star-Hurewicz.

Lemma 2.6 is straightforward.

Lemma 2.6. A space X is star-K-Hurewicz if and only if for every sequence (Un : n ∈ N) of open covers of X there
exists a sequence (An : n ∈ N) of compact subsets of X such that for every x ∈ X, St(x,Un) ∩ An , ∅ for all but
finitely many n ∈N.

Example 2.7. There exists a Hausdorff star-Hurewicz space which is not star-K-Hurewicz.

Proof. Let
A = {aα : α < c},B = {bn : n ∈ ω}

and Y = {〈aα, bn〉 : α < c,n ∈ ω},

and let
X = Y ∪ A ∪ {a}where a < Y ∪ A.

We topologize X as follows: every point of Y is isolated; a basic neighborhood of a point aα ∈ A for each
α < c takes the form

Uaα (n) = {aα} ∪ {〈aα, bm〉 : m > n} for n ∈ ω

and a basic neighborhood of a point a takes the form

Ua(F) = {a} ∪ ∪{〈aα, bn〉 : aα ∈ A \ F,n ∈ ω} for a countable subset F of A.

Clearly, X is a Hausdorff space by the construction of the topology of X. However, X is not regular, since
the point a can not be separated from the closed subset A by disjoint open subsets of X.

Now we show that X is star-Hurewicz. To this end, let (Un : n ∈ N) be a sequence of open covers of
X. Without loss of generality, we assume thatUn consists of basic open sets of X for each n ∈ N. For each
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n ∈N, sinceUn is an open cover of X, there exists Un ∈ Un such that a ∈ Un. By assumption, there exists a
countable subset Fn of A such that Un = Ua(Fn). By the definition of the topology of X, thus we have

(A \ Fn) ∪Un ⊆ St(Un,Un).

For each aα ∈ ∪n∈NFn, let
Baα = {aα} ∪ {〈aα, bn〉 : n ∈ ω}.

Then Baα is a compact subset of X by the definition of the topology of X. Let B =
⋃

aα∈∪n∈NFn
Baα . Then B is σ-

compact, since Fn is countable for each n ∈N. Let U = Ua(∪n∈NFn). Then X = B∪(A\∪n∈NFn)∪U. By Lemma
2.5, B is star-Hurewicz. Then for the sequence (Un : n ∈ N) of open covers of X, there exists a sequence
(V′n : n ∈N) such that for each n ∈N,V′n is a finite subset ofUn and for each x ∈ B, x ∈ St(∪V′n,Un) for all
but finitely many n ∈N. For each n ∈N, letVn =V′n ∪ {Un}. Then the sequence {Vn : n ∈N}witnesses for
{Un : n ∈N} that X is star-Hurewicz. In fact, for each x ∈ X, if x ∈ (A \ ∪n∈NFn) ∪U, then x ∈ St(Un,Un) for
each n ∈N; if x ∈ B, then x ∈ St(∪V′n,Un) for all but finitely many n ∈N.

Next we show that X is not star-K-Hurewicz. For each α < c, let

Uα = {aα} ∪ {〈aα, bn〉 : n ∈ ω} and U = Ua(∅).

Then Uα is open in X by the construction of the topology of X and

Uα ∩Uα′ = ∅ for α , α′.

For n ∈N, let
Un = {Uα : α < c} ∪ {U}.

Let us consider the sequence (Un : n ∈ N) of open covers of X. We only show that for the sequence
(Un : n ∈ N) of open covers of X, there exists x ∈ X such that St(x,Un) ∩ Kn = ∅ for each n ∈ N, for any
sequence (Kn : n ∈N) of compact subsets of X by Lemma 2.6. Let (Kn : n ∈N) be any sequence of compact
subsets of X. For each n ∈ N, since Kn is compact, then there exists αn < c such that Kn ∩ Uα = ∅ for each
α > αn. Let α′ = sup{αn : n ∈ N}. If we pick β > α′, then Uβ ∩ Kn = ∅ for each n ∈ N. Since Uβ is the only
element of Un containing the point aβ for each n ∈ N, then St(aβ,Un) = Uβ for each n ∈ N, which shows
that X is not star-K-Hurewicz. Thus we complete the proof.

Remark 2.8. Since every star-K-Hurewicz space is star-K-Menger, thus the space X of Example 2.7 is not
star-K-Menger. The author does not know if there exists a regular or Tychonoff star-Hurewicz space which
is not star-K-Hurewicz.

In [1] it was shown that a paracompact Hausdorff space X is star-Hurewicz if and only if X is Hurewicz.
Thus we have the following theorem.

Theorem 2.9. Let X be a paracompact Hausdorff space. Then the following are equivalent:
(1) X is Hurewicz;
(2) X is strongly star-Hurewicz;
(3) X is star-K-Hurewicz;
(4) X is star-Hurewicz.

In the following, we study topological properties of star-K-Hurewicz spaces. The space X of the proof
of Example 2.4 shows that a closed subset of a Tychonoff star-K-Hurewicz space X need not be star-K-
Hurewicz, since D×{c+} is a discrete closed subset of cardinality c. Now we give an example showing that a
regular-closed subset of a Tychonoff star-K-Hurewicz space X need not be star-K-Hurewicz. Here a subset
A of a space X is said to be regular-closed in X if clXintXA = A.

For the next example, we need the following lemma.

Lemma 2.10. Let κ be infinite cardinal and D = {dα : α < κ} be a discrete space of cardinality κ. Then the subspace
X = (βD × [0, κ)) ∪ (D × {κ}) of the product space βD × [0, κ] is not star-K-Hurewicz.
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Proof. We show that X is not star-K-Hurewicz. For each α < κ, let Uα = {dα} × (α, κ]. Then Uα is open in X
and

Uα ∩Uα′ = ∅ for each α , α′

For each n ∈N, let
Un = {Uα : α < κ} ∪ {βD × [0, κ)}.

ThenUn is an open cover of X. Let us consider the sequence (Un : n ∈ N) of open covers of X. It suffices
to show that there exists x ∈ X such that St(x,Un) ∩ Kn = ∅ for each n ∈N, for any sequence (Kn : n ∈N) of
compact subsets of X by Lemma 2.5. Let (Kn : n ∈ N) be any sequence of compact subsets of X. For each
n ∈ N, since Kn is compact and {〈dα, κ〉 : α < κ} is a discrete closed subset of X, the set Kn ∩ {〈dα, ω〉 : α < c}
is finite. Then there exists αn < κ such that

Kn ∩ {〈dα, κ〉 : α > αn} = ∅.

Let α′ = sup{αn : n ∈N}. Then α′ < κ and

(
⋃
n∈N

Kn) ∩ {〈dα, κ〉 : α > α′} = ∅.

On the other hand, for each n ∈ N, let An = {α : 〈dα, κ〉 ∈ Kn}. Then An is finite, since Kn is compact and
{〈dα, κ〉 : α < κ} is discrete and closed in X. Let K′n = Kn \

⋃
{Uα : α ∈ An}. Then K′n is closed in Kn and

K′n ⊆ βD × κ. Hence π(K′n) is a compact subset of the countably compact space κ, where π : βD × κ → κ is
the projection, thus there exists α′n < κ such that π(K′n)∩ (α′n, κ) = ∅. Let α′′ = sup{α′n : n ∈N}. Then α′′ < κ.
If we pick β > max{α′, α′′}, then Uβ ∩ Kn = ∅ for each n ∈ N. Since Uβ is the only element ofUn containing
the point 〈dβ, κ〉 for each n ∈N, then St(〈dβ, κ〉,Un) = Uβ, thus St(〈dβ, κ〉,Un)∩Kn = ∅ for each n ∈N, which
shows that X is not star-K-Hurewicz.

Example 2.11. There exists a Tychonoff star-K-Hurewicz space having a regular-closed subspace which is not star-
K-Hurewicz.

Proof. Let D = {dα : α < c} be a discrete space of cardinality c.
Let S1 be the same space X in the proof of Example 2.4. Then S1 is a Tychonoff star-K-Hurewicz space.
Let

S2 = (βD × [0, c)) ∪ (D × {c})

be the subspace of the product space βD × [0, c]. By Lemma 2.10, S2 is not star-K-Hurewicz.
We assume S1 ∩ S2 = ∅. Let π : D × {c+} → D × {c} be a bijection and let X be the quotient image of the

disjoint sum S1 ⊕ S2 by identifying 〈dα, c+〉 of S1 with π(〈dα, c+〉}) of S2 for every α < c. Let ϕ : S1 ⊕ S2 → X
be the quotient map. It is clear that ϕ(S2) is a regular-closed subspace of X which is not star-K-Hurewicz,
since it is homeomorphic to S2.

Finally we show that X is star-K-Hurewicz. We only show that X is K-starcompact, since every K-
starcompact space is star-K-Hurewicz. To this end, letU be an open cover of X. Sinceϕ(S1) is homeomorphic
to S1, then ϕ(S1) is K-starcompact. Thus there exists a compact subset K1 of ϕ(S1) such that

ϕ(S1) ⊆ St(K1,U).

Since ϕ(βD × [0, c)) is homeomorphic to βD × [0, c), the set ϕ(βD × [0, c)) is countably compact, hence it is
strongly starcompact. Thus we can find a finite subset K2 of ϕ(βD × [0, c)) such that

ϕ(βD × [0, c)) ⊆ St(K2,U).

If we put K = K1 ∪ K2, then K is a compact subset of X such that X = St(K,U), which shows that X is
K-starcompac.

We give a positive result on star-K-Hurewicz spaces:
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Theorem 2.12. An open and closed subset of a star-K-Hurewicz space is star-K-Hurewicz.

Proof. Let X be a star-K-Hurewicz space and let Y be an open and closed subset of X. To show that Y is
star-K-Hurewicz, let (Un : n ∈N) be a sequence of open covers of Y, we have to find a sequence {Fn : n ∈N}
of compact subsets of Y such that for each y ∈ Y, y ∈ St(Fn,Un) for all but finitely many n ∈ N. For each
n ∈N, let

Vn =Un ∪ {X \ Y}.

Then {Vn : n ∈ N} is a sequence of open covers of X, so there exists a sequence {F′n : n ∈ N} of compact
subsets of X such that for each x ∈ X, x ∈ St(Fn,Vn) for all but finitely many n ∈ N, since X is star-K-
Hurewicz. For each n ∈N, let Fn = F′n ∩ Y. Thus {Fn : n ∈N} is a sequence of compact subsets of Y, since Y
is a closed subset of X. For each y ∈ Y, if y ∈ St(F′n,Vn), then y ∈ St(Fn,Un) by the construction ofUn. Hence
the sequence {Fn : n ∈ N} of compact subsets of Y witnesses for {Un : n ∈ N} that Y is star-K-Hurewicz.
Therefore we complete the proof.

Since a continuous image of a K-starcompact space is K-starcompact, it is not difficult to show the
following result.

Theorem 2.13. A continuous image of a star-K-Hurewicz space is star-K-Hurewicz.

Proof. Let f : X → Y be a continuous mapping from a star-K-Hurewicz space X onto a space Y. Let
(Un : n ∈ N) be a sequence of open covers of Y. For each n ∈ N, let Vn = { f−1(U) : U ∈ Un}. Then
(Vn : n ∈ N) is a sequence of open covers of X. Since X is star-K-Hurewicz, there exists a sequence
(K′n : n ∈ N) of compact subsets of X such that for each x ∈ X, x ∈ St(K′n,Vn) for all but finitely many n. For
each n ∈N, let Kn = f (K′n). Then (Kn : n ∈N) is a sequence of compact subsets of Y such that for each y ∈ Y,
y ∈ St(Kn,Un) for all but finitely many n. In fact, let y ∈ Y. Then there is x ∈ X such that f (x) = y. Hence
x ∈ St(K′n,Vn) for all but finitely many n. Thus y = f (x) ∈ St( f (K′n), {U : U ∈ Un}) = St(Kn,Un) for all but
finitely many n, which shows that Y is star-K-Hurewicz.

Next we turn to consider preimages. To show that the preimage of a star-K-Hurewicz space under a
closed 2-to-1 continuous map need not be star-K-Hurewicz, we use the the Alexandroff duplicate A(X) of a
space X. The underlying set A(X) is X × {0, 1}; each point of X × {1} is isolated and a basic neighborhood of
〈x, 0〉 ∈ X × {0} is a set of the form (U × {0}) ∪ ((U × {1}) \ {〈x, 0〉}), where U is a neighborhood of x in X.

Example 2.14. There exists a closed 2-to-1 continuous map f : X→ Y such that Y is a star-K-Hurewicz space, but
X is not star-K-Hurewicz.

Proof. Let Y be the same space X in the proof of Example 2.4. As we proved in Example 2.4 above, Y is
star-K-Hurewicz. Let X be the Alexandorff duplicate A(Y). Then X is not star-K-Hurewicz. In fact, let
A = {〈〈dα, c+〉, 1〉 : α < c}. Then A is an open and closed subset of X with |A| = c, and each point 〈〈dα, c+〉, 1〉
is isolated. Hence A(X) is not star-K-Hurewicz by Theorem 2.12. Let f : X→ Y be the projection. Then f is
a closed 2-to-1 continuous map, which completes the proof.

In [15], the author showed that the preimage of a star-K-Menger space under an open perfect map is
star-K-Menger, similarly we can prove the following result:

Theorem 2.15. Let f be an open perfect map from a space X to a star-K-Hurewicz space Y. Then X is star-K-
Hurewicz.

By Theorem 2.15 we have the following corollary.

Corollary 2.16. Let X be a star-K-Hurewicz space and Y a compact space. Then X × Y is star-K-Hurewicz.

Remark 2.17. Example 2.16 in [13] shows that the product of two star-K-Hurewicz spaces need not be
star-K-Hurewicz.
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