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Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem
for Finite Asymptotically Nonexpansive Mappings in Hilbert Space
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Abstract. In this paper, we propose an iterative algorithm for finding the common element of solution set
of a split equilibrium problem and common fixed point set of a finite family of asymptotically nonexpansive
mappings in Hilbert space. The strong convergence of this algorithm is proved.

1. Introduction

Throughout this paper, let R denote the set of all real numbers, IN denote the set of all positive integer
numbers, H be a real Hilbert space and C be a nonempty closed convex subset of H. Let T : C — C be a
mapping. If there exists a sequence {k,} C [1, o) with lim,, .« k, = 1 such that

IT"x = T"yll < kullx —yll, Vx,y€C,

we call T an asymptotically nonexpansive mapping. If k, = 1, then T is said to be a nonexpansive mapping.
The set of fixed points of T is denoted by Fix(T).
Let F : C x C = R be a bifunction. The equilibrium problem for F is to find z € C such that

F(z,y) 20, VyeC. (1.1)
The set of all solutions of (1.1) is denoted by EP(F), i.e.,
EP(F)={ze€C:F(z,y) 2 0,Yy € C}.

Many problems in physics, optimization, and economics can be reduced to find the solution of (1.1); see
[1-4]. In 1997, Combettes and Hirstoaga [5] introduced an iterative scheme of finding the solution of (1.1)
under the assumption that EP(F) is non-empty. Later on, many iterative algorithms are considered to find
the element of Fix(S) N EP(F); see [6-8].

Recently, some new problems called split variational inequality problems are considered by some
authors. Censor et al. [9] initially studied this class of split variation inequality problems. Let H; and H,
be two real Hilbert spaces. Given the operators f : H; — H; and g : H, — H,, bounded linear operator
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A : Hi — Hj, and nonempty closed convex subsets C C Hj and Q C H», the split variational inequality
problem is formulated as follows:

find a point x* € C such that (f(x"),x = x*) >0, Vx € C

and such that
Yy =Ax" € Qsolves (g(y"),y—y) 20, Yy € Q.

After investigating the algorithm of Censor et al., Moudafi [10] introduced a new iterative scheme to
solve the following split monotone variational inclusion:

find x* € Hy such that 0 € f(x") + B1(x")

and such that
y' = Ax" € Hy sovles 0 € g(y*) + B2(y),

where By : H; — 2 is a set-valued mappings fori =1,2.

In 2013, Kazmi and Rizvi [11] considered a new class of split problem called split equilibrium problem.
LetF; : CxC — Rand F; : Q X Q — R be two bifunctions and A : H; — Hj be a bounded linear operator.
The split equilibrium problem is to find x* € C such that

Fi(x*,x) 20, Vx e C, (1.2)

and such that
Yy =Ax" € Qsovles F(y',y) >0, Yy e Q. (1.3)

The set of all solutions of (1.2) and (1.3) is denoted by ), i.e.,, Q = {z € C: z € EP(F;) such that Az € EP(F»)}.

On split equilibrium problem, the interested author also may refer to [12, 13] in which the author gave
an iterative algorithm to find the common element of sets of solutions of the split equilibrium problem and
hierarchical fixed point problem.

To the knowledge of author, the split equilibrium problems and fixed point problems for asymptotically
nonexpansive mappings have not been investigated in literature by far. In this paper, inspired by the
results in [11-13], we propose an iterative algorithm to find the common element of solution sets of a
split equilibrium problem and common fixed points set of a finite family of asymptotically nonexpansive
mappings in Hilbert spaces and prove the strong convergence for the algorithm.

2. Preliminaries

Let H be a Hilbert space and C be a nonempty closed and convex subset of H. For each point x € H,
there exists a unique nearest point of C, denoted by Pcx, such that ||x — Pcx]|| < [|x — y|| for all y € C. Such a
Pc is called the metric projection from H onto C. It is well known that Pc is a firmly nonexpansive mapping
from H onto C, i.e.,

[|[Pcx — Pcyll2 <(Pcx—Pcy,x—-y), VYx,y € H.

Further, for any x € H and z € C, z = Pcx if and only if
(x-z,z-y)>20, YyeC.
A mapping A : C — H is called an a-inverse strongly monotone if there exists & > 0 such that
(x —y,Ax — Ay) > al|lAx — Ayll>, ¥x,y € H.

For each A € (0,2a], I — AA is a nonexpansive mapping of C into H; see [14].
Consider the following variational inequality on inverse strongly monotone mapping A:

find u € C such that (v —u, Au) >0, Yv € C.
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The set of solutions of the variational inequality is denoted by VI(C, A). It is know that u € VI(C,A) © u =
Pc(u — AAu) for any A > 0.

Let S : C — Cbe a mapping. It is known that S is nonexpansive if and only if the complement I — S is
1-inverse strongly monotone; see [15]. Let T : C — C be an asymptotically nonexpansive mapping with the
sequence {k,}. Then for any (x, £) € C X Fix(T), we have

IT"x — x|* < 2(x — T"x,x — £) + (k2 — 1)|lx — £||>, Vn € N, (2.1)
which is obtained directly from the following

kille = I > I = T"&|? = || T"x = 2| = IT"x — x + (x - DI
= ||IT"x —x|* + ||x = &> + 2(T"x — x, x — %).
Let F be a bifunction of C x C into RR satisfying the following conditions:

(A1) F(x,x) =0forallx € C;

(A2) F is monotone, i.e., F(x,y) + F(y,x) <O forall x,y € C;

(A3) for each x, y,z € C, limy o F(tz + (1 — t)x, y) < F(x, y);

(A4) for each x € C, y — F(x, y) is convex and lower semicontinuous.

Lemma 2.1 [16] Let C be a nonempty closed convex subset of a Hilbert space H and let F : C X C — R be a bifunction
which satisfies the conditions (A1)-(A4). For x € H and r > 0, define a mapping Tt : H — C by

TE(x) = {zeC:F(z,y)+%(y—z,z—x)zo, Yy e C}. (2.2)
Then T, is well defined and the following hold:
(1) TF is single-valued;
(2) TF is firmly nonexpansive, i.e., for any x,y € H,
T x = Tyl < (Tfx - Ty, x - y);
(3) Fix(TT) = EP(F);

(4) EP(F) is closed and convex.
Lemma 2.2 [17] Let F : C X C — R be a bifunction satisfying the conditions (A1)-A(4). Let Tt and Tt be defined as
in Lemma 2.1 with r,s > 0. Then, for any x, y € H, one has

S
ITEx = Thyll < e =yl + 1 = 2T - ¥,

Lemma 2.3 [8] Let F : C x C — R be a functions satisfying the conditions (A1)-(A4) and let TY and TF be defined
as in Lemma 2.1 with s, t > 0. Then the following holds:

—t
ITEx — T x| < ST(Tsx —Tex, Tsx — x)

forall x € H.

Lemma 2.4 [18] Let {x,} and {y,} be bounded sequences in a Banach space E and let {,,} be a sequence in [0, 1] with
0 < liminf, B, limsup, B, < 1. Suppose x,41 = Bulyn + (1= Bu)yn for all integers n > 0 and lim sup,, (|[y,1 — yaull =
llxp+1 = xull) < 0. Then, limy, |ly, — xull = 0.

Lemma 2.5 [19] Let T be an asymptotically nonexpansive mapping on a closed and convex subset C of a real Hilbert
space H. Then I — T is demiclosed at any point y € H. That is, if x, — x and x, — Tx, - y € H, then x — Tx = y.
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Lemma 2.6 [20] Assume that {a,} is a sequence of nonnegative numbers such that
Qpy1 < (1 - an)an + antnr nz 0/

where {a,} is a sequence in (0, 1) and {t,} is a sequence in R such that

(1) Zle ap = 09,
(2) either limsup,,_, _ t, <0 o0r Y,;20 ant,] < co.

Then lim, e a, = 0.

3. Main Results

Theorem 3.1 Let Hy and H, be two real Hilbert spaces and C C Hy and Q C Hy be nonempty closed and convex
subsets. Let F: CXC — Rand G : QX Q — R be two bifunctions satisfying (Al-A4) and assume that G is
upper semicontinuous in the first argument. Let f : C — C be p-contraction and {T;}\_ : C — C be | asymptotically
nonexpansive mappings with the same sequence {k,} satisfying the condition that

lim sup ||T1."+1x -Ti!x| =0 T)

n—oo xeK

for any bounded subset K of C and eachi = 1,--- ,1. Let A : Hi — Hj be a bounded linear operator. Suppose that
Fix(T) N Q) # 0, where Fix(T) = mﬁleix(Ti) and Q = {v € C: v € EP(F) such that Av € EP(G)}. Let {a,}  (0,1)
be a sequence. Define the sequence {x,} by the following manner: xo € C and

uy = TE (I =y A* (I = T$)A)xy,

(1-ay)

I
3.1
i Z T'u,, n € N, 61
i=1

Xn+l = anf(xn) +

where {r,} C [r,00) with r > 0, {s,} C [s, 00) with s > 0, y € (0,1/L?], L is the spectral radius radius of the operator
A*A and A* is the adjoint of A. If the control sequences {a,}, {1y}, {sn} and {k,} satisfy the following conditions:

(1) limy e ay, =0, Z:,o=1 ap = 00,

(ii) Z;ozl lavy, — ay—1| < o0, 27010:1 [t — 7p1]| < o0, ZZO:1 Sy — sp—1] < o0;

vy qs k-1
(iii) lim,,— 0 '{'ln =0,

then {x,} generated by (3.1) strongly converges to z = Prixmnaf(2).

Remark 3.1. For eachn € N, A*(I - T¢)A is a zlﬁ-inverse strongly monotone mapping. In fact, since TC is
(firmly) nonexpansive and I — T is 1-inverse strongly monotone, we have

JA*(I - TS)Ax — A(I - TO)AyIP = (A*(I - TS )(Ax — Ay), A(I - TS)(Ax — Ay))
= ((I - TS )(Ax — Ay), AA*(I - TS )(Ax — Ay))
< LX(I - TS)(Ax — Ay), (I - TS )(Ax — Ay))
= || - TS )(Ax — Ay)IP
< 2L%Ax — Ay, (I - TS )(Ax — Ay))

=20%(x — y, A*(I - T )(Ax — Ay)),

for all x,y € H, which implies that A*(I - TS)A is a zlﬁ—inverse strongly monotone mapping. Note that
y € (0, %]. Thus I — yA*(I - TSGH )A is nonexpansive.
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Proof. We first show that {x,} is bounded. Let p € Fix(S) N Q. Thenp = T p and (I — yA*(I - TS)A)p = p.
Thus we have
llw = pll = ITE (I = yA*(I = TS)A)x, — TE (I - yA* (I - TO)A)pll
< I = yA' (I = T A — (L= yA'(I = TS Al (3.2)
< |l —pll-

Take e € (0,1 - p). Since (k, —1)/a, — 0as n — oo, there exists N € IN such that forall n > N, (k, — 1) < ea,.

LetT" = %zﬁzl T for each n € IN. It is easy to see that [|T"x — T"y|| < kllx — yl| for all x,y € Cand n € N.
From (3.1) and (3.2) it follows that, for all n > N,

i1 = pll = llan(FGen) = F(p)) + an(F(p) = p) + (1 = an)(T"u, = )|
< anllf(xn) = F@I + anll f(p) = pll + (1 = an)lIT"u,, — pli
< anpllxn = pll + aull f(p) — pll + (1 = ankullun — pll
= (1 = an(1 = p)llxn — pll + aull f(p) — pll + (1 = ) (kn = Dl — pll
< (1 = an(1 = p)llxn = pll + aull f(p) = pll + anellx, = pli
=(l-a,(1-p- €))len =pll+aullf(p) - pll

< max{|jx, — P|| ||f(P - pll}-

(3.3)

By induction, we see that, for all n > N,

Iber = pl < max {lle = pll, 7———II7(p) - pll}

It follows that {x,} is bounded and so is {u,}.

Next we prove that limy,_,e [|X4+1 — Xul| = 0. Since (I — yA*(I - TSG;1 )A) is nonexpansive, by Lemma 2.2 we
have

lttnir = wall = IIT% (L= YA = TS )AYxus1 — Tt (I — yA (L= TE)A)x,ll
<0 - yA*(I TS )A)xue1 — ([ — YA (I = TE)A)x|
4 M1 — Tl |rn+1 =Ty
Tn+1
< lxpse1 = xall + ”(I - VA*(I

r -7
+ | n+l nlg

ITE (I=yA (=TS YA — (I = yA (I = TS )A)xull

Sn+1

YA, = (I = yA' (I = T3 )A)xl

Sw+1

n+1

. [Fus1 = 7l
= [Wns1 — Xall + PIAT(TS = TS )Ax, || + 22—

Sn+1 7 On+1,

where 0, = sup{n € N}||TE (I - yA*(I - TS)A)x, — (I — yA*(I = TS )A)x,||. Further, by Lemma 2.3 we get

1 = 7l
141 — wall < l1xn1 — Xnll + V”A””TGAxn - TSG+1 Xl + = p =041
Sy — Sn+1l TG G G 3
<lherer — sl + AN TE A, — TS A, TS A, — Ax,)
et = 1] (3.4)
e

7 — Sp41l 3t =1y
< s = xall + YIAN(F—" 0, )" + HE—

n+ls

where 17,, = sup,, o (TS Ax,, — TS Axy, TS Axy — Axy).
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Lety, = L= f) Then from (3.1) and (3.4) it follows that

1-a,

”yn+1 - ynH = Ixn41 — x4l
1
= T" a1 = Tl = 12041 = X4l
< ”Tnﬂunﬂ - Tnﬂ”n” = xn+1 — xall + ||Tn+1un = T"uy||

5y — Sn+l 3 e =1
b = sunl, o1, T =il

< (vt = il =l + k[l (2= .

+ ||Tn+1un = T"uyl|

Sp — Sn % Tn —Tn
< (s = D0l + ) + k[N, ) 4 L1 =0

r

1 1 1

71 T = Y Tl
i=1 i=1

Since the mappings {T;}!_, satisfy the condition ('), by the condition (ii) we get

lim Sup(“yn+1 - ]/n” = Ixp1 — xn“) =0.

n—oo

Hence, by Lemma 2.4 we conclude that

lim ”yn — x4l =0,
n—oo

which implies that

lim ||x,4+1 — x4/ = 0. (3.5)
Further, by (3.4) we get

lim [ut41 — ]| = 0. (3.6)
From (3.1) and (3.5) it follows that

lim ||T"u, — x4/l = 0. (3.7)

Now we prove that lim,_« [|Tix, — x4/l — 0 for each i € {1,---,I}. To show this, we first prove that
limy, e |[tt;, — x,]] = 0. Since A*(I — Ts(fl )A is %-inverse strongly monotone, by (3.1) we have
it = pIP = IT7, (I = yA (I = T A = Ty (I = A (L= Tg)A)pl?
< I = yA (I = T)A)xy — (I - yA (L = TS A)pll*
= [I(xy — p) — P(A"(I = T$)Ax, — A°(I - T Ap)IP
= [lxy = pIP* = 2p¢xs — p, A"(I = TS ) Axy — A"(1 - TS ) Ap)
+72IA (I = T)Axy — A(I = TE)AplP?
< by = pIF = 514" = TS)Ax, — AL = TS AP
+72IA(I = TS)Axy — A(I - TS)Apl?
1 * *
=l = pIP? +y(y = AU = TE)Ax, = A*(1 = T)AplP?

1 *
= Ity — pI? + y(y - AU - TS)Axyl?
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Thus we have
et =PI < anll f(xn) = pIF + (1 = an)kallug — pli*
< aullf(en) = pl* + (1 = aw)ka [l — plI®

Fyly = AU =T AT ]

= aallf0) = pIP + (1 - a)(1+ 26, + 62, — pIP
# (1= @By — TIA U = TE)Ax I

< allf ) = pIR + Ity — pIF + (1= )26, + ), — pIP
+9(1= @R~ IA =~ A%,

where 6,, = k,, — 1. Therefore,
1 *
y(1 = k(53 = IA L= TOAxI? < allf () = pI?
+ b = sl = pll+ e = pI) + (L= )20, + Ol = pIP.

Since a, — 0, k, — 1 and both {f(x,)} and {x,} are bounded, by (3.5) we have

lim [JA*(I - T$)Ax,ll = 0, (3.8)
n—o0
which implies that
lim [/(I - TS )Ax,|| = 0. (3.9)

Since Tfn is firmly nonexpansive and (I — )/A*(Tscn —1)A) is nonexpansive, by (3.1) we have

i = pll* = |75 (0 + A (TS - DAx,) - TE )]
< (un —p, %y + YA (TS = DAx, — p>
= gl =l s+ 7S - D%, - pf
— |un = p = [xn + YA(TE = DAx, - p]”2}
= Sl = ol + [0 = yA"TE = DAY - A= yA TS ~ DAY
~ [l = 20 = yA°(TG ~ DAR,|['}
< ol =P + e = oI = i = 0 = y4"TS = DA

AY(TS - DA, |

1
= Slllen =pl + oo = pI = [l = ]+ 7]
= 29ty = X, A'(TS = DAx,)]},

which implies that

llin = pIP < Il = pIP = Nt = 2l + 2Nl = 2 lIA*(TS, = DA (3.10)
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Now, from (3.1) and (3.10) we get

[Xns1 = pIP < @all f@n) = pIF + (1 = @ )IIT"u, = pIP?
< aullf () = pIP + (1 = ankillu, — pIP
< aullf(xn) = pIP + (1 = @) elllxy = pIP = Il — xall®
+ 2|l — XallllA*(TS = DAx|I]
= aullf(xn) = pIP + (1 — au)(1 + 20, + 0%)]|x, — pI?

— (1= @)Kty = xall2 + 21 = @Kyt = xalIA*(TE = DA
< allfGen) = pIP + (20, + 02)lxs = pIP = (1 = a)Klltn = all? + I — I

+ 2k Yl = Xl lIA°(TS, = DAx,I]

Hence,
(1 = an)aliun — xal* < anllf(xn) = pIF + l1xn = xpsa (%0 — pll + l2cs1 — )

+ (26, + O)llxs = pI* + 2Ky (il + lal DIA™TS, = DA, |l

Since a, — 0, k, — 1 and {x,} and {u,} are bounded, by (3.5) and (3.10) we have
Him luy — x| = 0.
Combing (3.5) and (3.11), by [lu, — Xp41ll < llun — x4l + lIx — X111l We see that
il = ]l = 0.
Note that 1
Y T = ) = (T )
i=1

1
T 1-ay,
By (2.1) and (3.13), foreachi=1,---,I, we have

[ens1 = 1t + @ = fx0))].

1

1 1

YHT?un - ”n“z < 7 2 “T,‘n”n - un||2
i=1

!

< (T}t = thy, 1ty = p) + (= Dllut = pl?

~I N

—_

i=

2

= (1 =ttty = pY + Wity = F), 1y — )| + (2 = Dl = plP.

(1-ay)
Since a, — 0 and k,, — 1, from (3.12) and (3.14) it follows that, for eachi=1,--- I,

lim ([T u, — u,ll = 0.
n—oo

Let koo = sup,, . kn < 00. Consequently, by (3.6) and (3.15) we get that, foreachi=1,---

1 1 1
Tittn = unll < Tty = T unll + 1T 1y = TP st
1
+ ||T,n+ Up1 — ”n+1“ + ”un+1 - un“
1
< koollttn — T?un” + “Tin+ Un1 = U |l + (1 + Koo l[tna1 — |

— 0, asn — oo.

,l,

1430

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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Further, we have, foreachi=1,---,],

ITixy = xnll < N Tixy = Tittll + | Tivty — ]l + |1t = x|
< (k1 + Dy — xull + [ Titty — wpl| (3.16)

— 0, asn — oo.

Since Prixs)nqf is a contraction, there exists a unique z € Fix(S) N Q such that z = Priys)na f(z). Since {x,}
is bounded, we can choose a subsequence {x,,} of {x,} such that

limsup(f(z) —z,x, —z) = ]}im(f(z) —Z,Xp, — Z).

n—oo

As {xy,} is bounded, there is a subsequence {x,, } of {x,,} converging weakly to some w € C. Without loss of
generality, we can assume that x,,, — w.

Now we show that w € ﬁﬁleix(Ti). In fact, since each x, — T;x, — 0 and x,, — w, by Lemma 2.3 we
obtain that w € Fix(T;). So w € Fix(T) = N|_, Fix(T).

Next we show that w € Q. By (3.1), u, = T (I — yA*(I - TS )A)x,, that is

F(uy, y) + %@ = Uy, Uy — X)) — %@ — 1y, yA(TE = )Ax,) > 0, Yy € C.
From the monotonicity of F it follows that
_%Q/ — 11, YA (TS = )Axy) + %@ iy thy = %) > E(y, 1), Yy € C.
Replacing n with ny in the above inequality, we have

1 . 1
- (Y = tly,, yA (TSGH - DAx,, ) + - (Y = Uy, Uy, — X ) = F(y,uy,), Yy € C.
Nk

03
Since |y, — Xp || = O, IIA*(TS% — DAx, || = 0and [|x,, —w|| = 0as k — oo, we have
F(y,w) <0, Yy e C.
Forany 0 <t<1landy€C,lety; =ty + (1 — t)w. Then we have y; € C. Further, we have
0= F(]/t/ ]/t)
< tF(ys, y) + (1 = HF(y;, w)

So F(y:,y) = 0. Lett — 0, one has F(w, y) > 0, i.e.,, w € EP(F).
Next we show that Aw € EP(G). Since A is bounded linear operator, Ax,, — Aw. Then from (3.9) it
follows that TS Ax,, — Aw. By the definition of T Ax,,, we have

1
G(TS Axy,, y) + — (y = TS Axy,, TS Axy, — Aw) > 0, Yy € C. (3.12)
Nk

Since each G is upper semicontinuous in the first argument, taking lim sup to (3.12) as k — oo, we get
G(Aw,y) 20, YyeC,

which implies that Aw € EP(G). Therefore, w € Q.
By the property on Prixr)nq, we have

lim sup(f(z) —z,x, —2z) = %im(f(z) —Z,Xy, —2) ( )
n—co - 3.13
=(f(z)—z,w—-2z)<0.
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Since a, — 0, there exists N; € IN such that (2 — p)a,, < 1 for all n > N;. Now, by (3.1) we have, for all
N
o i1 = 2l = llev f () + (1 = @) Tt = plP?
< (1= @Ity = pIP + 20, (%) = 2, X1 = 2)
< [ = ankallln = pIP + 2000 f(xn) = f(2), Xps1 — 2)
+20,(f(2) = 2, X1 — 2)
< [ = awkaPllxn = plP* + 2payllx, = zllllxn — 2l
+20,(f(2) = 2, X1 — 2)
< [(1 = ankaPllxn = pIP? + peu(llxy = 2l + [1xns1 — 211
+ 20(,1<f(z) —Z,Xp41 — Z)
= [(1 = )k = 1) + (1 = ) Pllx, — 2
+ paulln — 2l + panllxu — 2l + 20,(f(2) = 2, %001 — 2)
= [1= 2= p)an +aj + (1= @) (ke = 1)+ 2(1 = 2,)*(ky = Dlllx, — 21
+ pagllxnsn — 2l + 20,(f(2) = 2, Xp1 — 2)
<[1- Q2= pan +a; + (kn = 1) + 2(ky = D]llx, — 2l + payllx,er — 217
+ 20, (f(2) — 2, Xp41 — 2).

So
1-(2- 24k, —1D2+2(k, -1
I — 2l < Py e Gir D 2D,
1 - pay, 1-pay
Zan
(f(z —Z,Xn+1 — Z)
2(1 )t + o =17 +26k =)
= (1 )” Xn —
— pan 1= pay
Zan (f(2) = z,Xp41 — 2)
pan 7 An+l 7
where M’ = sup, I, — zI*. Put
21 - p)ay
- pay
and X X
_ay+ (k= 1)"+2(ky, — 1) 1
On = 2(1- p)ay M+ 1= P<f(Z) Z, Xp41 — Z)-
Then

”xn+1 - Z”2 < (1 - Sn)”xn - Z”2 + sn6n~

Note thats, — 0, Y, Sy = co and limsup_,_ 6, < 0. By theorem 2.6 we conclude that lim,_,« [Ix,, — z|| = 0
This completes the proof. O

In Theorem 3.1, if T; = T, then the condition (I') is reduced to asymptotically regular and we get the
following

Corollary 3.1 Let Hy and Hj be two real Hilbert spaces and C C Hy and Q C Hj, be nonempty closed convex
subsets. Let F: CxC — Rand G : Qx Q — R be two bifunctions satisfying (A1-A4) and assume that G is
upper semicontinuous in the first argument. Let f : C — C be p-contraction and T : C — C be an asymptotically
nonexpansive mapping with the sequence {k,} satisfying the condition that

lim sup ||T""!x — T"x|| = 0

n—oo xeK
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for any bounded subset K of C. Assume that T is asymptotically regular and suppose that Fix(T) N Q) # 0, where
Q ={veC:veEPF)and Av € EP(G)}. Let {a,} C (0,1) be a sequence. Let A : Hi — H; be a bounded linear
operator. Define the sequence {x,} by the following manner: x € C and

uy = TE (I =y A* (L= T$)A)xy,
Xn+l = anf(xn) + (1 -a,)T"u,, n €N,

where {r,} C (r,00) with r > 0, {s,} C [s,0) with s > 0,y C (0,1/L?], L is the spectral radius radius of the operator
A*Aand A* is the adjoint of A. If the control sequences {a,} and {k,} satisfy the following conditions:
(1) limy ey =0, Y071 @y = 00;
(i) X2 lan — an-al < 00, Xyl Irn = rumal < 00, XLy Isn — sy < o0
(iif) limy o0 2= = 0,
then {x,} strongly converges to z = Priyrynep) f(2).
In Corollary 3.1, if A = 0, then we get the following
Corollary 3.2 Let Hy and H, be two real Hilbert spaces and C C Hy and Q C H» be nonempty closed convex subsets.

Let F : Cx C — R be a bifunction satisfying (A1-A4). Let f : C — C be p-contraction and T : C — C be an
asymptotically nonexpansive mapping with the sequence {k,} satisfying the condition that

lim sup ||T"*'x — T"x|| = 0

n—oo xeK

for any bounded subset K of C. Assume that T is asymptotically reqular and suppose that Fix(T) N EP(F) # 0. Let
{an) € (0,1) be three sequence. Define the sequence {x,} by the following manner: xo € C and

U, = Tfnx,,,
Xni1 = A f(xn) + (1 = ) T"uy, n €N,

where {r,} C [r, 00) with r > 0. If the control sequences {a,}, {r,}, {sn} and {k,} satisfy the following conditions:
(1) limysey =0, Y071 @y = 00;

(i) Xy lan — anal < 00, Xy Irn = 1] < oo

(iif) limy o0 22 = 0,

then {x,} strongly converges to z = PrixrynepE) f(2)-
In Corollary 3.2, if F(x,y) = 0 and s, = 1, then u,, = Pcx, = x,, and we get the following

Corollary 3.3 Let Hy and H» be two real Hilbert spaces and C C Hy and Q C Hy be nonempty closed convex subsets.
Let f : C — C be p-contraction and T : C — C be an asymptotically nonexpansive mapping with the sequence {k,}
satisfying the condition that

lim sup ||T"*'x — T"x|| = 0

=00 veK
for any bounded subset K of C. Assume that T is asymptotically reqular and suppose that Fix(T) # (. Let {av,} € (0, 1)
be three sequence. Define the sequence {x,} by the following manner: xo € C and

{xn+1 =a, f(x) + (1 —a,)T"x,, n € N.

If the control sequences {a,}, {r,} and {k,} satisfy the following conditions:
(i) limn—yoo o, = 0, Z;o:-l ay < (S o
(11) Z:’:l lovy — | < o0;

k-1

(iif) limye0 2L = 0,
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then {x,} strongly converges to z = Priyr) f(2).

Remark 3.2 In [11-13], a gap appears in the computation process of [[u,4+1 — u,l. In this paper, we use a
new method to estimate the value of |[u,4+1 — 1,]| by Lemma 2.3 and the inverse strong monotonicity of
I —yA*(I - TS)A, which is simpler and avoids the gap in [11-13].
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