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Abstract. Solving linear systems is a classical problem of engineering and numerical analysis which has
various applications in many sciences and engineering. In this paper, we study efficient iterative methods,
based on the diagonal and off-diagonal splitting of the coefficient matrix A for solving linear system Ax = b,
where A ∈ Cn×n is nonsingular and x, b ∈ Cn×m. The new method is a two-parameter two-step method
that has some iterative methods as its special cases. Numerical examples are presented to illustrate the
effectiveness of the new method.

1. Introduction

The linear systems play important roles in engineering, scientific computations and various other fields.
Therefore a large number of papers have presented several methods for solving linear systems [8–13]. We
consider numerical solution of the linear system of the form

Ax = b, A ∈ Cn×n, x, b ∈ Cn×m, (1.1)

where A is a nonsingular matrix with nonvanishing diagonal entries. Iterative methods for the system of
linear equations (1.1) require efficient splittings of the coefficient matrix A. For example, the Jacobi, the
Gauss-Seidel and the Successive Overrelaxation (SOR) methods [16, 18], split the matrix A into its diagonal
and strictly lower and upper triangular parts, and as is said in [5], the generalized conjugate gradient
(CG) method [6] and the generalized Lanczos method [23] split the matrix A into its Hermitian and skew-
Hermitian parts; see also [2, 3, 15, 17, 22].

We consider the following splitting of A

A ≡ D + L + U, (1.2)

where D = dia1(A) is a diagonal matrix, L is a strictly lower triangular matrix, and U is a general matrix. In
this paper we will present efficient iterative methods based on this particular matrix splitting for solving
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the system of linear equations (1.1). The new iteration method will be referred to as the Diagonal and
off-Diagonal splitting (DOS) iteration method or, in brief, ”the DOS iteration method”.

We rewrite the linear system (1.1) into the system of fixed-point equations

Dx =
[
ω1D + (ω1 − 1)L + (ω1 − 1)U

]
x + (1 − ω1)b, (1.3)

and

(D + ω2L)x =
[
(1 − ω2)D − ω2U

]
x + ω2b, (1.4)

where ω1 and ω2 are prescribed parameters. Now by alternately iterating between the two systems of fixed
point equations (1.3) and (1.4), we can establish the following iteration method for solving the linear system
(1.1).

The DOS iteration method: Let x(0)
∈ Cn×m be an arbitrary initial guess, for k = 0, 1, 2, ..., until {x(k)

}

converges, compute

 Dx(k+ 1
2 ) =

[
ω1D + (ω1 − 1)L + (ω1 − 1)U

]
x(k) + (1 − ω1)b,

(D + ω2L)x(k+1) =
[
(1 − ω2)D − ω2U

]
x(k+ 1

2 ) + ω2b,
(1.5)

where ω1 and ω2 are given constants.

Evidently, each iterate of the DOS iteration alternates between the diagonal part D and a lower triangu-
lar part D + ω2L of the matrix A, analogously to the classical alternating direction implicit (ADI) iteration
method for solving partial differential equations; we refer the interested reader to [14, 20]. We can show
that under some conditions, the DOS iteration (1.5) converges unconditionally to the unique solution of the
system of linear equations (1.1).

Note that in the above DOS iteration method, we may first solve the system of linear equations with
coefficient matrix D + ω2L and then solve the system of linear equations with coefficient matrix D.

The two half-steps at each DOS iterate require exact solutions with the matrices D and D +ω2L. Because
of the simple construction of these coefficient matrices, we can solve two linear sub-systems exactly, in fact,
the simplicity of solving the first linear sub-system is obvious, and for the second linear sub-system we can
employ the substitution methods for solving linear systems with triangular coefficient [7, 16]. Note that it
is an important advantage for a method that can be inexpensive for performing.

The new method has some iterative methods as its special case. We observe that if L and U is strictly
lower and upper triangular matrices, respectively and for specific values of the parameters ω1 and ω2, the
DOS method reduces to the well-known methods. Let us mention some of them:

DOS method with ω1 = 0 and ω2 = 0 is the Jacobi method,
DOS method with ω1 = 1 and ω2 = 1 is the Gauss-Seidel method,
DOS method with ω1 = 1 − ω1 and ω2 = 0 is the Simultaneous Overrelaxation method,
DOS method with ω1 = 1 and free ω2 is the Successive Overrelaxation (SOR) method.

Elimination of x(k+ 1
2 ) from the second step of (1.5) yields

x(k+1) = M(ω1, ω2)x(k) + G(ω1, ω2)b, k = 0, 1, 2, ...,
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where

M(ω1, ω2) = (D + ω2L)−1
[
(1 − ω2)D − ω2U

]
D−1

[
ω1D + (ω1 − 1)L + (ω1 − 1)U

]
,

and

G(ω1, ω2) = (D + ω2L)−1
[
(1 − ω1)[(1 − ω2)D − ω2U]D−1 + ω2I

]
.

Furthermore, we have A = B(ω1, ω2) − C(ω1, ω2) and M(ω1, ω2) = B(ω1, ω2)−1C(ω1, ω2), where

B(ω1, ω2) =
[
(1 − ω1)[(1 − ω2)D − ω2U]D−1 + ω2I

]−1
(D + ω2L),

and

C(ω1, ω2) =
[
(1−ω1)[(1−ω2)D−ω2U]D−1 +ω2I

]−1[
(1−ω2)D−ω2U

]
D−1

[
ω1D + (ω1 − 1)L + (ω1 − 1)U

]
.

Here A = B(ω1, ω2) − C(ω1, ω2) is the splitting induced by the DOS iteration, and B(ω1, ω2) can be used as a
preconditioning matrix for the matrix A ∈ Cn×n. Matrix B(ω1, ω2) will be referred to as the DOS precondi-
tioner. Note that M(ω1, ω2) is the iteration matrix of the DOS iterative method.

The rest of the paper is organized as follows: in Section 2, we study the convergence properties of the
DOS iteration. Some implementation aspects are briefly discussed in Section 3. Numerical experiments are
presented in Section 4. Finally, in Section 5, we end the paper with brief concluding remarks.

2. Convergence Analysis of the DOS Iteration

In this section, we study the convergence analysis of the DOS iteration. First note that the DOS iteration
method can be considered as a two-step splitting iteration framework, and the following lemma describes
a general convergence criterion for a two-step splitting iteration.

Lemma 2.1. [5]. Let A ∈ Cn×n, A = Mi −Ni (i=1, 2) be two splittings of the matrix A, and let x(0)
∈ Cn be a given

initial vector. If {x(k)
} is a two-step iteration sequence defined by

{
M1x(k+ 1

2 ) = N1x(k) + b,
M2x(k+1) = N2x(k+ 1

2 ) + b,
(2.1)

k = 0, 1, 2, ..., then

x(k+1) = M−1
2 N2M−1

1 N1x(k) + M−1
2 (I + N2M−1

1 )b, k = 0, 1, 2, ....

Moreover, if the spectral radius ρ(M−1
2 N2M−1

1 N1) of the iteration matrix M−1
2 N2M−1

1 N1 is less than 1, then the
iterative sequence {x(k)

} converges to the unique solution x∗ ∈ Cn of the system of linear equations (1.1) for all initial
vectors x(0)

∈ Cn. Note that A = M −N is called a splitting of the matrix A if M is a nonsingular matrix.

For the convergence property of the DOS iteration, we apply the above lemma and a part of a theorem
(Theorem 6.33) in [1] to obtain the following theorem.
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Theorem 2.1. Let An×n = (ai j) ∈ Cn×n be diagonally dominant and

n∑
j=2

a1 j < |a11|,

If L = (li j) and U = (ui j), and li jui j ≥ 0, 0 ≤ ω1 ≤ 1 and 0 < ω2 ≤ 1, then the DOS iteration converges to the unique
solution x∗ ∈ Cn of the linear system (1.1) for any initial guess.

Proof. First suppose Lω1 = D−1
[
ω1D + (ω1 − 1)L + (ω1 − 1)U

]
. An easy computation establishes the identity

‖Lω1‖∞ = max
1≤i≤n
{ω1 + (1 − ω1)

∑
j,i

|
ai j

aii
|}.

Because of the diagonally dominance property of A we conclude that ‖Lω1‖∞ ≤ 1.

Now let Lω2 = −(D+ω2L)−1
[
(ω2−1)D+ω2U

]
. Suppose then x is an arbitrary vector with max1≤i≤n |xi| = 1,

and let y = Lω2 x. Then (D + ω2L)y =
[
(1 − ω2)D − ω2U

]
x, and we have

y1 = (1 − ω2)x1 − ω2(
∑
j≥2

a1 j

a11
x j),

thus

|y1| ≤ (1 − ω2)|x1| + ω2

∑
j≥2

|
a1 j

a11
||x j| < 1.

Further by induction we can write

yi = (1 − ω2)xi − ω2

∑
j<i

li j

aii
y j − ω2

∑
j<i

ui j

aii
x j − ω2

∑
j>i

ai j

aii
x j.

Now because li jui j ≥ 0, we have

|yi| ≤ (1 − ω2)|xi| + ω2

∑
j<i

|
ai j

aii
||y j| + ω2

∑
j>i

|
ai j

aii
||x j| < 1,

for i = 2, ...,n. Hence, ‖Lω2‖∞ = max1≤i≤n |yi| < 1.

Now, the iteration matrix M(ω1, ω2) is given by

M(ω1, ω2) = (D + ω2L)−1
[
(1 − ω2)D − ω2U

]
D−1

[
ω1D + (ω1 − 1)L + (ω1 − 1)U

]
.

Hence the following bound for the spectral radius of M(ω1, ω2) holds

ρ(M(ω1, ω2)) ≤
∥∥∥∥∥(D + ω2L)−1

[
(1 − ω2)D − ω2U

]∥∥∥∥∥
∞

∥∥∥∥∥D−1
[
ω1D + (ω1 − 1)L + (ω1 − 1)U

]∥∥∥∥∥
∞

,

that yields

ρ(M(ω1, ω2)) ≤ ‖Lω2‖∞‖Lω1‖∞ < 1,

showing that the method converges unconditionally for 0 ≤ ω1 ≤ 1 and 0 < ω2 ≤ 1.
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It is to be noted that constructing a strictly lower triangular matrix L and a general matrix U that satisfy
in the conditions of Theorem 2.1 is easy. It is sufficient to set li j = 0 and ui j = ai j for i ≤ j. For i > j, we
should have li j + ui j = ai j and also li jui j ≥ 0. One of the simplest choices is li j = ui j = ai j/2. It is obvious that
for i > j, there are many other choices for li j and ui j.

Corollary 2.1. If A ∈ Cn×n is strictly diagonally dominant, then the DOS iteration for suitable choices of matrices L
and U that satisfy in conditions of Theorem 2.1, converges for all 0 ≤ ω1 ≤ 1 and 0 < ω2 ≤ 1.

Before continuing, note to the following definitions and preliminaries.

A matrix A = (ai j) ∈ Rn×n is called an M-matrix if ai j ≤ 0 for i , j and A−1
≥ 0. The comparison matrix

〈A〉 = (αi j) of a matrix A = (ai j) is defined by

αi j =

{
|ai j| if i = j,
−|ai j| if i , j.

A matrix A is called an H-matrix if 〈A〉 is an M-matrix. A splitting A = M − N is called regular if M−1
≥ 0

and N ≥ 0, and weak regular if M−1
≥ 0 and M−1N ≥ 0.

For a matrix A = (ai j) ∈ Rn×n, A ≥ 0 (A > 0) denotes that all components of A are nonnegative (positive).
For two matrices A,B ∈ Rn×n, A ≥ B (A > B) means that A − B ≥ 0 (A − B > 0). For a matrix A = (ai j) ∈
Rn×n, |A| denotes the matrix whose components are the absolute values of the corresponding components
of A. We have |AB| ≤ |A||B| for any two matrices A and B of compatible sizes. Varga [21] showed for any
square matrices A and B, |A| ≤ B implies ρ(A) ≤ ρ(B). OLeary and White [19] showed ρ(M(ω1, ω2)) < 1
when A−1

≥ 0 and the splitting A = B(ω1, ω2) − C(ω1, ω2) is weak regular.

Theorem 2.2. Let A ∈ Rn×n be an H-matrix. Suppose A = D − L − U, where D = dia1(A), L is a strictly lower
triangular matrix, and U is a general matrix. Then, the DOS method converges to the exact solution of the linear
system (1.1) for any initial point if 0 ≤ ω1 ≤ 1 and 0 < ω2 ≤ 1.

Proof. Let M(ω1, ω2) = B−1(ω1, ω2)C(ω1, ω2). Then, it suffices to show that ρ(M(ω1, ω2)) < 1 for 0 ≤ ω1 ≤ 1
and 0 < ω2 ≤ 1. Clearly D − ω2L is an H-matrix. We can write B(ω1, ω2) and C(ω1, ω2) as follow

B(ω1, ω2) =
1

1 − ω1 + ω1ω2
D
[
D +

(1 − ω1)ω2

1 − ω1 + ω1ω2
U
]−1

(D − ω2L),

C(ω1, ω2) =
1

1 − ω1 + ω1ω2
D
[
D +

(1 − ω1)ω2

1 − ω1 + ω1ω2
U
]−1

[(1−ω2)D +ω2U]D−1[ω1D + (1−ω1)L + (1−ω1)U],

and let

B̃(ω1, ω2) = |D|
[
|D| +

(1 − ω1)ω2

1 − ω1 + ω1ω2
|U|

]−1

(|D| − ω2|L|),

C̃(ω1, ω2) = |D|
[
|D| +

(1 − ω1)ω2

1 − ω1 + ω1ω2
|U|

]−1

[(1 − ω2)|D| + ω2|U|]|D|−1[ω1|D| + (1 − ω1)|L| + (1 − ω1)|U|].

Since D − ω2L is H-matrix, we can write∣∣∣∣∣(D[
D +

(1 − ω1)ω2

1 − ω1 + ω1ω2
U
]−1

(D − ω2L)
)−1∣∣∣∣∣ ≤ |(D − ω2L)−1

|

∣∣∣∣∣D +
(1 − ω1)ω2

1 − ω1 + ω1ω2
U
∣∣∣∣∣|D−1

|

≤ 〈D − ω2L〉−1
(
|D| +

(1 − ω1)ω2

1 − ω1 + ω1ω2
|U|

)
|D|−1
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= (|D| − ω2|L|)−1
(
|D| +

(1 − ω1)ω2

1 − ω1 + ω1ω2
|U|

)
|D|−1

= B̃−1(ω1, ω2). (2.2)

Using (2.2) we can write

|M(ω1, ω2)| = |B−1(ω1, ω2)C(ω1, ω2)| ≤ B̃−1(ω1, ω2)C̃(ω1, ω2). (2.3)

Now we have B̃(ω1, ω2)− C̃(ω1, ω2) = (1−ω1 +ω1ω2)〈A〉. Since 〈A〉 = 1
1−ω1+ω1ω2

B̃(ω1, ω2)− 1
1−ω1+ω1ω2

C̃(ω1, ω2)
is a regular splitting of 〈A〉 and 〈A〉−1

≥ 0, ρ(B̃−1(ω1, ω2)C̃(ω1, ω2)) < 1. From (2.3), we conclude that
ρ(M(ω1, ω2)) < 1.

Corollary 2.2. Let A ∈Rn×n be an M-matrix. Suppose A = D−L−U, where D = dia1(A), L ≥ 0 is a strictly lower
triangular matrix, and U ≥ 0 is a general matrix. Then, the DOS method converges to the exact solution of the linear
system (1.1) for any initial vector if 0 ≤ ω1 ≤ 1 and 0 < ω2 ≤ 1.

Proof. Since A is an M-matrix, A is an H-matrix and 〈A〉 = A = D − L − U = |D| − |L| − |U|. By previous
theorem, the corollary 2.2 follows.

3. Implementation Aspects

It is well-known that the strictly diagonally dominant matrices are usually well conditioned and many
iterative methods, such as the Jacobi, the Gauss-Seidel and the SOR methods, are convergent for strictly
diagonally dominant systems. Unfortunately, in practice, most matrices of nonsingular linear systems are
not diagonally dominant. Hence, many iterative methods perform badly when apply to general matrices.
Some researches have been done to overcome the trouble by preconditioned techniques [24, 25].

As said in [25], for every nonsingular matrix A it follows immediately from the Singular Value Decom-
position (SVD) that there exist nonsingular matrices P and Q such that PAQ is strictly diagonally dominant.
A different proof of this is given in [24]. The author also showed that there exists a nonsingular matrix P
such that PA is strictly diagonally dominant. A tridiagonal matrix P is constructed such that PA is strictly
diagonally dominant for the 3-cyclic matrices as an example in [24].

As mentioned in previous section, the DOS iteration method converges unconditionally when A is
strictly diagonally dominant, for 0 ≤ ω1 ≤ 1 and 0 < ω2 ≤ 1. Now it is clear that after finding the
preconditioners P and Q such that PAQ is strictly diagonally dominant, we can apply this method for
solving

PAQy = Pb, and x = Qy,

instead of solving

Ax = b.

4. Numerical Experiments

In this section, we use some test problems to demonstrate the feasibility and effectiveness of the DOS
iteration method, when it used either as a solver or as a preconditioner for solving the system of linear
equations (1.1). We also compare DOS method with some other iterative methods as an iterative solver and
as a preconditioner for the GMRES method.

In our implementations, the initial guess is chosen to be x(0) = 0 and the iteration is terminated when
the current iterate x(k) satisfies

‖x(k)
− x(k−1)

‖2 < 10−5.
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4.1. Example descriptions
In this section we describe some numerical examples to show the performance of the DOS iteration

method. These examples are taken from the literature [4].

Example 4.1. The system of linear equations (1.1) is of the form

(ωCV + CH)x = b,

where CV and CH are the viscous and the hysteretic damping matrices, respectively, and ω is the driving
circular frequency. We take CV = 10I and CH = µK with µ a damping coefficient, and K ∈ Rn×n is the
five-point centered difference matrix approximating the negative Laplacian operator with homogeneous
Dirichlet boundary conditions, on a uniform mesh in the unit square [0, 1]×[0, 1] with the mesh-size h = 1

m+1 .
The matrix K possesses the tensor-product form K = I⊗Vm + Vm ⊗ I, with Vm = h−2tridia1(−1, 2,−1) ∈Rm×m.
Hence, K is an n × n block-tridiagonal matrix, with n = m2. In addition we set ω = π, µ = 0.02, and the
right-hand vector b to be b = (−ω2I + K + ωCV + CH)B, with B being the vector of all entries equal to 1, [4].

Example 4.2. The system of linear equations (1.1) is of the form

(I ⊗ V + V ⊗ I)x = b,

where V = tridia1(−1, 2,−1) ∈ Rm×m. We take the right-hand side vector to be

b =
[
10(I ⊗ VC + VC ⊗ I) + 9(e1eT

m + emeT
1 ) ⊗ I − (I ⊗ V + V ⊗ I)

]
B,

where VC = V − e1eT
m − emeT

1 ∈ R
m×m, and e1 and em are the first and the last unit vectors in Rm, respectively,

and B is the vector of all entries equal to 1, [4].

Example 4.3. The system of linear equations (1.1) is of the form

(K +
3 −
√

3
τ

I)x = b,

where τ is the time step-size and K is the five-point centered difference matrix approximating the negative
Laplacian operator L = −∆ with homogeneous Dirichlet boundary conditions, on a uniform mesh in the
unit square [0, 1]× [0, 1] with the mesh-size h = 1

m+1 . The matrix K ∈Rn×n possesses the tensor-product form
K = I ⊗ Vm + Vm ⊗ I, with Vm = h−2tridia1(−1, 2,−1) ∈ Rm×m. Hence, K is an n × n block-tridiagonal matrix
with n = m2, [4]. In our tests, we take τ = h. The right-hand side vector b with its jth entry b j is given by

b j =
j

τ( j + 1)2 , j = 1, 2, ...,n.

4.2. Experimental results
For the tests reported in this section, L and U are strictly lower and upper triangular matrices, respec-

tively and we use different values of ω1 and ω2 for DOS iteration method.

Let ρ(J), ρ(GS), ρ(SOR0.2), and ρ(DOS) denote the spectral radius of the iteration matrices of the Jacobi,
Gauss-Seidel, SOR0.2, and DOS iteration methods, respectively. In Table 1, we give a comparison between
the spectral radius of these methods for Example 1, and for different grids.

As it can be seen the spectral radius for DOS method for all mesh-sizes is less than one for the Jacobi,
Gauss-Seidel, and SOR0.2 methods. Note that for all cases the spectral radius increases when the size of
problem increases.
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Now we will solve Example 1, by the Jacobi, Gauss-Seidel, SOR0.2, and DOS iteration methods. Let
iter(J), iter(GS), iter(SOR0.2), and iter(DOS) denote the iteration numbers of Jacobi, Gauss-Seidel, SOR0.2,
and DOS methods, respectively. The number of required iterations for these methods is given in Table 2.

Now we solve Examples 1,2 and 3 with DOS method while ω2 = 1 is fixed and ω1 is variable. Let
error(k) = ‖b − Ax(k)

‖2, where k denotes the iteration number. The numerical results are drawn in Figure 1.

Figure 2 shows the results obtained from solving Examples 1,2 and 3 by DOS method while ω1 = 0 is
fixed and ω2 is variable.

In Figure 3, we solve Example 1 with Jacobi, Gauss-Seidel, DOS and GMRES methods while ω2 = 1 is
fixed and ω1 is variable.

In Figure 4, we solve Example 1 with Jacobi, Gauss-Seidel, DOS and GMRES methods while ω1 = 0 is
fixed and ω2 is variable.

Now we want to use the DOS preconditioner for solving Example 1. The numerical results by applying
GMRES-preconditioned Jacobi, Gauss- Seidel and DOS methods and GMRES method while ω2 = 1 is fixed
and ω1 is variable, are given in Figure 5. Also the numerical results by applying GMRES-preconditioned
Jacobi, Gauss-Seidel and DOS methods and GMRES method for ω1 = 0 and for various values of ω2 are
shown in Figure 6.

Table 1 The comparison of spectral radius

n 10 × 10 20 × 20 30 × 30 40 × 40 50 × 50
ρ(J) 0.2260 0.5231 0.7063 0.8083 0.8672
ρ(GS) 0.0511 0.2736 0.4988 0.6533 0.7520
ρ(SOR0.2) 0.8000 0.8000 0.8000 0.8000 0.8000
ρ(DOS) 0.0211 0.1632 0.3665 0.5360 0.6566

Table 2 The comparison of iteration number

n 10 × 10 20 × 20 30 × 30 40 × 40 50 × 50
iter(J) 8 14 22 33 45
iter(GS) 6 10 15 20 27
iter(SOR0.2) 46 65 92 126 163
iter(DOS) 4 6 9 13 18
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Figure 1: DOS method for solving Examples, left:Example 1, middle:Example 2, right:Example 3
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Figure 2: DOS method for solving Examples, left:Example 1, middle:Example 2, right:Example 3
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Figure 3: Some methods for solving Example 1, left: ω1 = 0, middle: ω1 = 0.25, right: ω1 = 0.50
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Figure 4: Some methods for solving Example 1, left: ω2 = 0.50, middle: ω2 = 0.75, right: ω2 = 1
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Figure 5: Some methods for solving Example 1, left: ω1 = 0, middle: ω1 = 0.25, right: ω1 = 0.50
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Figure 6: Some methods for solving Example 1, left: ω2 = 0.50, middle: ω2 = 0.75, right: ω2 = 1
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In Table 2, we have reported the iteration numbers for Jacobi, Gauss-Seidel, SOR0.2 and DOS iteration
methods, for solving Example 1. One can see that for all mesh-sizes the number of iterations for DOS
method is less than one obtained by other three methods. Also for all methods, the number of iterations
grows with the problem size. However this growth is slower for the DOS than for the other three methods.

From Figure 1, for all examples with ω2 = 1 fixed, when ω1 increases the error in a fixed iteration
increases, also. In other words, with smaller ω1 we have less error. Also, from Figure 2, for all examples
with ω1 = 0 fixed, when ω2 increases the error in a fixed iteration decreases. In other words, with larger ω1,
we have less error.

From Figure 3, we see that when ω2 = 1 is fixed and ω1 is variable, in all cases, DOS iteration method
for solving Example 1 converges faster than other methods, but with less ω1, we have better improvement.

From Figure 4, where ω1 = 0 is fixed and ω2 is variable, we can say, except for ω2 = 0.50, in two
other cases the DOS method for solving Example 1, can perform better than the other methods, in fact by
increasing in the values of the ω2, we have better results.

From Figure 5, we find that when ω2 = 1 is fixed and ω1 is variable, in all cases, DOS-preconditioned
GMRES method for solving Example 1 converges faster than other preconditioned GMRES methods, of
course with less values of ω1, we have better results.

From Figure 6, where ω1 = 0 is fixed and ω2 is variable, we can say except for ω2 = 0.50, in two other
cases the DOS-preconditioned GMRES method for solving Example 1, has less error respect to the other
preconditioned GMRES methods, and for larger values of ω2 we have less error for DOS-preconditioned
GMRES method.

5. Concluding Remarks

In this paper an iterative method for solving a system of linear equations is proposed. The powerfulness
of the new method that has some other iterative methods as its special cases, compared with some other
methods and numerical experiments showed its feasibility and effectiveness.
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