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Polynomial in a Saphar Linear Relation in a Banach Space
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Abstract. In this paper, we introduce the notion of Saphar linear relation in a Banach space and we study
the behaviour of such notion in polynomials.

1. Introduction and preliminaries

We adhered to the notations and terminology of the book [4]. Let E,F and G be linear spaces over
K = R or C. A linear relation T from E to F, denoted by T ∈ LR(E,F), is any mapping having domain
D(T) a nonempty subspace of E and taking values in the collection of nonempty subsets of F such that
T(αx1 + βx2) = αTx1 + βTx2 for all nonzero scalars α, β and x1, x2 ∈ D(T). If T maps the points of its domain
to singletons then T is said to be an operator. A linear relation T ∈ LR(E,F) is uniquely determined by its
graph G(T) which is defined by

G(T) := {(x, y) ∈ E × F : x ∈ D(T), y ∈ Tx}.

For linear relations T1,T2 ∈ LR(E,F) and S ∈ LR(F,G), the linear relations T−1
1 ,T1 +T2 and ST1 are defined

by

G(T−1
1 ) := {(y, x) : (x, y) ∈ G(T1)},

G(T1 + T2) := {(x, y1 + y2) : (x, y1) ∈ G(T1), (x, y2) ∈ G(T2)},

and

G(ST1) := {(x, z) ∈ E × G : (x, y) ∈ G(T1), (y, z) ∈ G(S) for some y ∈ F}.

If G(T1) ⊂ G(T2) we write T1 ⊂ T2.
If λ ∈ K and T is a linear relation in E, that is, T ∈ LR(E) := LR(E,E), then λT stands for (λI)T where I is

the identity operator on E and T − λ := T − λI.
The product of linear relations is clearly associative. Hence if T ∈ LR(E) then Tn, n ∈ Z, is defined as

usual with T0 = I and T1 = T.
Let T ∈ LR(E,F). The subspaces N(T) := T−1(0),R(T) := T(D(T)) and T(0) are called the null space,

the range and the multivalued part of T, respectively. We say that T is injective if N(T) = {0}, surjective
if R(T) = F and T is bijective if it is injective and surjective. We note that T is an operator if and only if
T(0) = {0}. For T ∈ LR(E) we shall consider the subsets
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ρ(T) := {λ ∈ K : T − λ is bijective } and σ(T) := K\ρ(T),

called the resolvent set and the spectrum of T, respectively.
Let X and Y be normed spaces and let T ∈ LR(X,Y). If M is a closed subspace of X, we say that M

is topologically complemented in X if there exists a closed subspace M1 of X such that X = M ⊕M1. In
such case, M1 is called a topological complement of M. We denote by T |M the linear relation given by
G(T |M) = G(T) ∩ (M × Y), QM denotes the quotient map from X onto X/M and QT stands for the quotient
map from Y onto Y/T(0). It is easy to see that QTT is an operator and hence we can define ‖ Tx ‖:=‖ QTTx ‖,
x ∈ D(T) and ‖ T ‖:=‖ QTT ‖. We say that T is closed if its graph is a closed subspace of X ×Y, continuous if
‖ T ‖< ∞ and T is called bounded if T is continuous and everywhere defined. We note that if X and Y are
Banach spaces and T ∈ LR(X,Y) is closed and everywhere defined, then T is bounded.

Bounded regular operators and bounded Saphar operators in Banach spaces were introduced and
studied (under various names and notations) by several authors, see, for instance [3], [9], [12], [13] and [14]
among others. Such concepts can be naturally generalized to linear relations, as follows.

Definition 1.1. Let X and Y be Banach spaces and let T ∈ LR(X,Y) be closed and everywhere defined. We say
that T is relatively regular, denoted by T ∈ RR(X,Y), if N(T) and R(T) are topologically complemented in X and Y,
respectively. Assume that X = Y. Then we say that T is regular if R(T) is closed and N(T) ⊂ R(Tn) for all n ∈N and
T is called a Saphar relation in X if T is regular and relatively regular.

It is evident that in Hilbert spaces the class of Saphar relations coincides with the class of regular relations
which was considered in [8] with the name of the class of quasi-Fredholm relations of degree 0. On the
other hand, it is not difficult to find examples of Saphar relations in Banach spaces, as we see from the next
example.

Example 1.2. Let lp, 1 ≤ p < ∞ be the Banach space of all complex sequences (xn) such that
∑
∞

n=1 | xn |
p< ∞ and let

Sr and Sl be the bounded operators in lp defined by
Sr(x1, x2, x3, ....) := (0, x1, x2, ...) and Sl(x1, x2, x3, ....) := (x2, x3, ....), (x1, x2, x3, ...) ∈ lp.
Then λ−1

− S−1
l is a Saphar relation in lp whenever 0 <| λ |< 1.

Proof. It is clear that Sr and Sl are bounded operators, the null space of Sl coincides with the subspace
generated by (1, 0, 0, ....) and R(Sl) = lp. Hence S−1

l is a closed an everywhere defined linear relation in lp.
For each λ ∈ K\{0} we have that N(S−1

l − λ
−1) = N(Sl − λ) and R(S−1

l − λ
−1) = R(Sl − λ) ([4, Proposition

VI.2.3 and Theorem VI.4.2]) and clearly Sl −λ = Sl −λSlSr = λSl(λ−1
− Sr). These properties combined with

the fact that σ(Sl) = σ(Sr) = {λ ∈ K :| λ |≤ 1} (see, for instance [15, Theorem 4.5]) lead to the desired result. �

On the other hand, we note that the notion of regular relation in a Banach space was introduced in [1].
The following theorem is the main result of the paper [1, Theorem 21].

Theorem 1.3. Let T be a closed linear relation in a complex Banach space X such that ρ(T) , ∅. Let n and
mi, 1 ≤ i ≤ n be positive integers and let λi, 1 ≤ i ≤ n be some distinct constants Assume that for all i ∈ {1, 2, ...,n},
T − λi is regular. Then un

i=1(T − λi)mi is regular.

In the present paper we continue the investigation initiated in [1]. So our first main objective is to prove
the validity of the converse of Theorem 1.1. The second main purpose of this paper is to show that under
suitable conditions un

i=1(T−λi)mi is a Saphar relation if and only if for all 1 ≤ i ≤ n,T−λi is a Saphar relation,
(see, Theorem 4.4 below).

2. Some Algebraic Properties of a Polynomial in a Linear Relation

In this section we present some purely algebraic properties of a polynomial in a linear relation in a linear
space which will be used to prove the main results of this paper.

Lemma 2.1. Let A be a linear relation in a linear space E. We have:
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(i) The following properties are equivalent:
(a) N(An) ⊂ R(A) for all n ∈N.
(b) N(A) ⊂ R(Am) for all m ∈N.
(c) N(An) ⊂ R(Am) for all n,m ∈N.

(ii) For all α, β ∈ K and for all n,m ∈N we have
(1) (A − α)n(A − β)m = (A − β)m(A − α)n,
(2) D((A − α)n(A − β)m)) = D(An+m),
(3) (A − α)n(A − β)m(0) = An+m(0),
(4) If A is bijective and everywhere defined then

(A − α)−n(A − β)m
⊂ (A − β)m(A − α)−n.

(iii) Assume that A is everywhere defined and let λ ∈ K. Then

(A − λ)n =
∑n

i=0
(n

i
)
(−1)iλiAn−i, n ∈N.

(iv) If A has a nonempty resolvent set, then

{0} = N(An) ∩ Am(0) for all n,m ∈N.

Proof. (i) See, for instance [8, Lemma 2.7].
(ii) The first three properties are established in [10, 1, (1.2) and (1.3)]. Assume now that A−α is bijective

and that D(A) = E. It is clear that (A − α)n is also bijective and its domain is the whole space E which leads
to

(A − α)−n(A − α)n = E ⊂ (A − α)n(A − α)−n.

Hence, we have that
(A − α)−n(A − β)m

⊂ (A − α)−n(A − β)m(A − α)n(A − α)−n =
(A − α)−n(A − α)n(A − β)m(A − α)−n = (A − β)m(A − α)−n.
(iii) We proceed by induction. For n = 1 it is trivial. Assume (iii) holds for some positive integer k. Then

one deduces from (ii) combined with [4, Proposition I.4.2] that
(A − λ)k+1 = (A − λ)kA − (A − λ)kλ = A(A − λ)k

− λ(A − λ)k =∑k
i=0

(k
i
)
(−1)iλiAk+1−i

−
∑k

i=0
(k

i
)
(−1)iλi+1Ak−i =

Ak+1−i +
∑k

i=1
(k+1

i
)
(−1)iλiAk+1−i + (−1)k+1λk+1 =∑k+1

i=0
(k+1

i
)
(−1)iλiAk+1−i.

Therefore (iii) holds.
(iv) A proof of this statement can be found in [11, Lemma 6.1]. �

Definition 2.2. [10] Let A be a linear relation in a linear space E. Fix λ ∈ K, let P(λ) := α un
i=1 (λ − λi)mi be a

polynomial in λ where n and mi, 1 ≤ i ≤ n, are positive integers, α ∈ K and λi, 1 ≤ i ≤ n are some distinct constants.
Then, the polynomial P in A given by

P(A) := α un
i=1 (A − λi)mi

is a linear relation in E by virtue of Lemma 2.1.

Recall that if P1 and P2 are relatively prime polynomials in λ ∈ K, then there exist polynomials Q1 and
Q2 in λ such that 1 = Q1(λ)P1(λ) + Q2(λ)P2(λ). The following useful lemma can be seen as an extension of
this property to the case of polynomials in a linear relation.

Lemma 2.3. Let A be an everywhere defined linear relation in a linear space E and let P1 and P2 be relatively prime
polynomials in λ ∈ K. Assume that Q1 and Q2 are two polynomials in λ such that 1 = Q1(λ)P1(λ) + Q2(λ)P2(λ).
Then, for all x ∈ E

Q1(A)P1(A)x + Q2(A)P2(A)x = x + An(0)

where n is the degree of the polynomial Q1P1.
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Proof. The use of Lemma 2.1 makes us to write

Q1(A)P1(A) = αo +
∑n

i=1 αiAi and Q2(A)P2(A) = δo +
∑n

i=1 δiAi

for some nonzero scalars αi, δi, 0 ≤ i ≤ n. Hence, for all x ∈ E we have that

Q1(A)P1(A)x + Q2(A)P2(A)x = (αo + δo)x +
∑n

i=1(αi + δi)Aix

and since αo + δo = 1 and αi + δi = 0, 1 ≤ i ≤ n, we obtain that Q1(A)P1(A)x + Q2(A)P2(A)x = x + A(0) +
A2(0) + ... + An(0) = x + An(0). The proof is completed. �

The behaviour of the domain, the range, the null space and the multivalued part of a polynomial in a
linear relation is described in the following useful lemma

Lemma 2.4. Let A be an everywhere defined linear relation in a linear space E having a nonempty resolvent set and
let P(A) := α un

i=1 (A − λi)mi as in Definition 2.2. Then

(i) D(P(A)) = E and P(A)(0) = A
∑n

i=1 mi (0).
(ii) R(P(A)) = ∩n

i=1R(A − λi)mi .
(iii) N(P(A)) = ⊕n

i=1N(A − λi)mi .

Proof. (i) It is covered by the part (ii) in Lemma 2.1.
(ii) It is proved in [10, Theorem 3.3].
(iii) Since N(P(A)) =

∑n
i=1 N(A−λi)mi by virtue of [10, Theorem 3.4], it only remains to verify that such sum

is direct which will be a consequence of Lemmas 2.1 and 2.3. Indeed, we shall show that∩n
i=1N(A−λi)mi = {0}

is true for n = 2 since the general case then follows by induction. Let Q1 and Q2 be polynomials in A such
that

for every x ∈ E, Q1(A)(A − λ1)m1 x + Q2(A)(A − λ2)m2 x = x + Ar(0)

where r denotes the degree of Q1(A)(A − λ1)m1 . So that, for x ∈ N(A − λ1)m1 ∩ N(A − λ2)m2 we obtain that
x + Ar(0) = Ar(0) which implies that N(A−λ1)m1 ∩N(A−λ2)m2 ⊂ Ar(0). This inclusion together with Lemma
2.1 allowed us to conclude that N(A − λ1)m1 ∩N(A − λ2)m2 = {0}, as desired. �

3. Product of Relatively Regular Linear Relations

At the beginning of this section we present some properties of the topological complementation which
are essential to obtain the main results of this paper.

Following [5] we say that a linear relation A in a linear space E is a multivalued projection in E if A2 = A
and R(A) ⊂ D(A). Multivalued projections in E can be characterized in terms of subspaces pairs, as follows:
Let M1 and M2 be subspaces of E and let A ∈ LR(E) defined by G(A) = {(m1 + m2,m1) : m1 ∈ M1,m2 ∈ M2}.
Then A is a multivalued projection in E with D(A) = M1 + M2, R(A) = M1, N(A) = M2 and A(0) = M1 ∩M2.
Conversely, if A is a multivalued projection in E, then A determines a pair of subspaces M1 and M2 of E such
that G(A) = {(m1 +m2,m1) : m1 ∈M1,m2 ∈M2}, D(A) = M1 +M2, R(A) = M1, N(A) = M2 and A(0) = M1∩M2.

The following lemma shows that the notion of topological complementation may be expressed in terms
of multivalued projections under suitable restrictions.

Lemma 3.1. [5, Corollary 3.5 and Proposition 3.13] Let M1 and M2 be subspaces of a Banach space X and let S
denote the multivalued projection in X with D(S) = M1 + M2, R(S) = M1, N(S) = M2 and S(0) = M1 ∩M2. We
have:

(i) If M1 and M2 are closed, then S is continuous if and only if M1 + M2 is closed.
(ii) If S is continuous and M1 + M2 and M1 ∩M2 are topologically complemented in X and M1 + M2 respectively,

then M1 and M2 are topologically complemented in X.

Lemma 3.2. Let M1 and M2 be subspaces of a Banach space X such that M2 is closed and it is contained in M1. Then
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(i) M1 is closed in X if and only if M1/M2 is closed in X/M2.
(ii) If M1 is closed then (X/M2)/(M1/M2) = X/M1 and QM1/M2 QM2 = QM1 where the equality is a canonical

isometry.
(iii) For any closed subspace F of X/M2, the closed subspace G of X given by G := Q−1

M2
F satisfies M2 ⊂ G and

(X/M2)/F = X/G.
(iv) If M1/M2 and M2 are topologically complemented in X/M2 and X, respectively, then M1 is topologically

complemented in X.

Proof. (i) Follows immediately from the definitions.
(ii) and (iii) These statements are proved in [4, Lemma IV.5.2].
(iv) Since M1/M2 is topologically complemented in X/M2, we infer from the above assertions that M1

is closed and X/M2 = (M1/M2) ⊕ (M3/M2) for some closed subspace M3 of X with M2 ⊂ M3. So that
X = M1 + M3 and M2 = M1 ∩M3 by virtue of [4, Lemma I.6.8]. Let S be the multivalued projection with
D(S) = M1 + M3, R(S) = M1, N(S) = M3 and S(0) = M1 ∩M3. According to Lemma 3.1 (i), S is continuous
and since M2 is topologically complemented in X, we deduce from Lemma 3.1 (ii) that M1 is topologically
complemented in X. �

Lemma 3.3. Let X and Y be Banach spaces and let T be a closed and everywhere defined linear relation from X to Y.
We have:

(i) If N is a topological complement of R(T), then QTN is a topological complement of R(QTT).
(ii) If T(0) and R(QTT) are topologically complemented in Y and Y/T(0) respectively, then R(T) is topologically

complemented in Y.
(iii) Let N be a closed subspace of Y such that T(0) ⊂ N. Then T−1N is a closed subspace of X.
(iv) Assume that R(T) is closed and let M be a subspace of X for which N(T) ⊕M is closed. Then TM is a closed

subspace of Y.
(v) Let M be a closed subspace of X such that T |M is injective and TM is topologically complemented in Y. If N is

a topological complement of TM, then T−1N is a topological complement of M.

Proof. Note that by virtue of [4, Proposition II.5.3], T(0) is closed and QTT is a bounded and closed
operator, so that from Lemma 3.2 (i), we obtain that R(QTT) is closed if and only if R(T) is closed.

(i) Applying [4, Lemma I.6.8], we get

QTY = R(QTT) + QTN and {0} = R(QTT) ∩QTN.

Now, by Lemma 3.2 (i) it is enough to show that N + T(0) is a closed subspace of Y. To do this, let
(zn) ⊂ N + T(0) such that zn → z for some z ∈ Y. Then there are (an) ⊂ N and (bn) ⊂ T(0) such that
zn = an + bn = (I − PR(T))zn + PR(T)zn → (I − PR(T))z + PR(T)z where PR(T) denotes the bounded operator
projection of Y onto R(T) along N. So that, as T(0) is a closed subspace of R(T), we have that z ∈ N + T(0),
as desired.

(ii) It is an immediate consequence of Lemma 3.2 (iv).
(iii) We first claim that
(3.1) T−1N = {x ∈ X : QTTx ∈ QTN}.
Let x ∈ T−1N. Then there is y ∈ N ∩ Tx which implies by [4, Proposition I.2.8] that Tx = y + T(0), so

that QTTx = QT y with y ∈ N. Hence T−1N ⊂ {x ∈ X : QTTx ∈ QTN}. Conversely, let x ∈ X such that
QTTx = QT y for some y ∈ N. Using [4, Propositions I.2.8 and I.3.1] we infer that y ∈ N ∩ Tx and hence
x ∈ T−1N. Therefore (3.1) holds.

On the other hand, the set {x ∈ X : QTTx ∈ QTN} is closed because QTN is closed by (i) and QTT is a
bounded operator. This fact implies by the use of (3.1) that T−1N is closed.

(iv) If T is an operator then the assertion follows from [7, Lemma IV.2.9]. Turning to the general case,
we have that QTT is an everywhere defined closed operator with closed range and N(QTT) = T−1Q−1

T (0) =

T−1T(0) = T−1(0) ([4, Corollary I.2.10]) = N(T). Hence, from what has been showed for the operator case,
QTM is a closed subspace of Y/T(0) and thus TM is a closed subspace of Y by Lemma 3.2 (i).
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(v) Let us consider two cases for T:
Case I: T operator. If N is a topological complement of TM and T |M is injective, then it is clear that

T−1N ∩M = {0}, both T−1N and M are closed subspaces and X = T−1N + M.
Case II: T linear relation. Then one has from (i) that QTTM ⊕ QTN = QTY and since N(QTT) = N(T),

we deduce from the case I applied to QTT that (QTT)−1QTN is a topological complement of M. But
(QTT)−1QTN = T−1Q−1

T QTN = T−1(N + T(0)) = T−1N ([4, Corollary I.2.10 and Proposition I.3.1]). Therefore
(v) holds. �

The behaviour of the notion of relatively regular in products is given in the following two results.

Proposition 3.4. Let X,Y and Z be Banach spaces and let T ∈ RR(X,Y) and S ∈ RR(Y,Z) such that N(S)∩T(0) = {0},
N(S) ⊂ R(T) and ST(0) is topologically complemented in Z. Then ST ∈ RR(X,Z).

Proof. Let us consider two possibilities for S and T:
Case I: S,T operators. By a very known result (see, for instance [3, p.10]), there are bounded operators S1

from Z to Y and T1 from Y to X such that SS1S = S, TT1T = T, I − S1S is the bounded operator projection of
Y onto N(S) and TT1 is the bounded operator projection of Y onto R(T). Furthermore, TT1(I− S1S) = I− S1S
because N(S) ⊂ R(T) and hence

ST(T1S1)ST = STT1T − STT1(I − S1S)T = ST.

This together with [3, p.10] yields to ST ∈ RR(X,Z).
Case II: S,T linear relations. From [4, Lemma V.2.9] we have that

QSTST = UV where U := QSTSQ−1
T and V := QTT.

Then
(3.2) U is a bounded operator from Y/T(0) to Z/ST(0).
Indeed, as QSTSQ−1

T (0) = QSTST(0) = {0} is U(0) = {0} equivalently U is an operator. Moreover, from
the equality QSTS = QST(0)/S(0)QSS (Lemma 3.2 (ii)) it is obvious that QSTS is a bounded operator and thus
applying [4, Corollary II.3.13], we infer that U is a bounded operator and hence it also is closed. Therefore
(3.2) holds.

(3.3) U is relatively regular.
Since ST(0) is topologically complemented in Z and R(S) is closed, there exists a closed subspace Z1 of

Z such that Z1 ⊂ R(S) and R(S) = ST(0) ⊕ Z1. This equality combined with [4, Proposition I.3.1 and Lemma
I.6.8] implies that

Y = (N(S) + T(0)) + S−1Z1 and N(S) = (N(S) + T(0)) ∩ S−1Z1.

But, since S |T(0) is injective (as N(S) ∩ T(0) = {0}) and ST(0) is topologically complemented in Z by
hypothesis, it follows by virtue of Lemma 3.3 (v) that S−1Z1 is closed. On the other hand, one finds by [4,
Proposition I.3.1] that N(U) = (N(S) + T(0))/T(0), so that N(S) + T(0) is closed by Lemma 3.2 (i) and the
property (3.2).

After that, using Lemma 3.1 (ii), we obtain that N(S)+T(0) is topologically complemented in Y and since
N(S) is contained in the closed subspace R(T), we have that

(N(S) + T(0)) ⊕ Y1 = R(T) for some closed subspace Y1 with Y1 ⊂ R(T).
This last property together with the fact that QT |Y1 is an injective operator shows that R(QTT) =

QT(N(S) + T(0)) ⊕ QTY1 = N(U) ⊕ QTY1, that is, QTY1 is a topological complement of N(U) in R(QTT). So
that N(U) is topologically complemented in Y/T(0) by the part (ii) in Lemma 3.3.

On the other hand, it is clear that R(U) = R(S)/ST(0) and since R(S) is topologically complemented in Z,
reasoning as in Lemma 3.3 (i), we deduce that R(U) is topologically complemented in Z/ST(0). Therefore
(3.3) holds.

Now, from (3.2) and (3.3) combined with the case I applied to U and V, we infer that QSTST is relatively
regular. In this situation, the use of Lemma 3.3 (ii) together the fact that N(QSTST) = N(ST) makes us to
conclude that ST ∈ RR(X,Z), as desired. �
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Proposition 3.5. Let X be a Banach space and let S,T be closed and everywhere defined linear relations in X such
that ST = TS, N(ST) = N(S) ⊕N(T), R(ST) = R(S) ∩ R(T), N(T) ⊂ R(S) and N(S) ⊂ R(T). Then

(i) R(ST) is closed if and only if R(S) and R(T) are closed.
(ii) If ST is relatively regular then S and T are relatively regular linear relations.

Proof. (i) Suppose that R(ST) is closed. Since S(0) ⊂ ST(0) ⊂ R(ST) it follows immediately from the part
(iii) in Lemma 3.2 together with [4, Proposition I.3.1] and the fact that N(S) ⊂ R(T), that R(T) is closed. As
ST = TS, analogously we obtain that R(S) is closed. The converse is obvious.

(ii) Since N(ST) = N(S)⊕N(T) is topologically complemented in X, also N(S) and N(T) are topologically
complemented in X and by virtue of the inclusion N(S) ⊂ R(T), it follows that N(S) is topologically
complemented in R(T). Hence R(T) = N(S) ⊕M for some closed subspace M of X with M ⊂ R(T). This
implies that S |M is injective with SM = R(ST) which is topologically complemented in X. So that, according
to Lemma 3.3 (v) we have that X = S−1L ⊕M where L is a topological complement of SM. Therefore, if M1
is a topological complement of N(S) in S−1M1 we have that X = M ⊕ N(S) ⊕M1 = R(T) ⊕M1 which shows
that T is relatively regular in X. Similarly we obtain that S ∈ RR(X). �

4. Polynomial in a Saphar Relation

Throughout this section we are concerned with the study of the behaviour of a polynomial in a Saphar
relation in a Banach space. The analysis is essentially based on the results developed in the previous
sections.

In the sequel X will be a complex Banach space and T will always denote an everywhere defined closed
linear relation in X having a nonempty resolvent set. We note that by [6, Lemma 3.1] and [4, Corollary
III.5.4 and Theorem VI.5.4] we have that

(5.1) For every n ∈N, Tn is closed, bounded and ρ(Tn) , ∅.
The following result relates the regularity of T to that its powers.

Proposition 4.1. The following properties are equivalent:

(i) T is regular.
(ii) Tn is regular for all n ∈N.

(iii) Tm is regular for some m ∈N.

Proof. (i)⇒(ii) Combine (5.1) and [1, Propositions 11 and 12].
(ii)⇒ (iii) It is obvious.
(iii)⇒(i) Assume that Tm is regular for some positive integer m. By Lemma 2.1 (i), N(T) ⊂ N(Tm) ⊂ R(Tn)

for all n ∈N, so that it only remains to verify that R(T) is closed.
Let β ∈ ρ(T). Then T − β is closed, bounded and bijective and thus by [4, Proposition VI.5.2], (T − β)m−1

has the same properties. Define

W := (T − β)−(m−1)Tm−1.

Then
(5.2) W is a bounded operator.
Note that W(0) = (T − β)−(m−1)Tm−1(0) = (T − β)−(m−1)(T − β)m−1(0) (Lemma 2.1 (ii)) = (T − β)−(m−1)(0) ([4,

Corollary I.2.10])= {0}, so that W is an operator. Further, it is clear that D(W) = X and the continuity of W
follows from [4, Corollary II.13]. Therefore (5.2) holds.

Let (yn) ⊂ R(T) such that yn → y for some y ∈ X. Then (5.2) leads to Wyn → Wy and since Wyn ⊂

R((T − β)−(m−1)Tm) ⊂ R(Tm(T − β)−(m−1)) (Lemma 2.1 (ii))⊂ R(Tm) we obtain that Wy ∈ R(Tm). Let z ∈ X for
which Wy ∈ Tmz. Then, the use of Lemma 2.1 (ii) and [4, Proposition I.4.2 (e)] yields to

0 ∈ Tm−1(−(T − β)−(m−1)y + Tz)

which implies that (T − β)−(m−1)y ∈ R(T) and since (T − β)m−1 is surjective we deduce that
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y ∈ (T − β)m−1(T − β)−(m−1)y ⊂ (T − β)m−1R(T) = R(T(T − β)m−1) ⊂ R(T).

The proof is completed. �
We are now in a position to prove the first main result of the present paper.

Theorem 4.2. Let P(T) = αun
i=1 (T −λi)mi as in Definition 2.2. Then P(T) is regular if and only if T −λi is regular,

1 ≤ i ≤ n.

Proof. Suppose that P(T) is regular. Then, using Lemma 2.4, for all m ∈N

⊕
n
i=1N(T − λi)mi ⊂ ∩

n
i=1R(T − λi)mim

so, for i ∈ {1, 2, ...,n}we have that

N(T − λi) ⊂ N(T − λi)mi ⊂ R(T − λi)mim ⊂ R(T − λi)m.

This fact together Proposition 4.1 ensures that in order to prove the regularity of T − λi is enough to show
that R(T − λi)mi is closed. For this end, let β ∈ ρ(T) and we write W1 := (T − β)−(r−mi) un

j=1, j,i (T − λ j)m j where
r := m1 + m2 + ... + mn. Then proceeding as in the proof of Proposition 4.1 we obtain that W1 is a bounded
operator wich allowed us to conclude that R(T − λi)mi is closed, as required.

The other implication was established in [1, Theorem 21]. �
Our next objective is to obtain an analogous result to Saphar relations.

Proposition 4.3. Assume that Tn(0) is topologically complemented in X for every n ∈ N. Then the following
properties are equivalent.

(i) T is Saphar.
(ii) Tn is Saphar for all n ∈N.

(iii) Tm is Saphar for some m ∈N.

Proof. (i)⇒(ii) By Proposition 4.1, Tn is regular. We shall prove that Tn is relatively regular proceeding
by induction. The case n = 1 is evident. Assume that Tk is relatively regular for some positive integer k.
Then, as N(T) ∩ Tk(0) = {0} (Lemma 2.1 (iv)), N(T) ⊂ R(Tk)( as T is regular), it follows from Proposition 3.4
that Tk+1 is relatively regular, as desired.

(ii)⇒(iii) It is trivial.
(iii)⇒ (i) Suppose that there is m ∈ N for which Tm is Saphar. So that T is regular by Proposition 4.1;

in particular R(T) is closed and since N(Tm) is topologically complemented in X and it is contained in R(T),
we have that

N(Tm) ⊕M = R(T) for some closed subspace M ⊂ R(T).

This fact together with [4, Proposition I.3.1 and Lemma I.6.8] leads to

R(Tm) = Tm−1N(Tm) + Tm−1M = (N(T) + Tm(0)) + Tm−1M and Tm−1(0) = (N(T) + Tm(0)) ∩ Tm−1M.

Furthermore, since Tm is closed with closed range and N(Tm) ⊕M is closed we deduce from Lemma
3.3 (iv) that TmM is closed. This last property combined with the part (iii) in Lemma 3.3 yields to Tm−1M
closed. Again applying Lemma 3.3 (iii) we obtain that N(T) + Tm(0) is closed.

After that, using Lemmas 2.1 (v) and 3.1 we have that

N(T) ⊕ Tm(0) and N(T) are topologically complemented in X.

On the other hand, as TmM = R(Tm+1) which is topologically complemented by the implication (i)⇒ (ii)
and Tm

|M is injective, one has from Lemma 3.3 that T−mL ⊕M = X where L is a topological complement of
TmM. Hence, if N is a topological complement of N(Tm) in T−mL we have that X = M⊕N(Tm)⊕N = R(T)⊕N
which shows that R(T) is topologically complemented in X. The proof is completed. �

Now we are ready to state our second main result of this paper.
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Theorem 4.4. Assume that for each n ∈N, Tn(0) is topologically complemented in X and let P(T) = αun
i=1 (T−λi)mi

as in Definition 2.2. Then P(T) is a Saphar relation if and only if T − λi is a Saphar relation, 1 ≤ i ≤ n.

Proof. Suppose that P(T) is a Saphar relation in X. Then T − λi is regular, 1 ≤ i ≤ n by Theorem 4.2.
Applying Lemma 2.4 and Proposition 3.5 we infer that each (T − λi)mi is relatively regular and thus the use
of Proposition 4.3 gives T − λi relatively regular.

Assume now that T − λi is Saphar for every i ∈ {1, 2, ...,n}. Again applying Theorem 4.2 we obtain that
P(T) is regular. Finally, as (T − λi)mi is Saphar by virtue of Proposition 4.3, we deduce as an immediate
consequence of Lemma 2.4 and Proposition 3.4 that P(T) is a Saphar relation in X. The proof is completed.

�
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