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Fixed Point Theorem in Fuzzy Metric Spaces Using Altering Distance
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Abstract. The aim of the presented paper is to study the fixed point theorems in complete and compact
fuzzy metric spaces as improvement of some recent results (M.S. Khan, M. Swaleh, S. Sessa, 1984.)[20].
For this purpose, the condition of the maximum type defined by altering distance is used. The research is
illustrated by three examples.

1. Introduction

Famous Banach and Edelstein results [2], [10] have fundamental role in many fixed point theorems [1],
[3]-[9], [15], [17]-[20], [23]-[25], [27]-[29]. It is well known that the fuzzy metric spaces are a generalization
of the metric spaces, based on the theory of fuzzy sets [30]. Kramosil and Michalek [22] introduced a
fuzzy metric spaces performing the probabilistic metric spaces approach to the fuzzy settings. Further
on, George and Veeramani [13], [14] obtained a Hausdorff topology for specific fuzzy metric spaces with
important applications in quantum physics [11], [12]. Accordingly, many authors translated the various
contraction mappings from metric to fuzzy metric spaces, using different t-norms [21]. In 1984, M.S. Khan et
al. [20] improved the metric fixed point theory by introducing a control function called an altering distance
function.

Definition 1.1. [20] A function ψ : [0,∞)→ [0,∞) is an altering distance function if
(i) ψ is monotone increasing and continuous
(ii) ψ(t) = 0 if and only if t = 0.

Using the notion of altering distance Khan et al. generalized the Banach contraction principle in metric
spaces.

Theorem 1.2. [20] Let (X, d) be a complete metric space, ψ : [0,∞) → [0,∞) and f : X → X be a mapping which
satisfies the following inequality ψ(d( f x, f y)) ≤ aψ(d(x, y)) for all x, y ∈ X and for some 0 ≤ a < 1. Then f has a
unique fixed point.

This result was motivation for further studies in metric spaces, as well as in the probabilistic metric
spaces [6], [18], [23], [25]. Recently, Shen et al. [28] introduced the notion of altering distance in fuzzy
metric spaces and gave a fixed point results in complete and compact fuzzy metric spaces.
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Definition 1.3. [28] A function ϕ : [0, 1]→ [0, 1] is an altering distance if:
(P1) ϕ is strictly decreasing and left continuous;
(P2) ϕ(λ) = 0 if and only if λ = 1.

Obviously, we obtain that lim
λ→1−

ϕ(λ) = ϕ(1) = 0.

Theorem 1.4. [28] Let (X,M,T) be a complete fuzzy metric space and f a self- map on X and suppose that ϕ :
[0, 1] → [0, 1] satisfies properties (P1) and (P2). Furthermore, let k be a function from (0,∞) into (0, 1). If for any
t > 0, f satisfies the following condition:

ϕ(M( f (x), f (y), t)) ≤ k(t) · ϕ(M(x, y, t)), (1)

where x, y ∈ X and x , y, then f has a unique fixed point.

Theorem 1.5. [28] Let (X,M,T) be a compact fuzzy metric space and f a continuous self- map on X and suppose
that ϕ : [0, 1]→ [0, 1] satisfies properties (P1) and (P2). If for any t > 0, f satisfies the following condition:

ϕ(M( f (x), f (y), t)) < ϕ(M(x, y, t)), (2)

where x, y ∈ X and x , y, then f has a unique fixed point.

The main purpose of this paper is to improve mentioned results introducing more general contraction
condition.

Now, we give basic definitions.

Definition 1.6. [27] A mapping T : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (a t-norm) if the following
conditions are satisfied:

(a) T(a, 1) = a for all a ∈ [0, 1];

(b) T(a, b) = T(b, a) for all a, b ∈ [0, 1];

(c) a ≥ b, c ≥ d⇒ T(a, c) ≥ T(b, d) (a, b, c, d ∈ [0, 1]);

(d) T(a,T(b, c)) = T(T(a, b), c) (a, b, c ∈ [0, 1]).

Basic t-norms [21] are TM(x, y) = min(x, y), TP(x, y) = x · y, TL(x, y) = max(x + y − 1, 0).

Definition 1.7. [13] The 3-tuple (X, M, T) is a fuzzy metric space if X is an arbitrary set, T is a continuous t-norm
and M is a fuzzy set on X2

× (0, ∞) satisfying the following conditions:

(a) M(x, y, t) > 0, for all x, y ∈ X, t > 0,

(b) M(x, y, t) = 1 for all t > 0⇔ x = y,

(c) M(x, y, t) = M(y, x, t), for all x, y ∈ X, t > 0,

(d) T(M(x, y, t), M(y, z, s)) ≤M(x, z, t + s), for all x, y, z ∈ X, t, s > 0,

(e) M(x, y, ·) : (0, ∞)→ [0, 1] is continuous for all x, y ∈ X.

Lemma 1.8. [15] M(x, y, ·) is non-decreasing for all x, y ∈ X.

Let (X, M, T) be a fuzzy metric space, and τ = {B(x, r, t) : x ∈ X, r ∈ (0, 1), t > 0}, where B(x, r, t) = {y :
y ∈ X, M(x, y, t) > 1 − r}. Then τ is a Hausdorff and first countable topology on X induced by the fuzzy
metric M [13], [16].

Definition 1.9. [13], [15] Let (X, M, T) be a fuzzy metric space.
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(a) A sequence {xn}n∈N in X is a Cauchy sequence if for all ε ∈ (0, 1), t > 0 there exists n0 ∈ N such that
M(xn, xm, t) > 1 − ε for all n, m ≥ n0.

(b) A sequence {xn}n∈N in X converges to x if for all ε ∈ (0, 1), t > 0 there exists n0 ∈N such that M(xn, x, t) > 1−ε
for all n ≥ n0.

(c) A fuzzy metric space is complete if every Cauchy sequence is convergent .

(d) A fuzzy metric space is compact if every sequence in X has a convergent subsequence.

It is known [13] that in a fuzzy metric space every compact set is closed and bounded.

Proposition 1.10. [26] Let (X,M,T) be a fuzzy metric space. Then M is a continuous function on X × X × (0,∞).

2. Main Results

In the sequel the generalization of results given in Theorems 1.4. and 1.5. with appropriate examples
will be presented.

Theorem 2.1. Let (X,M,T) be a complete fuzzy metric spaces and f : X → X. Let function ϕ : [0, 1] → [0, 1]
satisfies the conditions (P1) and (P2). If there exist function k : (0,∞)→ (0, 1) such that:

ϕ(M( f (x), f (y), t)) ≤ k(t) ·max{ϕ(M(x, f (x), t)), ϕ(M(y, f (y), t)), ϕ(M(x, y, t))}, (3)

for any x, y ∈ X, x , y, t > 0, then f has a unique fixed point.

Proof. Let x0 be arbitrary point in X and let xn+1 = f xn, ∀n ∈ N0. Trivially, if xn0+1 = f xn0 = xn0 , for some
n0 ∈ N0, then xn0 is a fixed point of f . Further, we assume that xn , xn+1, n ∈ N0. According to (3), with
x = xn−1 and y = xn, we have that

ϕ(M(xn, xn+1, t)) ≤ k(t) ·max{ϕ(M(xn−1, xn, t)), ϕ(M(xn, xn+1, t)), ϕ(M(xn−1, xn, t))}, t > 0. (4)

for every n ∈N. Suppose that max{ϕ(M(xn−1, xn, t)), ϕ(M(xn, xn+1, t))} = ϕ(M(xn, xn+1, t)) for some n ∈N and
some t > 0. Then

ϕ(M(xn, xn+1, t)) ≤ k(t) · ϕ(M(xn, xn+1, t)) < ϕ(M(xn, xn+1, t)).

Therefore,

ϕ(M(xn, xn+1, t)) ≤ k(t) · ϕ(M(xn−1, xn, t)), n ∈N, t > 0. (5)

Repeating the same process we conclude that

ϕ(M(xn, xn+1, t)) ≤ (k(t))n
· ϕ(M(x0, x1, t)), n ∈N. (6)

Letting n→∞we have

lim
n→∞

ϕ(M(xn, xn+1, t)) = 0, (7)

and since the function ϕ left-continuous, by (P2), we get

lim
n→∞

M(xn, xn+1, t) = 1. (8)

Lets prove, by contradiction, that {xn} is a Cauchy sequence in (X,M,T). Suppose that there exist 0 < ε < 1
and two sequences of integers {p(n)} and {q(n)} such that

p(n) > q(n) > n,∀n ∈N0, (9)
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M(xp(n), xq(n), t) ≤ 1 − ε and M(xp(n)−1, xq(n), t) > 1 − ε, n ∈N0, t > 0. (10)

By (8) follows that for any ε1 and ε2 (0 < ε2 < ε1 < ε) there exist a positive integers n1 and n2 such that

M(xp(n), xp(n)−1, t) ≥ 1 − ε1, M(xq(n), xq(n)−1, t) ≥ 1 − ε1, n > n1, t > 0. (11)

M(xq(n), xq(n)−1,
t
2

)) ≥ 1 − ε2, n > n2, t > 0. (12)

Also, by Definition 1.7,

M(xp(n)−1, xq(n)−1, t) ≥ T(M(xp(n)−1, xq(n),
t
2

),M(xq(n), xq(n)−1,
t
2

)), n > n1, t > 0. (13)

Now, by (10), (12), (13) and Definition 1.6. follows that

M(xp(n)−1, xq(n)−1, t) ≥ T(1 − ε, 1 − ε2), (14)

for all n > max{n1,n2}. Since ε2 is arbitrary and T is continuous we have

M(xp(n)−1, xq(n)−1, t) ≥ T(1 − ε, 1) = 1 − ε, as n→∞. (15)

Applying (3), (10), (11) and (15) we get contradiction:

ϕ(1 − ε) < ϕ(M(xp(n), xq(n), t)
≤ k(t) ·max{ϕ(M(xp(n)−1, xp(n), t)), ϕ(M(xq(n)−1, xq(n), t)), ϕ(M(xp(n)−1, xq(n)−1, t))} (16)
≤ k(t) ·max{ϕ(1 − ε), ϕ(1 − ε), ϕ(1 − ε)} < ϕ(1 − ε), as n→∞.

If it is not possible to find sequences {p(n)} and {q(n)} with properties (9) and (10) then there exists n0 ∈ N0
such that M(xn0+s+2, xn0+s+1, t) ≤ 1 − ε, for any s ∈ N. Moreover, {M(xn0+s+2, xn0+s+1, t)} is a monotone and
bounded sequence, for any t > 0, i.e. lim

s→0
M(xn0+s+2, xn0+s+1, t) = α, for some α ∈ (0, 1 − ε]. Then,

ϕ(M(xn0+s+2, xn0+s+1, t)) (17)

≤ k(t) ·max{ϕ(M(xn0+s+2, xn0+s+1, t)), ϕ(M(xn0+s+1, xn0+s, t)), ϕ(M(xn0+s+1, xn0+s, t))}, t > 0.

Letting s→∞ in (17), we get

ϕ(α) ≤ k(t) ·max{ϕ(α), ϕ(α), ϕ(α)} < ϕ(α), (18)

which is a contradiction. Hence, {xn} is a Cauchy sequence, and since (X,M,T) is complete space there exists
x ∈ X such that lim

n→∞
xn = x. By (3), with x = xn−1 and y = x, we have

ϕ(M(xn, f (x), t)) ≤ k(t) ·max{ϕ(M(xn−1, xn, t)), ϕ(M(x, f (x), t)), ϕ(M(xn−1, x, t))}, n ∈N, t > 0. (19)

If we take n→∞ in (19) we have

ϕ(M(x, f (x), t)) ≤ k(t) ·max{ϕ(1), ϕ(M(x, f (x), t)), ϕ(1)} = k(t) · ϕ(M(x, f (x), t)), t > 0, (20)

i.e.

(1 − k(t)) · ϕ(M(x, f (x), t)) ≤ 0, t > 0. (21)

We conclude that ϕ(M(x, f (x), t)) = 0. Now, by Definition 1.7 and (P2) follows that M(x, f (x), t) = 1, i.e.
x = f (x). We will show that x is a unique fixed point. Assume that there exist another fixed point v such
that v , x. We use (3) to obtain contradiction:

ϕ(M(x, v, t)) = ϕ(M( f (x), f (v), t)) (22)

≤ k(t) ·max{ϕ(M(x, f (x), t)), ϕ(M(v, f (v), t)), ϕ(M(x, v, t)))} < ϕ(M(x, v, t)), t > 0.
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Remark 2.2. (i) Obviously, in comparison to the (1) condition (3) has advantage when M( f (x), f (y), t) = M(x, y, t),
for some x, y ∈ X, x , y, t > 0.

(ii) With appropriate changes in the proof of Theorem 2.1. condition (3) could be replaced by another one:

ϕ(M( f (x), f (y), t)) (23)

≤ k1(t) ·min{ϕ(M( f (x), y, t)), ϕ(M(x, f (x), t)), ϕ(M(x, f (y), t)), ϕ(M(y, f (y), t))} + k2(t) · ϕ(M(x, y, t)),

x, y ∈ X, x , y, t > 0, where k1 : (0,∞) → [0, 1), k2 : (0,∞) → (0, 1), k1(t) + k2(t) < 1. Trivially, if we take
k1(t) = 0, t > 0 we have generalization of condition (1).

Example 2.3. Let X = {A,B,C,D,E} be subset ofR2,where A(0, 0),B(1, 0),C(0, 1),D(2, 0), E(0,−2). Let f : X→ X
is defined by

f (A) = f (C) = f (D) = A, f (B) = C, f (E) = D.

Let ϕ(τ) = 1 −
√
τ, τ ∈ [0, 1] and M(x, y, t) = e−

2d(x,y)
t , t > 0, where by d(x, y) is denoted Euclidean distance in R2.

Note that, by (X,M,T) is given a complete fuzzy metric space with respect to the t− norm Tp(x, y) = x · y. Also, ϕ
satisfies conditions (P1) and (P2) and function k : (0,∞)→ (0, 1) defined by

k(t) =


1 − e−

5
t , t ∈ (0, 2]

t
t + 1

5

, t ∈ (2,∞)

satisfies condition (3). So, by Theorem 2.1. follows that f has a unique fixed point. On the other hand, if we take
points A and B condition (1) is not satisfied, i.e.

1 − e−
1
t > k(t) (1 − e−

1
t ), t ∈ (0, 2].

The same holds for pairs (A,E), (B,D) and (B,E).

Example 2.4. Let X ⊆ R2 and f : X → X is defined the same as in Example 2.3. Let ϕ(τ) = 1 − τ, τ ∈ [0, 1]

and M(x, y, t) =
t

t + d(x, y)
, t > 0. By (X,M,T) is given a complete fuzzy metric space with respect to the t− norm

Tp(x, y) = x · y and ϕ satisfies conditions (P1) and (P2). Function k : (0,∞)→ (0, 1) defined by

k(t) =


e4

t + e4 , t ∈ (0, 1]
t

t + 1
e4

, t ∈ (1,∞)

satisfies condition (3) and by Theorem 2.1 follows that f has a unique fixed point. Again, condition (1) is not satisfied
for pairs (A,B), (A,E) and (B,D).

Theorem 2.5. Let (X,M,T) be a compact fuzzy metric spaces and f : X→ X be a continuous function. Let function
ϕ : [0, 1]→ [0, 1] satisfies the conditions (P1) and (P2). If

ϕ(M( f (x), f (y), t)) < max{ϕ(M(x, f (x), t)), ϕ(M(y, f (y), t)), ϕ(M(x, y, t))}, x, y ∈ X, x , y, t > 0, (24)

then f has a unique fixed point.

Proof. Let x0 ∈ X.We define sequence xn+1 = f (xn),n ∈N0 and suppose that xn+1 , xn,n ∈N0. Since (X,M,T)
is compact, sequence {xn}n∈N0 has a subsequence {xk(n)}n∈N0 such that lim

n→∞
xk(n) = x, x ∈ X. Then, there is a

sequence of natural numbers {pn}n∈N0 such that xk(n)+pn = xk(n+1), n ∈N0. We have the following relations:

lim
n→∞

xk(n) = lim
n→∞

xk(n+1) = lim
n→∞

xk(n)+pn = x,
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lim
n→∞

f (xk(n)) = lim
n→∞

xk(n)+1 = f (x), lim
n→∞

f (xk(n)+1) = f 2(x).

Suppose that f (x) , x. By (24), for every n ∈N0, we have

ϕ(M(xk(n+1), f (xk(n+1)), t)) = ϕ(M(xk(n)+pn , xk(n)+pn+1, t)) (25)

< max{ϕ(M(xk(n)+pn−1, xk(n)+pn , t)), ϕ(M(xk(n)+pn , xk(n)+pn+1, t)), ϕ(M(xk(n)+pn−1, xk(n)+pn , t))}.

If ϕ(M(xk(n)+pn , xk(n)+pn+1, t)) = max{ϕ(M(xk(n)+pn−1, xk(n)+pn , t)), ϕ(M(xk(n)+pn , xk(n)+pn+1, t))} we get a contradic-
tion. So,

ϕ(M(xk(n)+pn , xk(n)+pn+1, t)) < ϕ(M(xk(n)+pn−1, xk(n)+pn , t)).

After pn − 1 iteration we have

ϕ(M(xk(n+1), f (xk(n+1)), t)) < ϕ(M(xk(n)+1, f (xk(n)+1), t)), n ∈N0, t > 0. (26)

Letting n→∞ in (26) and using (24) we get

ϕ(M(x, f (x), t)) ≤ ϕ(M( f (x), f 2(x), t))
< max{ϕ(M(x, f (x), t)), ϕ(M( f (x), f 2(x), t)), ϕ(M(x, f (x), t))}, t > 0,

which leads to a contradiction. Hence, we get the existence of a fixed point of mapping f and uniqueness
can be proved analogous as in Theorem 2.1.

Remark 2.6. (i) As an alternative for given proof it could be used the fact that continuous function has minimum
and maximum on compact set. For fixed t > 0 we define continuous function h(x) = ϕ(M(x, f (x), t)), h : X→ [0, 1].
Then, there is x0 ∈ X such that

inf
x∈X

ϕ(M(x, f (x), t)) = ϕ(M(x0, f (x0), t)). (27)

If we suppose that x0 , f (x0) then by condition (24) follows

ϕ(M( f (x0), f 2(x0), t)) < max{ϕ(M(x0, f (x0), t)), ϕ(M( f (x0), f 2(x0), t)), ϕ(M(x0, f (x0), t))}

and we get a contradiction because of (27). So, x0 is a fixed point.
(ii) Note that, in Theorem 1.5 it is not necessary to suppose that f is continuous. In fact, continuity of f is used

only to show that

lim
n→∞

xk(n)+1 = f (x) and lim
n→∞

xk(n)+2 = f 2(x). (28)

By condition (2) we have that

ϕ(M( f (xk(n)), f (x), t)) < ϕ(M(xk(n), x, t)), t > 0, n ∈N.

Since ϕ is left-continuous and M is continuous we have

ϕ(M( lim
n→∞

xk(n)+1, f (x), t)) ≤ ϕ(M( lim
n→∞

xk(n), x, t)) = 0, t > 0.

So, the first relation in (28) is proved and in the similar way one could show the second one.

Example 2.7. Let (X,M,T) be a compact fuzzy metric space, X = [0, 1], Tp(x, y) = x · y, M(x, y, t) = e−
d(x,y)

t , x, y ∈
X, t > 0, where by d(x, y) is denoted Euclidean distance inR. Altering distance is defined by ϕ(τ) = 1− τ, τ ∈ [0, 1].
We observe continuous function

f (x) =



1, x ∈
[
0,

7
10

]
11 − 10x

4
x ∈

( 7
10
,

3
4

)
x + 1

2
, x ∈

[3
4
, 1

] .
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If we take points x = 3
4 − ε, y = 3

4 + ε, 0 < ε < 0.05, then | f (x) − f (y)| = |x − y| and condition (2) does not hold.
On the other hand,

| f (x) − x| > | f (x) − f (y)|, x ∈
[
0,

3
4

)
, y ∈ [0, 1], x , y

and
| f (x) − f (y)| =

1
2
|x − y|, x, y ∈

[3
4
, 1

]
, x , y.

Hence, condition (24) is satisfied for every x, y ∈ [0, 1], x , y, t > 0, and by Theorem 2.5 follows that f has a unique
fixed point.

3. Conclusion

In this paper the fixed point theorems in complete and compact fuzzy metric spaces using altering
distance are studied. It is shown that condition of maximum type is convenient for that purpose. The
advantages of given condition are justified by three examples.
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