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Abstract. Let X,X1,X2, . . . be a stationary sequence of negatively associated random variables. A universal
result in almost sure central limit theorem for the self-normalized partial sums Sn/Vn is established, where:
Sn =

∑n
i=1 Xi,V2

n =
∑n

i=1 X2
i .

1. Introduction

Starting with Brosamler [1] and Schatte [2], several authors investigated the almost sure central limit
theorem (ASCLT) for partial sums Sn/σn of random variables in the last two decades. We refer the reader
to Brosamler [1], Schatte [2], Lacey and Philipp [3], Ibragimov and Lifshits [4], Berkes and Csáki [5],
Hörmann [6], Miao [7] and Wu [8] in this context. If σn is replaced by an estimate from the given data,

usually denoted by Vn =
√∑n

i=1 X2
i , Vn is called a self-normalizer of partial sums. A class of self-normalized

random sequences has been proposed and studied in Peligrad and Shao [9], Pena et al. [10] and references
therein. The past decade has witnessed a significant development in the field of limit theorems for the
self-normalized sum Sn/Vn. We refer to Bentkus and Gótze [11] for the Berry-Esseen bound, Gine et al.
[12] for the asymptotic normality, Hu et al. [13] for the Cramer type moderate deviations, Csörgo et al.
[14] for the Donsker’s theorem, Huang and Pang [15], Zhang and Yang [16] and Wu [17] for the almost
sure central limit theorems. In addition, Wu [17] proved the ASCLT for the self-normalized partial sums
that reads as follows: Let {X,Xn}n∈N be a sequence of i.i.d. random variables in the domain of attraction of
the normal law with mean zero. Then

lim
n→∞

1
Dn

n∑
k=1

dkI
{ Sk

Vk
≤ x

}
= Φ(x) a.s. for any x ∈ R,

where: dk =
exp(lnα k)

k ,Dn =
∑n

k=1 dk, 0 ≤ α < 1/2, I denotes indicator function, and Φ(x) stands for the stan-
dard normal distribution function.
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Many results concerning the limit theory for the self-normalized partial sums from the NA random
sequences have been obtained. However, since the denominator in the formula for the self-normalized
partial sums contains random variables, the study of limit theory for self-normalized partial sums of NA
random variables is very difficult, and so far, there are very few research results in this field. Thus, this is a
challenging, difficult and meaningful research topic.

The purpose of this article is to establish the ASCLT for the self-normalized partial sums of NA random
variables. We will show that the ASCLT holds under a fairly general growth condition on dk, namely if
dk = k−1 exp(lnα k), 0 ≤ α < 1/2.

Definition. Random variables X1,X2, . . . ,Xn,n ≥ 2, are said to be negatively associated (NA) if for every
pair of disjoint subsets A1 and A2 of {1, 2, . . . ,n},

cov( f1(Xi; i ∈ A1), f2(X j; j ∈ A2)) ≤ 0,

where f1 and f2 are increasing for every variable (or decreasing for every variable) functions such that this co-
variance exists. A sequence of random variables {Xi; i ≥ 1} is said to be NA if its every finite subfamily is NA.

The concept of negative association was introduced by Alam and Saxena [18] and Joag-Dev and Proschan
[19]. Statistical test depends greatly on sampling. The random sampling without replacement from a finite
population is NA, but is not independent. Due to the wide applications of NA sampling in multivariate sta-
tistical analysis and reliability theory, the limit behaviors of NA random variables have received extensive
attention recently. One can refer to: Joag-Dev and Proschan [19] for fundamental properties, Matuła [20]
for the three series theorem, Su et al. [21] for the moment inequalities and weak convergence, Shao [22]
for the Rosenthal type inequality and the Kolmogorov exponential inequality, Wu and Jiang [23] for the
law of the iterated logarithm, Wu [24] for almost sure limit theorems, Wu and Chen [25, 26] for strong rep-
resentation results of Kaplan-Meier estimator and the Berry-Esseen type bound in kernel density estimation.

In the following, an ∼ bn denotes lim
n→∞

an/bn = 1 and the symbol c stands for a generic positive constant
which may differ from one place to another. We assume that {X,Xn}n∈N is a stationary sequence of NA ran-
dom variables. By Newman [27], σ2 := EX2

1 + 2
∑
∞

k=2EX1Xk always exists and σ2
∈ [0, VarX]. Furthermore,

if σ2 > 0, then VarSn ∼ nσ2. For each n ≥ 1, the symbol Sn/Vn denotes self-normalized partial sums, where:
Sn =

∑n
i=1 Xi,V2

n =
∑n

i=1 X2
i .

For every 1 ≤ i ≤ n, let:

X̄ni := −
√

nI(Xi < −
√

n) + XiI(|Xi| ≤
√

n) +
√

nI(Xi >
√

n),

S̄n :=
n∑

i=1

X̄ni, V̄2
n :=

n∑
i=1

X̄2
ni, V̄2

n,1 :=
n∑

i=1

X̄2
niI(X̄ni ≥ 0), V̄2

n,2 :=
n∑

i=1

X̄2
niI(X̄ni < 0),

σ2
n := VarS̄n, δ

2
n := EX̄2

n1, δ
2
n,1 := EX̄2

n1I(X̄n1 ≥ 0), δ2
n,2 := EX̄2

n1I(X̄n1 < 0).

Obviously,

δ2
n = δ2

n,1 + δ2
n,2, EV̄2

n = nδ2
n = nδ2

n,1 + nδ2
n,2.

Our theorem is formulated in a more general setting.
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Theorem 1.1. Let {X,Xn}n∈N be a stationary sequence of NA random variables satisfying:

EX = 0, 0 < EX2 < ∞, σ2 > 0, EX2I(X ≥ 0) > 0, EX2I(X < 0) > 0, (1)

and

σ2
n ∼ β

2EV̄2
n = β2nδ2

n for some constant β > 0. (2)

Suppose that 0 ≤ α < 1/2 and set:

dk =
exp(lnα k)

k
, Dn =

n∑
k=1

dk. (3)

Then,

lim
n→∞

1
Dn

n∑
k=1

dkI
{

Sk

βVk
≤ x

}
= Φ(x) a.s. for any x ∈ R. (4)

By the terminology of summation procedures (see e.g. Chandrasekharan and Minakshisundaram [28],
p. 35), we have the following corollary.

Corollary 1.2. Theorem 1.1 remains valid if we replace the weight sequence {dk}k∈N by any {d∗k}k∈N such that
0 ≤ d∗k ≤ dk,

∑
∞

k=1 d∗k = ∞.

Remark 1.3. If {X,Xn}n∈N is a sequence of independent random variables then, (2) holds with β = 1.

2. Proofs

The following four lemmas below play an important role in the proof of Theorem 1.1. Lemma 2.1 is
due to Joag-Dev and Proschan [19], Lemma 2.2 has been stated by Su et al. [21], Lemma 2.3 has been
established by Wu [17], and Lemma 2.4 is of our authorship; due to its length, the proof of Lemma 2.4 is
given in Appendix.

Lemma 2.1. (Joag-Dev and Proschan [19]) If {Xi}i∈N is a sequence of NA random variables and { fi}i∈N is a
sequence of nondecreasing (or nonincreasing) functions, then { fi(Xi)}i∈N is also a sequence of NA random variables.

Lemma 2.2. (Su et al. [21]) Let {Xi}i∈N be a sequence of NA random variables with zero mean and such that
E|Xi|

p < ∞, i = 1, 2, . . . if p ≥ 2. Then,

E|Sn|
p
≤ cp

 n∑
i=1

E|Xi|
p +

 n∑
i=1

EX2
i


p/2 ,

where cp > 0 only depends on p.

Lemma 2.3. (Wu [17]) Let {ξ, ξn}n∈N be a sequence of uniformly bounded random variables. If there exist constants
c > 0 and δ > 0, such that

|Eξkξ j| ≤ c
(

k
j

)δ
, for 1 ≤ k < j,

then

lim
n→∞

1
Dn

n∑
k=1

dkξk = 0 a.s.,

where dk and Dn are defined by (3).
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Lemma 2.4. Suppose that the assumptions of Theorem 1.1 hold. Then:

lim
n→∞

1
Dn

n∑
k=1

dkI

 S̄k − ES̄k

βδk
√

k
≤ x

 = Φ(x) a.s. for any x ∈ R, (5)

lim
n→∞

1
Dn

n∑
k=1

dk

 f

 V̄2
k,l

kδ2
k,l

 − E f

 V̄2
k,l

kδ2
k,l

 = 0 a.s., l = 1, 2, (6)

where dk and Dn are defined by (3) and f is a bounded function with bounded continuous derivatives.

Proof of Theorem 1.1. For any given 0 < ε < 1, note that for x ≥ 0 and k ≤ n,

{
Sk

βVk
≤ x

}
⊆

{
Sk

βVk
≤ x,∀1 ≤ i ≤ k |Xi| ≤

√

k, V̄2
k ≤ (1 + ε)kδ2

k

}
∪

{
V̄2

k > (1 + ε)kδ2
k

}
∪

{
∃1 ≤ i ≤ k |Xi| >

√

k
}

⊆

 S̄k

βδk
√

(1 + ε)k
≤ x

 ∪ {
V̄2

k > (1 + ε)kδ2
k

}
∪

 k⋃
i=1

(|Xi| >
√

k)

 .
Hence,

I
(

Sk

βVk
≤ x

)
≤ I

 S̄k

βδk
√

(1 + ε)k
≤ x

 + I
(
V̄2

k > (1 + ε)kδ2
k

)
+ I

 k⋃
i=1

(|Xi| >
√

k)

 , for x ≥ 0.

Similarly, we have for any given 0 < ε < 1 and x < 0,

I
(

Sk

βVk
≤ x

)
≤ I

 S̄k

βδk
√

(1 − ε)k
≤ x

 + I
(
V̄2

k ≤ (1 − ε)kδ2
k

)
+ I

 k⋃
i=1

(|Xi| >
√

k)

 .
Furthermore, we get

I
(

Sk

βVk
≤ x

)
≥ I

 S̄k

βδk
√

(1 − ε)k
≤ x

 − I
(
V̄2

k ≤ (1 − ε)kδ2
k

)
− I

 k⋃
i=1

(|Xi| >
√

k)

 , for x ≥ 0,

I
(

Sk

βVk
≤ x

)
≥ I

 S̄k

βδk
√

(1 + ε)k
≤ x

 − I
(
V̄2

k > (1 + ε)kδ2
k

)
− I

 k⋃
i=1

(|Xi| >
√

k)

 , for x < 0.

Hence, in order to establish (4), it suffices to prove:

lim
n→∞

1
Dn

n∑
k=1

dkI

 S̄k

βδk
√

k
≤ x
√

1 ± ε

 = Φ(x
√

1 ± ε) a.s., (7)

lim
n→∞

1
Dn

n∑
k=1

dkI(V̄2
k > (1 + ε)kδ2

k) = 0 a.s., (8)
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lim
n→∞

1
Dn

n∑
k=1

dkI(V̄2
k ≤ (1 − ε)kδ2

k) = 0 a.s., (9)

lim
n→∞

1
Dn

n∑
k=1

dkI

 k⋃
i=1

(|Xi| >
√

k)

 = 0 a.s., (10)

for any ε > 0.

Firstly, we prove (7). By 0 = EX = EXI(|X| ≤
√

k) + EXI(|X| >
√

k) and EX2 < ∞, we have EXI(|X| ≤
√

k) = −EXI(|X| >
√

k) and limx→∞ x2P(|X| > x) = 0, and consequently

|ES̄k| ≤ |kEXI(|X| ≤
√

k)| + k3/2P(|X| >
√

k) = |kEXI(|X| >
√

k)| + o(
√

k)

≤

√

kEX2I(|X| >
√

k) + o(
√

k) = o(
√

k).

This, and the fact that δ2
k → EX2 < ∞, when k→∞, imply

I

 S̄k − ES̄k

βδk
√

k
≤

√

1 ± εx − α

 ≤ I

 S̄k

βδk
√

k
≤

√

1 ± εx

 ≤ I

 S̄k − ES̄k

βδk
√

k
≤

√

1 ± εx + α

 for any α > 0.

Thus, by (5), we have as n→∞,

Φ(
√

1 ± εx − α) ←
1

Dn

n∑
k=1

dkI

 S̄k − ES̄k

βδk
√

k
≤

√

1 ± εx − α


≤

1
Dn

n∑
k=1

dkI

 S̄k

βδk
√

k
≤

√

1 ± εx


≤

1
Dn

n∑
k=1

dkI

 S̄k − ES̄k

βδk
√

k
≤

√

1 ± εx + α


→ Φ(

√

1 ± εx + α) a.s. (11)

Letting α→ 0 in (11), we obtain that (7) holds.

Now, we prove (8). Since EV̄2
k = kδ2

k , V̄
2
k = V̄2

k,1 + V̄2
k,2,EV̄2

k,l = kδ2
k,l, and δ2

k,l ≤ δ
2
k , l = 1, 2, it follows that

I(V̄2
k > (1 + ε)kδ2

k) = I(V̄2
k − EV̄2

k > εkδ2
k) ≤ I(V̄2

k,1 − EV̄2
k,1 > εkδ2

k/2) + I(V̄2
k,2 − EV̄2

k,2 > εkδ2
k/2)

≤ I(V̄2
k,1 > (1 + ε/2)kδ2

k,1) + I(V̄2
k,2 > (1 + ε/2)kδ2

k,2).

Therefore, by the arbitrariness of ε > 0, in order to prove (8), it suffices to show that, for l = 1, 2,

lim
n→∞

1
Dn

n∑
k=1

dkI(V̄2
k,l > (1 + ε)kδ2

k,l) = 0 a.s. (12)
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For a given ε > 0, let f denote a bounded function with bounded continuous derivatives, such that

I(x > 1 + ε) ≤ f (x) ≤ I(x > 1 + ε/2).

Obviously, X̄2
niI(X̄ni ≥ 0) is monotonic on Xi, and thus, by Lemma 2.1, {X̄2

niI(X̄ni ≥ 0)}n≥1,i≤n is also a
sequence of NA random variables. From Lemma 2.2, the Markov inequality and the facts that EV̄2

k,1 = kδ2
k,1

and δ2
k,1 → EX2I(X ≥ 0) > 0, we get

P
(
V̄2

k,1 > (1 + ε/2)kδ2
k,1

)
= P

(
V̄2

k,1 − EV̄2
k,1 > εkδ2

k,1/2
)

≤ c
E(V̄2

k,1 − EV̄2
k,1)2

k2 ≤ c
EX̄4

k1I(X̄k1 ≥ 0)

k

≤ c
EX4I(0 ≤ X ≤

√
k) + k2P(|X| >

√
k)

k
. (13)

Using EX2 < ∞, we have x2P(|X| > x) = o(1), as x→∞. Hence,

EX4I(0 ≤ X ≤
√

k) =

∫
∞

0
P

(
|X|I(0 ≤ X ≤

√

k) > t
)

4t3dt ≤ c
∫ √

k

0
P(|X| > t)t3dt =

∫ √
k

0
o(1)tdt = o(1)k.

This and (13) imply
P

(
V̄2

k,1 > (1 + ε/2)kδ2
k,1

)
→ 0.

Therefore, it follows from (6) and the Toeplitz lemma that

0 ≤
1

Dn

n∑
k=1

dkI
(
V̄2

k,1 > (1 + ε)kδ2
k,1

)
≤

1
Dn

n∑
k=1

dk f

 V̄2
k,1

kδ2
k,1


∼

1
Dn

n∑
k=1

dkE f

 V̄2
k,1

kδ2
k,1

 ≤ 1
Dn

n∑
k=1

dkEI
(
V̄2

k,1 > (1 + ε/2)kδ2
k,1

)
=

1
Dn

n∑
k=1

dkP(V̄2
k,1 > (1 + ε/2)kδ2

k,1)

→ 0 a.s.

Hence, (12) holds for l = 1. Using similar methods to those used in the proof of (12) for l = 1, we can prove
(12) for l = 2. Consequently, (8) holds. Moreover, applying identical methods to those used in the proof of
(8), we can prove (9).

Finally, we shall prove (10). Note that

E

∣∣∣∣∣∣∣I
 k⋃

i=1

(|Xi| >
√

k)


∣∣∣∣∣∣∣ ≤

k∑
i=1

P(|Xi| >
√

k) = kP(|X| >
√

k)→ 0, as k→∞.

Therefore,

I

 k⋃
i=1

(|Xi| >
√

k)

→ 0 a.s., as k→∞.

Thus, by the Toeplitz lemma,
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1
Dn

n∑
k=1

dkI

 k⋃
i=1

(|Xi| >
√

k)

→ 0 a.s.

Hence, (10) holds. This completes the proof of Theorem 1.1.

3. Appendix

As it has been mentioned, we give the proof of Lemma 2.4 in this part of our paper.

Proof of Lemma 2.4. Obviously, X̄ni is monotonic on Xi, and thus, by Lemma 2.1, {X̄ni}n≥1,i≤n is also a
sequence of NA random variables. By the cental limit theorem for NA random variables and the properties
that: σ2

n ∼ β
2nδ2

n, δ2
n → EX2 > 0 as n→∞ (see conditions (1) and (2)), we get

S̄n − ES̄n

βδn
√

n
d
−→ N ,

where d
−→ denotes the convergence in distribution and N denotes the standard normal random variable.

This implies that for any function 1(x), which is bounded and has bounded continuous derivatives

E1

(
S̄n − ES̄n

βδn
√

n

)
−→ E1(N), as n→∞,

Hence, by the Toeplitz lemma, we obtain

lim
n→∞

1
Dn

n∑
k=1

dkE1

 S̄k − ES̄k

βδk
√

k

 = E1(N).

On the other hand, it follows from Theorem 7.1 of Billingsley [29] and Section 2 of Peligrad and Shao
[9] that (5) is equivalent to

lim
n→∞

1
Dn

n∑
k=1

dk1

 S̄k − ES̄k

βδk
√

k

 = E1(N) a.s.

Hence, in order to prove (5), it suffices to show that

lim
n→∞

1
Dn

n∑
k=1

dk

1  S̄k − ES̄k

βδk
√

k

 − E1  S̄k − ES̄k

βδk
√

k

 = 0 a.s., (14)

for any 1 from the class of bounded functions having bounded continuous derivatives.

Let for k ≥ 1,

ξk = 1

 S̄k − ES̄k

βδk
√

k

 − E1  S̄k − ES̄k

βδk
√

k

 .
Observe that, for any 1 ≤ k < j, we get,
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|Eξkξ j| =

∣∣∣∣∣∣∣Cov

1  S̄k − ES̄k

βδk
√

k

 , 1  S̄ j − ES̄ j

βδ j
√

j


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣Cov

1
 S̄k − ES̄k

βδk
√

k

 , 1  S̄ j − ES̄ j

βδ j
√

j

 − 1

∑ j

i=k+1(X̄ ji − EX̄ ji)

βδ j
√

j



∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣Cov

1
 S̄k − ES̄k

βδk
√

k

 , 1

∑ j

i=k+1(X̄ ji − EX̄ ji)

βδ j
√

j



∣∣∣∣∣∣∣

=: I1 + I2.

Clearly, since 1 is a bounded Lipschitz function, there exists a constant c > 0 such that |1(x)| ≤ c, |1(x) −
1(y)| ≤ c|x − y|, for any x, y ∈ R. As {X̄ ji} j≥1,i≤ j is a sequence of NA random variables, as well as Lemma 2.2
and condition δ2

n → EX2 < ∞ hold, we obtain that

I1 ≤ c
E

∣∣∣∑k
i=1(X̄ ji − EX̄ ji)

∣∣∣√
j

≤ c

√
E

(∑k
i=1(X̄ ji − EX̄ ji)

)2√
j

≤ c

√

kEX2√
j
≤ c

(
k
j

)1/2

.

It follows from the definition of negative association that
S̄k − ES̄k

βδk
√

k
,

∑ j
i=k+1(X̄ ji − EX̄ ji)

βδ j
√

j
are NA and the

assumption that 1 is a bounded function with bounded continuous derivatives. Thus, Lemma 2.3 of
Zhang [30] is applied with: f (x) := −

√
kI(x < −

√
k) + xI(|x| ≤

√
k) +

√
kI(x >

√
k), 1(y) := −

√
jI(y <

−
√

j) + yI(|y| ≤
√

j) +
√

jI(y >
√

j); the stationarity of {Xi}, and the facts that EX2 < ∞ and σ2 > 0 imply∑
∞

m=2 |Cov(X1,Xm)| < ∞. Therefore,

I2 ≤ −cCov

 S̄k − ES̄k
√

k
,

∑ j
i=k+1(X̄ ji − EX̄ ji)√

j


=

−c√
kj

Cov

 k∑
l=1

(X̄kl − EX̄kl),
j∑

i=k+1

(X̄ ji − EX̄ ji)


≤

−c√
kj

k∑
l=1

j∑
i=k+1

Cov(Xl,Xi)

≤
−c√

kj

k∑
l=1

j−l+1∑
m=k−l+2

Cov(X1,Xm)

≤
ck√
kj

∞∑
m=2

|Cov(X1,Xm)|

≤ c
(

k
j

)1/2

.

Hence, by Lemma 2.3, (14) holds.

Now, we prove (6). Let

ηk = f

 V̄2
k,1

kδ2
k,1

 − E f

 V̄2
k,1

kδ2
k,1

 for any 1 ≤ k < j.
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Since {X̄2
niI(X̄ni ≥ 0)}n≥1,i≤n is a sequence of NA random variables, we have δ2

j,1 → EX2I(X ≥ 0) and
0 < EX2I(X ≥ 0) < ∞. Thus, using Lemma 2.3 of Zhang [30] twice is used with: f (x) := x2I(0 ≤ x ≤
√

k) + kI(x >
√

k), 1(y) := y2I(0 ≤ y ≤
√

j) + jI(y >
√

j), we have for 1 ≤ k < j,

|Eηkη j| =

∣∣∣∣∣∣∣Cov

 f

 V̄2
k,1

kδ2
k,1

 , f

 V̄2
j,1

jδ2
j,1



∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣Cov

 f

 V̄2
k,1

kδ2
k,1

 , f

 V̄2
j,1

jδ2
j,1

 − f

 V̄2
j,1 −

∑k
i=1 X̄2

jiI(X̄ ji ≥ 0)

jδ2
j,1



∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣Cov

 f

 V̄2
k,1

kδ2
k,1

 , f

 V̄2
j,1 −

∑k
i=1 X̄2

jiI(X̄ ji ≥ 0)

jδ2
j,1



∣∣∣∣∣∣∣∣

≤ c
E

(∑k
i=1 X̄2

jiI(X̄ ji ≥ 0)
)

j
− cCov

 V̄2
k,1

k
,

V̄2
j,1 −

∑k
i=1 X̄2

jiI(X̄ ji ≥ 0)

j


≤ c

k
j
−

c
kj

k∑
l=1

j∑
i=k+1

Cov
(
X̄2

klI(X̄kl ≥ 0), X̄2
jiI(X̄ ji ≥ 0)

)
≤ c

k
j
−

c√
kj

k∑
l=1

j∑
i=k+1

Cov(Xl,Xi)

≤ c
k
j

+ c
(

k
j

)1/2

≤ c
(

k
j

)1/2

.

By Lemma 2.3, (6) holds. This completes the proof of Lemma 2.4.
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