On the Non-Archimedean and Random Approximately General Additive Mappings: Direct and Fixed Point Methods

H. Azadi Kenary, M.H. Eghtesadifard

Abstract. In this paper, we prove the Hyers-Ulam stability of the following generalized additive functional equation
\[\sum_{1 \leq i < j \leq m} f \left(\frac{1}{2} x_i + \frac{1}{2} x_j + \sum_{l \neq i,j} x_l \right) = \frac{(m-1)^2}{2} \sum_{i=1}^{m} f(x_i) \]
where \(m \) is a positive integer greater than 3, in various normed spaces.

1. Introduction and Preliminaries

Let \(\Gamma^+ \) denote the set of all probability distribution functions \(F : \mathbb{R} \cup [-\infty, +\infty) \to [0, 1] \) such that \(F \) is left-continuous and nondecreasing on \(\mathbb{R} \) and \(F(0) = 0, F(+\infty) = 1 \). It is clear that the set \(D^+ = \{ F \in \Gamma^+ : l^+ F(-\infty) = 1 \} \), where \(l^+ f(x) = \lim_{t \to x^+} f(t) \), is a subset of \(\Gamma^+ \). The set \(\Gamma^+ \) is partially ordered by the usual point-wise ordering of functions, that is, \(F \leq G \) if and only if \(F(t) \leq G(t) \) for all \(t \in \mathbb{R} \). For any \(a \geq 0 \), the element \(H_a(t) \) of \(D^+ \) is defined by
\[H_a(t) = \begin{cases} 0, & \text{if } t \leq a, \\ 1, & \text{if } t > a. \end{cases} \]

A classical question in the theory of functional equations is the following: When is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation? If the problem accepts a solution, we say that the equation is stable. The first stability problem concerning group homomorphisms was raised by Ulam [45] in 1940.

In the next year, Hyers [22] gave a positive answer to the above question for additive groups under the assumption that the groups are Banach spaces. In 1978, Rassias [33] proved a generalization of Hyers' theorem for additive mappings. The result of Rassias has provided a lot of influence during the last three decades in the development of a generalization of the Hyers-Ulam stability concept. Furthermore, in 1994, a generalization of Rassias' theorem was obtained by Gavruta [20] by replacing the bound \(\epsilon(\|x\|^p + \|y\|^p) \) by a general control function \(\phi(x, y) \).

In 1897, Hensel [21] introduced a normed space which does not have the Archimedean property. It turned
out that non-Archimedean spaces have many nice applications [23, 24].
The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem ([2]–[20], [26]–[43]).
The most important examples of non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: “for \(x, y > 0\), there exists \(n \in \mathbb{N}\) such that \(x < ny\).

Example 1.1. Fix a prime number \(p\). For any nonzero rational number \(x\), there exists a unique integer \(n_x \in \mathbb{Z}\) such that \(x = \frac{a}{p^n}\), where \(a\) and \(b\) are integers not divisible by \(p\). Then \(|x|_p := p^{-n}\) defines a non-Archimedean norm on \(\mathbb{Q}\). The completion of \(\mathbb{Q}\) with respect to the metric \(d(x, y) = |x - y|_p\) is denoted by \(\mathbb{Q}_p\), which is called the \(p\)-adic number field. In fact, \(\mathbb{Q}_p\) is the set of all formal series \(x = \sum_{k \geq 0} a_k p^k\) where \(|a_k| \leq p - 1\) are integers. The addition and multiplication between any two elements of \(\mathbb{Q}_p\) are defined naturally. The norm \(|\sum_{k \geq 0} a_k p^k|_p = p^{-n}\) is a non-Archimedean norm on \(\mathbb{Q}_p\) and it makes \(\mathbb{Q}_p\) a locally compact field.

Arriola and Beyer [1] investigated the Hyers-Ulam stability of approximate additive functions \(f : \mathbb{Q}_p \to \mathbb{R}\). They showed that if \(f : \mathbb{Q}_p \to \mathbb{R}\) is a continuous function for which there exists a fixed \(c\):
\(|f(x + y) - f(x) - f(y)| \leq \epsilon\) for all \(x, y \in \mathbb{Q}_p\), then there exists a unique additive function \(T : \mathbb{Q}_p \to \mathbb{R}\) such that
\(|f(x) - T(x)| \leq \epsilon\) for all \(x \in \mathbb{Q}_p\).

However, the following example shows that the same result of Theorem 1.1 is not true in non-Archimedean normed spaces.

Example 1.2. Let \(p > 2\) and let \(f : \mathbb{Q}_p \to \mathbb{Q}_p\) be defined by \(f(x) = 2\). Then for \(\epsilon = 1\), \(|f(x + y) - f(x) - f(y)| = 1 \leq \epsilon\) for all \(x, y \in \mathbb{Q}_p\). However, the sequences \(\left\{\left(\frac{f(2^n x)}{2^n}\right)_{n=1}^{\infty}\right\}\) and \(\left\{2^n f\left(\frac{x}{2^n}\right)\right\}_{n=1}^{\infty}\) are not Cauchy. In fact, by using the fact that \(|2| = 1\), we have

\[
\left|\frac{f(2^n x)}{2^n} - \frac{f(2^{n+1} x)}{2^{n+1}}\right| = \left|2^{-n} \cdot 2 - 2^{-n(n+1)} \cdot 2\right| = |2^{-n}| = 1
\]

and

\[
\left|2^n f\left(\frac{x}{2^n}\right) - 2^{n+1} f\left(\frac{x}{2^{n+1}}\right)\right| = \left|2^n \cdot 2 - 2^{n(n+1)} \cdot 2\right| = |2^{n+1}| = 1
\]

for all \(x, y \in \mathbb{Q}_p\) and \(n \in \mathbb{N}\). Hence these sequences are not convergent in \(\mathbb{Q}_p\).

In Sections 2 and 3, we adopt the usual terminology, notions and conventions of the theory of random normed spaces as in [44].
The reader can find the definitions of continuous triangular norm, random normed spaces, non-Archimedean field and non-Archimedean normed spaces, respectively, in [2] and [3].

Theorem 1.3. [10, 11] Let \((X, d)\) be a complete generalized metric space and \(J : X \to X\) be a strictly contractive mapping with Lipschitz constant \(L < 1\). Then, for all \(x \in X\), either

\[
d(\sum_{1 \leq i < j \leq m} f\left(\frac{x_i + x_j}{2}\right) + \sum_{i=1, k \neq i}^{m-2} x_k) = \frac{(m - 1)^2}{2} \sum_{i=1}^{m} f(x_i)
\]

for all nonnegative integers \(n\) or there exists a positive integer \(n_0\) such that
(a) \(d(f^n x, f^{n+1} x) < \infty\) for all \(n \geq n_0\);
(b) the sequence \(\{f^n x\}\) converges to a fixed point \(y^*\) of \(J\);
(c) \(y^*\) is the unique fixed point of \(J\) in the set \(Y = \{y \in X : d(f^n x, y) < \infty\}\);
(d) \(d(y, y^*) \leq \frac{1}{1-L} d(y, f y)\) for all \(y \in Y\).

In this paper, we prove the Hyers-Ulam stability of the following functional equation:

\[
\sum_{1 \leq i < j \leq m} f\left(\frac{x_i + x_j}{2}\right) + \sum_{i=1, k \neq i}^{m-2} x_k = \frac{(m - 1)^2}{2} \sum_{i=1}^{m} f(x_i)
\]
in non-Archimedean and random normed spaces. First, we introduce the following lemma due to A. Najati and A. Ramjbar [27] with \(n = 3 \) in (2).

Lemma 1.4. Let \(X \) and \(Y \) be linear spaces. A mapping \(f : X \to Y \) satisfies the equation
\[
f\left(\frac{x + y}{2} + z\right) + f\left(\frac{x + z}{2} + y\right) + f\left(\frac{y + z}{2} + x\right) = 2[f(x) + f(y) + f(z)]
\] (3)
for all \(x, y, z \in X \) if and only if \(f \) is additive.

Secondly, we introduce the following lemma due to J.M. Rassias and H.M. Kim [32].

Lemma 1.5. Let \(X \) and \(Y \) be linear spaces and let \(m \geq 3 \) be a fixed positive integer. A mapping \(f : X \to Y \) satisfies the equation
\[
\sum_{1 \leq i < j \leq m} f\left(x_i + x_j + \sum_{l=1, l \neq i, j}^{m-2} x_l\right) = \frac{(m - 1)^2}{2} \sum_{i=1}^{m} f(x_i)
\]
for all \(x_1, x_2, \ldots, x_m \in X \) if and only if \(f \) is an additive mapping.

In this section, using the fixed point alternative approach, we prove the Hyers-Ulam stability of functional equation (2) in non-Archimedean normed spaces. Throughout this section, assume that \(X \) is a non-Archimedean normed space and that \(Y \) is a complete non-Archimedean normed space. Also \(|m - 1| \neq 1 \).

Theorem 2.1. Let \(\zeta : X^m \to [0, \infty) \) be a function such that there exists \(L < 1 \) with
\[
|m - 1|L\zeta\left(\frac{x}{m - 1}, \frac{x}{m - 1}, \ldots, \frac{x}{m - 1}\right) \leq L\zeta(x_1, x_2, \ldots, x_m)
\] (4)
for all \(x_1, x_2, \ldots, x_m \in X \). If \(f : X \to Y \) is a mapping satisfying
\[
\left\|\sum_{1 \leq i < j \leq m} f\left(x_i + x_j + \sum_{l=1, l \neq i, j}^{m-2} x_l\right) - \frac{(m - 1)^2}{2} \sum_{i=1}^{m} f(x_i)\right\| \leq \zeta(x_1, x_2, \ldots, x_m)
\] (5)
for all \(x_1, x_2, \ldots, x_m \in X \), then there is a unique additive mapping \(A : X \to Y \) such that
\[
\|f(x) - A(x)\| \leq \frac{2L\zeta(x_1, x_2, \ldots, x)}{|m||m - 1|^2 - |m||m - 1|^2L}.
\] (6)

Proof. Putting \(x_1 = \ldots = x_m = x \) in (5), we have
\[
\left\|\frac{m!}{2!(m-2)!} f((m - 1)x) - \frac{m(m - 1)^2}{2} f(x)\right\| \leq \zeta(x, x, \ldots, x)
\] (7)
for all \(x \in X \). Replacing \(x \) by \(\frac{x}{m - 1} \) in (7), we obtain
\[
\left\|(m - 1)f\left(\frac{x}{m - 1}\right) - f(x)\right\| \leq \frac{2}{|m^2 - m|} \zeta\left(\frac{x}{m - 1}, \frac{x}{m - 1}, \ldots, \frac{x}{m - 1}\right)
\]
\[
\leq \frac{2L\zeta(x_1, x_2, \ldots, x)}{|m^2 - m||m - 1|}.
\] (8)
for all \(x \in X \). Consider the set \(S' := \{ g : X \to Y \} \) and the generalized metric \(d' \) in \(S' \) defined by

\[
d'(g, h) = \inf \{ \mu \in \mathbb{R}^+ : ||g(x) - h(x)|| \leq \mu \zeta(x, x, \cdots, x), \forall x \in X \},
\]

where \(\inf \emptyset = +\infty \). It is easy to show that \((S', d')\) is complete (see [26], Lemma 2.1). Now, we consider a linear mapping \(J' : S' \to S' \) such that

\[
J'h(x) := (m - 1)h\left(\frac{x}{m - 1} \right)
\]

for all \(x \in X \). Let \(g, h \in S' \) be arbitrary. Denote \(\epsilon = d'(g, h) \). We will show that \(d'(Jg, Jh) \leq \epsilon L \). Since \(||g(x) - h(x)|| \leq \epsilon \zeta(x, x, \cdots, x) \) for all \(x \in X \), we get

\[
||Jg(x) - Jh(x)|| = \|(m - 1)g\left(\frac{x}{m - 1} \right) - (m - 1)h\left(\frac{x}{m - 1} \right)\|
\]

\[
\leq |m - 1|\epsilon \zeta\left(\frac{x}{m - 1}, \frac{x}{m - 1}, \cdots, \frac{x}{m - 1} \right)
\]

\[
\leq |m - 1|\epsilon \zeta(x, x, \cdots, x)
\]

for all \(x \in X \). Thus \(d'(g, h) = \epsilon \) implies that \(d'(Jg, Jh) \leq \epsilon L \). This means that \(d'(Jg, Jh) \leq \epsilon Ld'(g, h) \) for all \(g, h \in S' \). It follows from (8) that \(d'(f, f') \leq \frac{|2L|}{|m||m - 1|^2 - |m - 1|^2} \). By Theorem 1.3, there exists a mapping \(A : X \to Y \) satisfying the following:

1. \(A \) is a fixed point of \(f' \), that is,
 \[
 A\left(\frac{x}{m - 1} \right) = \frac{A(x)}{m - 1}
 \]

 for all \(x \in X \). The mapping \(A \) is a unique fixed point of \(f' \) in the set \(\Omega = \{ h \in S' : d'(g, h) < \infty \} \). This implies that \(A \) is a unique mapping satisfying (11) such that there exists \(\mu \in (0, \infty) \) satisfying \(||f(x) - A(x)|| \leq \mu \zeta(x, x, \cdots, x) \) for all \(x \in X \).

2. \(d'(f^n f, A) \to 0 \) as \(n \to \infty \). This implies the equality

 \[
 \lim_{n \to \infty} (m - 1)^n f\left(\frac{x}{(m - 1)^n} \right) = A(x)
 \]

 for all \(x \in X \).

3. \(d'(f, A) \leq \frac{d'(f, f')}{{1 - L}} \) with \(f \in \Omega \), which implies the inequality

 \[
 d'(f, A) \leq \frac{|2L|}{|m||m - 1|^2 - |m - 1|^2}.
 \]

This implies the inequality (6) holds. By (5), we have

\[
\left\| \sum_{1 \leq i < j \leq m} A\left(\frac{x_i + x_j}{2} + \sum_{l=1, l \neq i, j}^{m-2} x_l \right) - \frac{(m - 1)^2}{2} \sum_{i=1}^{m} A(x_i) \right\|
\]

\[
= \lim_{n \to \infty} \left\| (m - 1)^n \left[\sum_{1 \leq i < j \leq m} f\left(\frac{x_i + x_j}{2(m - 1)^n} + \sum_{l=1, l \neq i, j}^{m-2} \frac{x_l}{(m - 1)^n} \right) - \frac{(m - 1)^2}{2} \sum_{i=1}^{m} f\left(\frac{x_i}{(m - 1)^n} \right) \right] \right\|
\]

\[
\leq \lim_{n \to \infty} |m - 1|^n \epsilon \zeta\left(\frac{x_1}{(m - 1)^n}, \frac{x_2}{(m - 1)^n}, \cdots, \frac{x_m}{(m - 1)^n} \right) \]

\[
\leq \lim_{n \to \infty} |m - 1|^n \frac{\epsilon \zeta(x_1, x_2, \cdots, x_m)}{|m - 1|^n}
\]
for all $x_1, x_2, \cdots, x_m \in X$ and $n \geq 1$ and so
\[
\left\| \sum_{1 \leq i < j \leq m} A \left(\frac{x_i + x_j}{2} + \sum_{l=1, l \neq i, j}^{m-2} x_l \right) - \frac{(m-1)^2}{2} \sum_{i=1}^{m} A(x_i) \right\| = 0
\]
for all $x_1, x_2, \cdots, x_m \in X$. On the other hand
\[
(m-1)A \left(\frac{x}{m-1} \right) - A(x) = \lim_{n \to \infty} (m-1)^{n+1} f \left(\frac{x}{(m-1)^n} \right) - \lim_{n \to \infty} (m-1)^n f \left(\frac{x}{(m-1)^n} \right) = 0.
\]
Therefore, the mapping $A : X \to Y$ is additive. This completes the proof. \hfill \Box

Corollary 2.2. Let $\theta \geq 0$ and p be a real number with $0 < p < 1$. Let $f : X \to Y$ be a mapping satisfying
\[
\left\| \sum_{1 \leq i < j \leq m} f \left(\frac{x_i + x_j}{2} + \sum_{l=1, l \neq i, j}^{m-2} x_l \right) - \frac{(m-1)^2}{2} \sum_{i=1}^{m} f(x_i) \right\| \leq \theta \left(\sum_{i=1}^{m} \|x_i\|^p \right)
\]
for all $x_1, x_2, \cdots, x_m \in X$. Then the limit $A(x) = \lim_{n \to \infty} (m-1)^n f \left(\frac{x}{(m-1)^n} \right)$ exists for all $x \in X$ and $A : X \to Y$ is a unique additive mapping such that
\[
\| f(x) - A(x) \| \leq \frac{m^2 |m-1| \theta \|x\|^p}{m(m-1)^{p+2} - |m-1|^2}
\]
for all $x \in X$.

Proof. The proof follows from Theorem 2.1 if we take $\zeta(x_1, x_2, \cdots, x_m) = \theta \left(\sum_{i=1}^{m} \|x_i\|^p \right)$ for all $x_1, x_2, \cdots, x_m \in X$. In fact, if we choose $L = |m-1|^{2-p}$, then we get the desired result. \hfill \Box

Theorem 2.3. Let $\zeta : X^m \to [0, \infty)$ be a function such that there exists an $L < 1$ with
\[
\zeta(x_1, x_2, \cdots, x_m) \leq |m-1|L \zeta \left(\frac{x_1}{m-1}, \frac{x_2}{m-1}, \cdots, \frac{x_m}{m-1} \right)
\]
for all $x_1, x_2, \cdots, x_m \in X$. Let $f : X \to Y$ be a mapping satisfying (5). Then there is a unique additive mapping $A : X \to Y$ such that
\[
\| f(x) - A(x) \| \leq \frac{2 \zeta \left(x, x, \cdots, x \right)}{|m-1|^2 - m|m-1|^2L}.
\]

Proof. It follows from (7) that
\[
\left\| f(x) - \frac{f((m-1)x)}{m-1} \right\| \leq \frac{2 \zeta \left(x, x, \cdots, x \right)}{|m-1|^2}
\]
for all $x \in X$. Let (S', d') be the generalized metric space defined in the proof of Theorem 2.1. Now, we consider a linear mapping $f : S' \to S^*$ such that
\[
f(x) := \frac{1}{m-1} f((m-1)x)
\]
for all $x \in X$. Let $g, h \in S'$ be arbitrary. Denote $e = d'(g, h)$. We will show that $d'(fg, fhl) \leq Le$. Since $\|g(x) - h(x)\| \leq e \zeta \left(x, x, \cdots, x \right)$ for all $x \in X$, we have
\[
\|fg(x) - fhl(x)\| \leq \frac{e \zeta \left((m-1)x, (m-1)x, \cdots, (m-1)x \right)}{|m-1|^2} \leq \frac{e \zeta \left((m-1)x, (m-1)x, \cdots, (m-1)x \right)}{|m-1|^2} \leq \frac{|m-1| \zeta \left(x, x, \cdots, x \right)}{|m-1|}
\]
for all \(x \in X \). Thus \(d'(g, h) = \epsilon \) implies that \(d'(g, h) \leq L \epsilon \). This means that \(d'(g, h) \leq Ld'(g, h) \) for all \(g, h \in S \). It follows from \((16) \) that

\[
d'(f, f) \leq \frac{|2|}{m(m-1)^2}.
\]

By Theorem 1.3, there exists a mapping \(A : X \to Y \) satisfying the following:

1. \(A \) is a fixed point of \(f \), that is,
 \[A((m-1)x) = (m-1)A(x) \]
 for all \(x \in X \). The mapping \(A \) is a unique fixed point of \(f \) in the set \(\Omega = \{ h \in S^* : d'(g, h) < \infty \} \). This implies that \(A \) is a unique mapping satisfying \((19) \) such that there exists \(\mu \in (0, \infty) \) satisfying \(||f(x) - A(x)|| \leq \mu \zeta(x, x, \cdots, x) \) for all \(x \in X \).

2. \(d'(f^n f, A) \to 0 \) as \(n \to \infty \). This implies the equality \(\lim_{n \to \infty} f((m-1)^n x) = A(x) \) for all \(x \in X \).

3. \(d'(f, A) \leq \frac{d'(f, f)}{1-L} \) with \(f \in \Omega \), which implies the inequality
 \[
d'(f, A) \leq \frac{|2|}{m(m-1)^2 - |m||m-1|^2 L}.
\]
 This implies that the inequality \((15) \) holds. The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let \(\theta \geq 0 \) and \(p \) be a real number with \(p > 1 \). Let \(f : X \to Y \) be a mapping satisfying \((13) \). Then the limit \(A(x) = \lim_{n \to \infty} f((m-1)^n x) / (m-1)^n \) exists for all \(x \in X \) and \(A : X \to Y \) is a unique additive mapping such that

\[
||f(x) - A(x)|| \leq \frac{m|2m-2|\theta||x||p}}{|m|-1|\theta||x||p}}
\]

for all \(x \in X \).

Proof. The proof follows from Theorem 2.3 if we take \(\zeta(x_1, x_2, \cdots, x_m) = \theta \left(\sum_{i=1}^{m} ||x_i||^p \right) \) for all \(x_1, x_2, \cdots, x_m \in X \).

In fact, if we choose \(L = ||m-1||^{-1} \), then we get the desired result.

3. Non-Archimedean stability of the functional equation (2): direct method

In this section, we prove the Hyers-Ulam stability of the functional equation \((2) \) in non-Archimedean space. Throughout this section, assume that \(G \) is an additive semigroup and that \(X \) is a complete non-Archimedean space.

Theorem 3.1. Let \(\zeta : C^m \to [0, +\infty) \) be a function such that

\[
\lim_{n \to \infty} |m-1|^n \zeta \left(\frac{x_1}{(m-1)^n}, \frac{x_2}{(m-1)^n}, \cdots, \frac{x_m}{(m-1)^n} \right) = 0
\]

for all \(x_1, x_2, \cdots, x_m \in G \). Suppose that, for any \(x \in G \), the limit

\[
\psi(x) = \lim_{n \to \infty} \max_{0 \leq k < n} \left(|m-1|^k \zeta \left(\frac{x}{(m-1)^k}, \frac{x}{(m-1)^k}, \cdots, \frac{x}{(m-1)^k} \right) \right)
\]

exists and \(f : G \to X \) is a mapping satisfying

\[
\left\| \sum_{1 \leq i < j \leq m} f \left(\frac{x_i + x_j}{2} + \sum_{l=1, l \neq i, j}^{m-2} x_l \right) - \frac{(m-1)^2}{2} \sum_{l=1}^{m} f(x_l) \right\| \leq \zeta(x_1, x_2, \cdots, x_m).
\]

(23)
Then, for all \(x \in G \), \(A(x) := \lim_{n \to \infty} (m - 1)^n f \left(\frac{x}{(m - 1)^n} \right) \) exists and satisfies the

\[
\| f(x) - T(x) \| \leq \frac{2|\Psi(x)|}{|m^2 - m|}.
\] (24)

Moreover, if

\[
\lim \lim_{j \to \infty} \max_{k \geq c_n+j} \left\{ m - 1 \right\} \zeta \left(\frac{x}{(m - 1)^{k+1}}, \frac{x}{(m - 1)^{k+1}}, \ldots, \frac{x}{(m - 1)^{k+1}} \right) = 0,
\] (25)

then \(T \) is the unique additive mapping satisfying (24).

Proof. By (8), we get

\[
\left\| (m - 1)f \left(\frac{x}{m - 1} \right) - f(x) \right\| \leq \frac{2|\Psi(x)|}{|m^2 - m|} \zeta \left(\frac{x}{m - 1}, \frac{x}{m - 1}, \ldots, \frac{x}{m - 1} \right).
\] (26)

for all \(x \in G \). Replacing \(x \) by \(\frac{x}{(m - 1)^n} \) in (26), we obtain

\[
\left\| (m - 1)^{n+1}f \left(\frac{x}{(m - 1)^n} \right) - (m - 1)^n f \left(\frac{x}{(m - 1)^n} \right) \right\|
\leq \frac{2|\Psi(1)|}{|m^2 - m|} \zeta \left(\frac{x}{(m - 1)^{n+1}}, \frac{x}{(m - 1)^{n+1}}, \ldots, \frac{x}{(m - 1)^{n+1}} \right).
\] (27)

Thus, it follows from (21) and (27) that the sequence \(\left\{ (m - 1)^n f \left(\frac{x}{(m - 1)^n} \right) \right\}_{n \geq 1} \) is a Cauchy sequence. Since \(X \) is complete, it follows that \(\left\{ (m - 1)^n f \left(\frac{x}{(m - 1)^n} \right) \right\}_{n \geq 1} \) is convergent. Set \(T(x) := \lim_{n \to \infty} (m - 1)^n f \left(\frac{x}{(m - 1)^n} \right) \).

By induction, one can show that

\[
\left\| (m - 1)^n f \left(\frac{x}{(m - 1)^n} \right) - f(x) \right\| \leq \frac{2|\Psi(1)|}{|m^2 - m|} \max_{0 \leq k \leq n} \left\{ m - 1 \right\} \zeta \left(\frac{x}{(m - 1)^{k+1}}, \frac{x}{(m - 1)^{k+1}}, \ldots, \frac{x}{(m - 1)^{k+1}} \right)
\] (28)

for all \(n \geq 1 \) and \(x \in G \). By taking \(n \to \infty \) in (28) and using (22), one obtains (24). By (21) and (23), we get

\[
\left\| \sum_{1 \leq i < j \leq m} A \left(\frac{x_i + x_j}{2} + \sum_{i=1 \neq k}^{m-2} x_k \right) - \frac{(m - 1)^2}{2} \sum_{i=1}^{m} A(x_i) \right\|
\leq \lim_{n \to \infty} \left\| (m - 1)^n \left\| \sum_{1 \leq i < j \leq m} f \left(\frac{x_i + x_j}{2(m - 1)^n} + \sum_{i=1 \neq k}^{m-2} \frac{x_k}{(m - 1)^n} - \frac{(m - 1)^2}{2} \sum_{i=1}^{m} f \left(\frac{x_i}{(m - 1)^n} \right) \right\| \right\|
\leq \lim_{n \to \infty} \left\| (m - 1)^n \zeta \left(\frac{x_1}{(m - 1)^n}, \frac{x_2}{(m - 1)^n}, \ldots, \frac{x_m}{(m - 1)^n} \right) \right\|
= 0
\]

for all \(x_1, x_2, \ldots, x_m \in G \) and \(n \geq 1 \). Therefore, the mapping \(T : G \to X \) satisfies (2).
To prove the uniqueness property of \(A \), let \(L \) be another mapping satisfying (24). Then we have
\[
\|A(x) - L(x)\| = \lim_{j \to \infty} |m - 1| \| A \left(\frac{x}{(m - 1)^j} \right) - L \left(\frac{x}{(m - 1)^j} \right) \|
\leq \lim_{j \to \infty} |m - 1| \max_{1 \leq i \leq m} \left\{ \| A \left(\frac{x}{(m - 1)^j} \right) - f \left(\frac{x}{(m - 1)^j} \right) \|, \| f \left(\frac{x}{(m - 1)^j} \right) - L \left(\frac{x}{(m - 1)^j} \right) \| \right\}
\leq \frac{2}{{|m^2 - m|}} \lim_{n \to \infty} \max_{1 \leq k \leq n} \left\{ |m - 1| \kappa \left(\frac{x}{(m - 1)^{j + 1}} \right), \frac{x}{(m - 1)^{j + 1}}, \cdots, \frac{x}{(m - 1)^{j + 1}} \right\}
= 0
\]
for all \(x \in G \). Therefore, \(A = L \). This completes the proof. \(\Box \)

Corollary 3.2. Let \(\xi : [0, \infty) \to [0, \infty) \) be a function satisfying
\[
\xi \left(\frac{t}{(m - 1)} \right) \leq \xi \left(\frac{1}{(m - 1)} \right) \xi (t), \quad \xi \left(\frac{1}{(m - 1)} \right) \leq \frac{1}{(m - 1)}
\]
for all \(t \geq 0 \). Let \(\kappa > 0 \) and \(f : G \to X \) be a mapping such that
\[\tag{29}
\left\| \sum_{1 \leq k \leq m} f \left(\frac{x_k + x_j}{2} + \sum_{i=1}^{m-2} x_i \right) - \frac{(m - 1)^2}{2} \sum_{i=1}^{m} f(x_i) \right\| \leq \kappa \left(\sum_{i=1}^{m} \xi (|x_i|) \right)
\]
for all \(x_1, x_2, \cdots, x_m \in G \). Then there exists a unique additive mapping \(A : G \to X \) such that
\[
\|f(x) - A(x)\| \leq \frac{m |2| \kappa \xi (|x|)}{|m^2 - m| |m - 1|}.
\]

Proof. If we define \(\zeta : G^m \to [0, \infty) \) by \(\zeta (x_1, x_2, \cdots, x_m) := \kappa \left(\sum_{i=1}^{m} \xi (|x_i|) \right) \), then we have
\[
\lim_{n \to \infty} |m - 1|^n \zeta \left(\frac{x}{(m - 1)^n}, \frac{x}{(m - 1)^n}, \cdots, \frac{x}{(m - 1)^n} \right)
\leq \lim_{n \to \infty} \left[|m - 1| \zeta \left(\frac{1}{(m - 1)} \right) \right]^n \kappa \left(\sum_{i=1}^{m} \xi (|x_i|) \right) = 0
\]
for all \(x_1, x_2, \cdots, x_m \in G \). On the other hand, for all \(x \in G \),
\[
\Psi (x) = \lim_{n \to \infty} \max_{1 \leq k \leq m} \left\{ |m - 1|^k \zeta \left(\frac{x}{(m - 1)^{k+1}}, \frac{x}{(m - 1)^{k+1}}, \cdots, \frac{x}{(m - 1)^{k+1}} \right) \right\}
= \zeta \left(\frac{x}{m - 1}, \frac{x}{m - 1}, \cdots, \frac{x}{m - 1} \right)
= \frac{m \kappa \xi (|x|)}{|m - 1|}
\]
exists. Also, we have
\[
\lim_{j \to \infty} \max_{1 \leq k \leq m} \left\{ |m - 1|^k \zeta \left(\frac{x}{(m - 1)^{k+1}}, \frac{x}{(m - 1)^{k+1}}, \cdots, \frac{x}{(m - 1)^{k+1}} \right) \right\}
= \lim_{j \to \infty} |m - 1|^j \zeta \left(\frac{x}{(m - 1)^{j+1}}, \frac{x}{(m - 1)^{j+1}}, \cdots, \frac{x}{(m - 1)^{j+1}} \right)
= 0.
\]
Thus, applying Theorem 3.1, we have the conclusion. This completes the proof. \(\Box \)
Theorem 3.3. Let $\zeta : \mathbb{G}^m \to [0, +\infty)$ be a function such that

$$\lim_{n \to \infty} \frac{\zeta((m-1)^n x_1, (m-1)^n x_2, \ldots, (m-1)^n x_m)}{|m-1|^n} = 0$$

(30)

for all $x_1, x_2, \ldots, x_m \in \mathbb{G}$. Suppose that, for any $x \in \mathbb{G}$, the limit

$$\Psi(x) = \lim_{n \to \infty} \max_{0 \leq k \leq n} \left\{ \zeta((m-1)^k x_1, (m-1)^k x_2, \ldots, (m-1)^k x) \right\}$$

(31)

exists and $f : \mathbb{G} \to \mathbb{X}$ is a mapping satisfying (23), then, the limit $T(x) := \lim_{n \to \infty} \frac{f((m-1)^n x)}{(m-1)^n}$ exists for all $x \in \mathbb{G}$ and satisfies the

$$\|f(x) - T(x)\| \leq \frac{2\|\Psi(x)\|}{\|m\|m-1}.$$

(32)

Moreover, if

$$\lim_{n \to \infty} \lim_{n \to \infty} \max_{0 \leq k \leq n} \left\{ \zeta((m-1)^k x_1, (m-1)^k x_2, \ldots, (m-1)^k x) \right\} = 0,$$

(33)

then T is the unique mapping satisfying (32).

Proof. By (7), we have

$$\left\| f(x) - \frac{f((m-1)x)}{m-1} \right\| \leq \frac{2\|\zeta(x, x, \ldots, x)\|}{\|m\|m-1^2}$$

(34)

for all $x \in \mathbb{G}$. Replacing x by $(m-1)^n x$ in (34), we obtain

$$\left\| f((m-1)^n x) - f((m-1)^{n+1} x) \right\| \leq \frac{2\|\zeta((m-1)^n x, \ldots, (m-1)^n x)\|}{\|m\|m-1^{n+2}}.$$

(35)

Thus it follows from (30) and (35) that the sequence $\left\{ \frac{f((m-1)^n x)}{(m-1)^n} \right\}_{n \geq 1}$ is convergent. Set $T(x) := \lim_{n \to \infty} \frac{f((m-1)^n x)}{(m-1)^n}$. On the other hand, it follows from (35) that

$$\left\| \frac{f((m-1)^p x)}{(m-1)^p} - \frac{f((m-1)^{p+1} x)}{(m-1)^{p+1}} \right\| \leq \frac{2}{\|m\|m-1} \max \left\{ \frac{\zeta((m-1)^k x, (m-1)^k x_2, \ldots, (m-1)^k x)}{|m-1|^k+1} : p \leq k < q \right\}$$

for all $x \in \mathbb{G}$ and all integers $p, q \geq 0$ with $q > p \geq 0$. Letting $p = 0$, taking $q \to \infty$ in the last inequality and using (31), we obtain (32).

The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof. \square
Corollary 3.4. Let \(\xi : [0, \infty) \to [0, \infty) \) be a function satisfying
\[
\xi((m-1)t) \leq \xi((m-1)\xi(t)), \quad \xi((m-1)) < |m-1|
\]
for all \(t \geq 0 \). Let \(\kappa > 0 \) and \(f : G \to X \) be a mapping satisfying (29). Then there exists a unique additive mapping \(A : G \to X \) such that
\[
\|f(x) - A(x)\| \leq \frac{|\kappa| \left[\xi(|x|) \right]^m}{m|m-1|^2}.
\]

Proof. If we define \(\zeta : G^m \to [0, \infty) \) by \(\zeta(x_1, x_2, \ldots, x_m) := \kappa \left(\prod_{i=1}^{m} \xi(|x_i|) \right) \) and apply Theorem 3.3, then we get the conclusion. \(\Box \)

Throughout this section, using the fixed point alternative approach, we prove Hyers-Ulam stability of functional equation (2) in random normed spaces.

Theorem 4.1. Let \(X \) be a linear space, \((Y, \mu, T_s)\) be a complete RN-space and \(\Phi \) be a mapping from \(X_m \) to \(D^+ \) \((\Phi(x_1, \cdots, x_m) \) is denoted by \(\Phi_{x_1, \cdots, x_m} \) such that there exists \(0 < \alpha < \frac{1}{2m} \) such that
\[
\Phi_{(m-1)x_1, (m-1)x_2, \cdots, (m-1)x_m}(t) \leq \Phi_{x_1, x_2, \cdots, x_m}(at) \quad (36)
\]
for all \(x_1, x_2, \cdots, x_m \in X \) and \(t > 0 \). Let \(f : X \to Y \) be a mapping satisfying
\[
\mu \sum_{i=0}^{m-1} \left(\frac{x_{i+1}^{2} + \sum_{k=0}^{m-2} x_{i}^{t}}{m} \right) f(x_{i}) (t) \geq \Phi_{x_1, x_2, \cdots, x_m}(t) \quad (37)
\]
for all \(x_1, x_2, \cdots, x_m \in X \) and \(t > 0 \). Then, for all \(x \in X \)
\[
A(x) := \lim_{m \to \infty} (m-1)^{m} f \left(\frac{x}{(m-1)^{m}} \right)
\]
exists and \(A : X \to Y \) is a unique additive mapping such that
\[
\mu f(x) - A(x) (t) \geq \Phi_{x_1, x_2, \cdots, x_m} \left(\frac{((m^{2} - m) - m(m-1)^{2} \alpha) t}{2m} \right) \quad (38)
\]
for all \(x \in X \) and \(t > 0 \).

Proof. Putting \(x_1 = \cdots = x_m = x \) in (37), we obtain
\[
\mu f(x) - A(x) (t) \geq \Phi_{x_1, x_2, \cdots, x_m} (t) \quad (39)
\]
for all \(x \in X \) and \(t > 0 \). Consider the set \(S := [g : X \to Y] \) and the generalized metric \(d \) in \(S \) defined by
\[
d(f, g) = \inf_{t \in [0, \infty)} \left\{ \mu f(x) - h(y)(t) \geq \Phi_{x_1, x_2, \cdots, x_m} (t), \forall x \in X, t > 0 \right\},
\]
where \(\inf \emptyset = +\infty \). It is easy to show that \((S, d)\) is complete (see [26], Lemma 2.1).

Now, we consider a linear mapping \(J : (S, d) \to (S, d) \) such that \(Jh(x) := (m-1)h \left(\frac{x}{(m-1)^{m}} \right) \) for all \(x \in X \).

First, we prove that \(J \) is a strictly contractive mapping with the Lipschitz constant \((m-1)\alpha \).
In fact, let \(g, h \in S \) be such that \(d(g, h) < \epsilon \). Then we have \(\mu_{f(x)-h(x)}(\epsilon t) \geq \Phi_{x, x, \cdots, x}(t) \) for all \(x \in X \) and \(t > 0 \) and so

\[
\mu_{f(x)-h(x)}((m-1)\alpha t) = \mu_{\mu((m-1)\alpha t)-h((m-1)\alpha t)}((m-1)\alpha t) \\
= \mu_{\mu((m-1)\alpha t)-h((m-1)\alpha t)}(\alpha t) \\
\geq \Phi_{x, x, \cdots, x}(\alpha t) \\
\geq \Phi_{x, x, \cdots, x}(t)
\]

for all \(x \in X \) and \(t > 0 \). Thus \(d(g, h) < \epsilon \) implies that \(d(Jg, Jh) < (m-1)\alpha \epsilon \). This means that \(d(Jg, Jh) \leq (m-1)\alpha d(g, h) \) for all \(g, h \in S \). It follows from (39) that

\[
\mu_{f(x)-(m-1)/((m-1)\alpha t)}(t) \geq \Phi_{x, x, \cdots, x} \left(\frac{m(m-1)t}{2} \right) \\
\geq \Phi_{x, x, \cdots, x} \left(\frac{m(m-1)t}{2\alpha} \right).
\]

(40)

So \(d(f, f) \leq \frac{2\alpha}{m(m-1)} \). By Theorem 1.3, there exists a mapping \(A : X \to Y \) satisfying the following:

1. \(A \) is a fixed point of \(f \), that is,

\[
A \left(\frac{x}{m-1} \right) = \frac{1}{m-1} A(x)
\]

(41)

for all \(x \in X \). The mapping \(A \) is a unique fixed point of \(f \) in the set \(\Omega = \{ h \in S : d(g, h) < \infty \} \). This implies that \(A \) is a unique mapping satisfying (41) such that there exists \(u \in (0, \infty) \) satisfying \(\mu_{f(x)-A(x)}(ut) \geq \Phi_{x, x, \cdots, x}(t) \) for all \(x \in X \) and \(t > 0 \).

2. \(d(f, A) \to 0 \) as \(n \to \infty \). This implies the equality

\[
\lim_{n \to \infty} (m-1)^n f \left(\frac{x}{(m-1)^n} \right) = A(x)
\]

for all \(x \in X \).

3. \(d(f, A) \leq \frac{d(f, f)}{1 - (m-1)\alpha} \) with \(f \in \Omega \), which implies the inequality

\[
d(f, A) \leq \frac{2\alpha}{(m^2 - m) - m(m-1)^2 \alpha}
\]

and so

\[
\mu_{f(x)-A(x)} \left(\frac{2\alpha t}{(m^2 - m) - m(m-1)^2 \alpha} \right) \geq \Phi_{x, x, \cdots, x}(t)
\]

for all \(x \in X \) and \(t > 0 \). This implies that the inequality (38) holds. Now, we have

\[
\mu_{(m-1)^n} \left[\sum_{x_1, x_2, \cdots, x_m \in X} f \left(\frac{x_1}{(m-1)^n}, \frac{x_2}{(m-1)^n}, \cdots, \frac{x_m}{(m-1)^n} \right) \right] (t) \\
\geq \Phi_{x_1, x_2, \cdots, x_m} \left(\frac{t}{(m-1)^n} \right)
\]

for all \(x_1, x_2, \cdots, x_m \in X, t > 0 \) and \(n \geq 1 \) and so, from (36), it follows that

\[
\Phi_{x_1, x_2, \cdots, x_m} \left(\frac{t}{(m-1)^n} \right) \geq \Phi_{x_1, x_2, \cdots, x_m} \left(\frac{t}{(m-1)^n} \alpha^n \right)
\]
Since $\lim_{n\to\infty} \Phi_{x_1,x_2,\ldots,x_m}(t) = 1$ for all $x_1, x_2, \ldots, x_m \in X$ and $t > 0$, we have
\[
\mu \sum_{i_1 < \cdots < i_m} A\left(\sum_{i_1}^{n_i} x_{i_1} + \sum_{i_1 < \cdots < i_m} x_{i_m}\right) \to 1 \mbox{ for all } x_1, x_2, \ldots, x_m \in X \mbox{ and } t > 0.
\]

for all $x_1, x_2, \ldots, x_m \in X$ and $t > 0$. Thus the mapping $A : X \to Y$ satisfies (2).

On the other hand
\[
A((m-1)x) - (m-1)A(x) = (m-1)\left[\lim_{n \to \infty} (m-1)^{-1} f\left(\frac{x}{(m-1)^{n-1}}\right) - \lim_{n \to \infty} (m-1)^n f\left(\frac{x}{(m-1)^n}\right)\right] = 0.
\]

This completes the proof. \(\square\)

Corollary 4.2. Let X be a real normed space, $\theta \geq 0$ and r be a real number with $r > 1$. Let $f : X \to Y$ be a mapping satisfying
\[
\mu \sum_{i_1 < \cdots < i_m} A\left(\sum_{i_1}^{n_i} x_{i_1} + \sum_{i_1 < \cdots < i_m} x_{i_m}\right) \to \frac{t}{t + \theta\left(\sum_{i=1}^{n_m} \|x_i\|^r\right)} \mbox{ for all } x_1, x_2, \ldots, x_m \in X \mbox{ and } t > 0.
\]

for all $x_1, x_2, \ldots, x_m \in X$. It follows from (37) that
\[
\Phi_{x_1}^{s_1}, \ldots, x_m^{s_m}, \mu \sum_{i_1 < \cdots < i_m} A\left(\sum_{i_1}^{n_i} x_{i_1} + \sum_{i_1 < \cdots < i_m} x_{i_m}\right) \to \frac{t}{t + \theta\left(\sum_{i=1}^{n_m} \|x_i\|^r\right)} \mbox{ for all } x_1, x_2, \ldots, x_m \in X \mbox{ and } t > 0.
\]

for all $x_1, x_2, \ldots, x_m \in X$ and $t > 0$. It follows from (44) that
\[
\frac{\mu}{\sum_{i_1 < \cdots < i_m} f(x)} \geq \Phi_{x_1}^{s_1}, \ldots, x_m^{s_m} \left(\sum_{i=1}^{n_m} \|x_i\|^r\right) \mbox{ for all } x_1 = \cdots = x_m = x \mbox{ in (37), we have}
\]
\[
\mu \geq \Phi_{x_1}^{s_1}, \ldots, x_m^{s_m} \left(\sum_{i=1}^{n_m} \|x_i\|^r\right) \mbox{ for all } x_1 = \cdots = x_m = x \mbox{ in (37), we have}
\]
\[
\mu \geq \Phi_{x_1}^{s_1}, \ldots, x_m^{s_m} \left(\sum_{i=1}^{n_m} \|x_i\|^r\right) \mbox{ for all } x_1 = \cdots = x_m = x \mbox{ in (37), we have}
\]
\[
\mu \geq \Phi_{x_1}^{s_1}, \ldots, x_m^{s_m} \left(\sum_{i=1}^{n_m} \|x_i\|^r\right) \mbox{ for all } x_1 = \cdots = x_m = x \mbox{ in (37), we have}
\]
\[
\mu \geq \Phi_{x_1}^{s_1}, \ldots, x_m^{s_m} \left(\sum_{i=1}^{n_m} \|x_i\|^r\right) \mbox{ for all } x_1 = \cdots = x_m = x \mbox{ in (37), we have}
\]
Theorem 1.3, there exists a mapping $A : X \to Y$ satisfying the following:

1. A is a fixed point of f, that is,
 \[
 A((m - 1)x) = (m - 1)A(x)
 \]
 for all $x \in X$. The mapping A is a unique fixed point of f in the set $\Omega = \{h \in S : d(g, h) < \infty\}$. This implies that A is a unique mapping satisfying (45) such that there exists $u \in (0, \infty)$ satisfying $\mu_{(x) - A(x)}(ut) \geq \Phi_{x,x,-}^r(t)$ for all $x \in X$ and $t > 0$.

2. \(d^n f, A) \to 0\) as $n \to \infty$. This implies the equality \(\lim_{n \to \infty} f((m - 1)^n x) = A(x)\) for all $x \in X$.

3. $d(f, A) \leq \frac{d(f, f)}{1 - \frac{\alpha}{m - 1}}$ with $f \in \Omega$, which implies the inequality
 \[
 \mu_{f(x) - A(x)} \left(\frac{2t}{(m - 1)(m - 1 - \alpha)} \right) \geq \Phi_{x,x,-}^r(t)
 \]
 for all $x \in X$ and $t > 0$. This implies that the inequality (43) holds. The rest of the proof is similar to the proof of Theorem 4.1.

Corollary 4.4. Let X be a real normed space, $\theta \geq 0$ and r be a real number with $0 < r < 1$. Let $f : X \to Y$ be a mapping satisfying (42). Then the limit $A(x) = \lim_{n \to \infty} f((m - 1)^n x)$ exists for all $x \in X$ and $A : X \to Y$ is a unique additive mapping such that
 \[
 \mu_{f(x) - A(x)}(t) \geq \frac{(m - 1)^{r+1} - 1}{(m - 1)^{r+1} - 1 + 2(m - 1)^{r-1}t\|x\|^r}
 \]
 for all $x \in X$ and $t > 0$.

Proof. The proof follows from Theorem 4.1 if we take $\Phi_{x_1, x_2, \cdots, x_m}(t) = \frac{t}{t + \theta \left(\sum \|x_i\| \right)}$ for all $x_1, x_2, \cdots, x_m \in X$ and $t > 0$. In fact, if we choose $\alpha = (m - 1)^{-r}$, then we get the desired result.

Throughout this section, using direct method, we prove the Hyers-Ulam stability of the functional equation (2) in random normed spaces.

Theorem 5.1. Let X be a real linear space, (Z, μ', \min) be an RN-space and $\varphi : X^n \to Z$ be a function such that there exists $0 < \alpha < \frac{1}{m - 1}$ such that
 \[
 \mu'_{\varphi(x_1, x_2, \cdots, x_m)}(t) \geq \mu'_{\varphi(x_1, x_2, \cdots, x_m)}(t)
 \]
 for all $x_1, x_2, \cdots, x_m \in X$ and $t > 0$ and \(\lim_{n \to \infty} \frac{t}{(m - 1)^n} = 1\) for all $x_1, x_2, \cdots, x_m \in X$ and $t > 0$. Let (Y, μ, \min) be a complete RN-space. If $f : X \to Y$ is a mapping such that
 \[
 \sum_{i,j \neq k} f \left(\frac{x_i^2 + x_j^2}{2} \right) \geq \frac{\|x_i\|}{2} \sum_{i} f(x_i)
 \]
 for all $x_1, x_2, \cdots, x_m \in X$, $t > 0$, then the limit $A(x) = \lim_{n \to \infty} f\left(\frac{x}{(m - 1)^n} \right)$ exists for all $x \in X$ and defines a unique additive mapping $A : X \to Y$ such that
 \[
 \mu_{f(x) - A(x)} \left(\frac{m(m - 1)(1 - (m - 1)\alpha)t}{2\alpha} \right)
 \]
 for all $x \in X$ and $t > 0$.

\[\]
Proof. Putting $x_1 = x_2 = \cdots = x_m = x$ in (47), we obtain
\[
\mu_{f(x)} - (m-1)f(\frac{x}{m-1}) (t) \geq \mu'_{\psi(x,x,\cdots,x)} \left(\frac{m(m-1)t}{2} \right) \tag{49}
\]
for all $x \in X$. Replacing x by $\frac{x}{(m-1)^n}$ in (49) and using (46), we obtain
\[
\mu_{(m-1)^n f(\frac{x}{(m-1)^n}) - (m-1)^n f(\frac{x}{(m-1)^n})} (t) \geq \mu'_{\psi(x,x,\cdots,x)} \left(\frac{m(m-1)t}{2(m-1)^n} \right) \geq \mu'_{\psi(x,x,\cdots,x)} \left(\frac{m(m-1)t}{2(m-1)^n n_{\alpha+1}} \right).
\]
Since
\[
(m-1)^n f\left(\frac{x}{(m-1)^n} \right) - f(x) = \sum_{k=0}^{n-1} (m-1)^{k+1} f\left(\frac{x}{(m-1)^{k+1}} \right) - (m-1)^k f\left(\frac{x}{(m-1)^k} \right)
\]
so we have
\[
\mu_{(m-1)^{k+1} f(\frac{x}{(m-1)^{k+1}}) - f(x)} \left(\sum_{k=0}^{n-1} (m-1)^{k+1} t \right) = \mu_{\sum_{k=0}^{n-1} (m-1)^{k+1} f(\frac{x}{(m-1)^{k+1}}) - (m-1)^k f(\frac{x}{(m-1)^k})} \left(\sum_{k=0}^{n-1} (m-1)^{k+1} t \right) \geq T_{k=0}^{n-1} \left(\mu_{(m-1)^{k+1} f(\frac{x}{(m-1)^{k+1}}) - (m-1)^k f(\frac{x}{(m-1)^k})} \right) \left((m-1)^k f(\frac{x}{(m-1)^k}) \right) \geq T_{k=0}^{n-1} \left(\mu'_{\psi(x,x,\cdots,x)} \left(\frac{m(m-1)t}{2} \right) \right) = \mu'_{\psi(x,x,\cdots,x)} \left(\frac{m(m-1)t}{2} \right).
\]
This implies that
\[
\mu_{(m-1)^{k+1} f(\frac{x}{(m-1)^{k+1}}) - f(x)} (t) \geq \mu'_{\psi(x,x,\cdots,x)} \left(\frac{m(m-1)t}{2 \sum_{k=0}^{n-1} (m-1)^k \alpha^{k+1}} \right) \tag{50}
\]
Replacing x by $\frac{x}{(m-1)^n}$ in (50), we obtain
\[
\mu_{(m-1)^n f(\frac{x}{(m-1)^n}) - (m-1)^n f(\frac{x}{(m-1)^n})} (t) \geq \mu'_{\psi(x,x,\cdots,x)} \left(\frac{m(m-1)t}{2 \sum_{k=p}^{n-1} (m-1)^k \alpha^{k+1}} \right) \tag{51}
\]
Since
\[
\lim_{p,n \to \infty} \mu'_{\psi(x,x,\cdots,x)} \left(\frac{m(m-1)t}{2 \sum_{k=p}^{n-1} (m-1)^k \alpha^{k+1}} \right) = 1,
\]
it follows that \(\left\{ (m-1)^n f \left(\frac{x}{(m-1)^n} \right) \right\}_{n=1}^{\infty} \) is a Cauchy sequence in a complete RN-space (\(Y, \mu, \min \)) and so there exists a point \(A(x) \in Y \) such that \(\lim_{n \to \infty} (m-1)^n f \left(\frac{x}{(m-1)^n} \right) = A(x) \). Fix \(x \in X \) and put \(p = 0 \) in (51). Then we obtain

\[
\mu_{(m-1)^n f \left(\frac{x}{(m-1)^n} \right)}(t) \geq \mu'_{\psi(x,x_{\cdots},x)} \left(\frac{m(m-1)t}{2 \sum_{k=0}^{n-1} (m-1)^k x_{\cdots, x_{k+1}}} \right)
\]

and so, for any \(\epsilon > 0 \),

\[
\mu_{A(x)-f(x)}(t + \epsilon) \geq \mu_{A(x)}(t + \epsilon) \geq \mu_{A(x) - f(x)}(t)
\]

Taking \(n \to \infty \) in (52), we get

\[
\mu_{A(x)-f(x)}(t + \epsilon) \geq \mu'_{\psi(x,x_{\cdots},x)} \left(\frac{m(m-1)(1-(m-1)\alpha)t}{2\alpha} \right).
\]

Since \(\epsilon \) is arbitrary, by taking \(\epsilon \to 0 \) in (53), we get

\[
\mu_{A(x)-f(x)}(t) \geq \mu'_{\psi(x,x_{\cdots},x)} \left(\frac{m(m-1)(1-(m-1)\alpha)t}{2\alpha} \right).
\]

Replacing \(x_1, x_2, \cdots, x_m \) by \(\frac{x_1}{(m-1)^{\alpha}}, \frac{x_2}{(m-1)^{\alpha}}, \cdots, \frac{x_m}{(m-1)^{\alpha}} \), respectively, in (47), we get

\[
\mu_{(m-1)^{\alpha}} \left[\sum_{k=1}^{n} f \left(\frac{x_{1+2k-1}}{(m-1)^{\alpha}}, \frac{x_{1+2k}}{(m-1)^{\alpha}} \right) \right] \geq \mu'_{\psi \left(\frac{\alpha_1}{(m-1)^{\alpha}}, \frac{\alpha_2}{(m-1)^{\alpha}}, \cdots, \frac{\alpha_m}{(m-1)^{\alpha}} \right)} \left(\frac{t}{(m-1)^{\alpha}} \right)
\]

for all \(x_1, x_2, \cdots, x_m \in X \) and \(t > 0 \). Since

\[
\lim_{n \to \infty} \mu'_{\psi \left(\frac{\alpha_1}{(m-1)^{\alpha}}, \frac{\alpha_2}{(m-1)^{\alpha}}, \cdots, \frac{\alpha_m}{(m-1)^{\alpha}} \right)} \left(\frac{t}{(m-1)^{\alpha}} \right) = 1,
\]

we conclude that \(A \) satisfies (2).

On the other hand

\[
(m-1)A \left(\frac{x}{m-1} \right) - A(x) = \lim_{n \to \infty} (m-1)^n f \left(\frac{x}{(m-1)^n} \right) - \lim_{n \to \infty} (m-1)^n f \left(\frac{x}{(m-1)^n} \right) = 0.
\]

This implies that \(A : X \to Y \) is an additive mapping.

To prove the uniqueness of the additive mapping \(A \), assume that there exists another additive mapping
$L : X \to Y$ which satisfies (48). Then we have

$$
\mu_{A(x)-L(x)}(t) = \lim_{n \to \infty} \mu_{(m-1)^nA\left(\frac{t}{m-1}\right)}(\frac{t}{m-1})
$$

$$
\geq \lim \min_{n \to \infty} \left\{ \mu_{(m-1)^nA\left(\frac{t}{m-1}\right)} - m1\left(\frac{t}{m-1}\right) \right\} \left(\frac{t}{m-1} \right)
$$

$$
\geq \lim_{n \to \infty} \mu'_{\psi\left(\frac{t}{m-1}x\right)} \left(\frac{m1((m-1)^n - 1)}{4(m-1)^n} \right).
$$

Since $\lim_{n \to \infty} \frac{m1((m-1)^n - 1)}{4(m-1)^n} = \infty$, we get

$$
\lim_{n \to \infty} \lim_{t \to \infty} \mu'_{\psi\left(\frac{t}{m-1}x\right)} \left(\frac{m1((m-1)^n - 1)}{4(m-1)^n} \right) = 1.
$$

Therefore, it follows that $\mu_{A(x)-L(x)}(t) = 1$ for all $t > 0$ and so $A(x) = L(x)$. This completes the proof.

Corollary 5.2. Let X be a real normed linear space, (Z, μ', \min) be an RN-space and (Y, μ, \min) be a complete RN-space. Let r be a positive real number with $r > 1$, $z_0 \in Z$ and $f : X \to Y$ be a mapping satisfying

$$
\frac{\mu}{1} \sum_{i=1}^{m-1} \left(\frac{t}{m-1} \right) \frac{\sum_{\|x\|\geq z_0} \sum_{\|x\|\geq z_0} \|f(x)\|} \right) \geq \mu'_{\psi\left(\frac{t}{m-1}x\right)} (t)
$$

for all $x_1, x_2, \cdots, x_m \in X$ and $t > 0$. Then the limit $A(x) = \lim_{n \to \infty} (m-1)^n f \left(\frac{x}{(m-1)^n} \right)$ exists for all $x \in X$ and defines a unique additive mapping $A : X \to Y$ such that

$$
\mu\left(\sum_{i=1}^{m-1} (m-1)^n \right) = \frac{1}{2(m-1)^n}
$$

for all $x \in X$ and $t > 0$.

Proof. Let $\alpha = (m-1)^{-r}$ and $\varphi : X^m \to Z$ be a mapping defined by $\varphi(x_1, x_2, \cdots, x_m) = \left(\sum_{i=1}^{m} \|x_i\| \right) z_0$. Then, from Theorem 5.1, the conclusion follows.

Theorem 5.3. Let X be a real linear space, (Z, μ', \min) be an RN-space and $\varphi : X^m \to Z$ be a function such that there exists $0 < \alpha < m-1$ such that

$$
\mu'_{\varphi(x_1, x_2, \cdots, x_m)}(t) \geq \mu'_{\varphi\left(\frac{t}{m-1}x_1, \frac{t}{m-1}x_2, \cdots, \frac{t}{m-1}x_m\right)}(t)
$$

for all $x_1, x_2, \cdots, x_m \in X$ and $t > 0$ and

$$
\lim_{n \to \infty} \mu'_{\varphi((m-1)^n x_1, (m-1)^n x_2, \cdots, (m-1)^n x_m)}((m-1)^n x) = 1
$$

for all $x_1, x_2, \cdots, x_m \in X$ and $t > 0$. Let (Y, μ, \min) be a complete RN-space. If $f : X \to Y$ is a mapping satisfying (47). Then the limit $A(x) = \lim_{n \to \infty} \frac{f((m-1)^n x)}{(m-1)^n}$ exists for all $x \in X$ and defines a unique additive mapping $A : X \to Y$ such that

$$
\mu\left(\sum_{i=1}^{m-1} (m-1)^n \right) = \frac{1}{2(m-1)^n}
$$

for all $x \in X$ and $t > 0$.
Proof. Putting $x_1 = \cdots = x_m = x$ in (47), we have
\[
\mu \left(\frac{m-1}{m} f(x) \right)(t) \geq \mu_{\phi(x,x,\cdots,x)} \left(\frac{m(m-1)^2 t}{2} \right) \tag{56}
\]
for all $x \in X$ and $t > 0$. Replacing x by $(m-1)^r x$ in (56), we obtain that
\[
\mu \left(\frac{m-1}{m} f(x) \right)(t) \geq \mu_{\phi((m-1)^r x,(m-1)x,\cdots,(m-1)^r x)} \left(\frac{m(m-1)^{r+2} t}{2} \right)
\geq \mu_{\phi(x,x,\cdots,x)} \left(\frac{m(m-1)^{r+2} t}{2} \right).
\]

The rest of the proof is similar to the proof of Theorem 5.1. □

Corollary 5.4. Let X be a real normed linear space, (Z, μ', \min) be an RN-space and (Y, μ, \min) be a complete RN-space. Let r be a positive real number with $0 < r < \frac{1}{m}$, $z_0 \in Z$ and $f : X \to Y$ is a mapping satisfying
\[
\mu \left(\sum_{i=0}^{m-1} f(x_{i+1}) \right)(t) \geq \mu \left(\prod_{i=1}^{m} \|x_i\| \right) z_0 (t) \tag{57}
\]
for all $x_1, x_2, \cdots, x_m \in X$ and $t > 0$. Then the limit $A(x) = \lim_{n \to \infty} \frac{f((m-1)^r x)}{(m-1)^r}$ exists for all $x \in X$ and defines a unique additive mapping $A : X \to Y$ such that
\[
\mu_{f(x)-A(x)}(t) \geq \mu_{\phi^{m-1} z_0} \left(\frac{m((m-1)^{mr+2} - (m-1))t}{2(m-1)^{mr}} \right)
\]
for all $x \in X$ and $t > 0$.

Proof. Let $\alpha = (m-1)^{-mr}$ and $\varphi : X^m \to Z$ be a mapping defined by
\[
\varphi(x_1, x_2, \cdots, x_m) = \left(\prod_{i=1}^{m} \|x_i\| \right) z_0.
\]

Then, from Theorem 5.3, the conclusion follows. □

References
