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Abstract. The authors define a semi-symmetric non-holonomic (SSNH)-projective connection on sub-
Riemannian manifolds and find an invariant of the SSNH-projective transformation. The authors further
derive that a sub-Riemannian manifold is of projective flat if and only if the Schouten curvature tensor of a
special SSNH-connection is zero.

1. Introduction

Since A. Friedmann and J. A. Schouten [8], in the early days of 1924, firstly introduced the concept of
semi-symmetric linear connections, the research related to the semi-symmetric connection was unusually
brilliant, and made a series of fruitful research results.

K. Yano [21] introduced and studied the semi-symmetric metric connection of Riemannian manifolds.
N. S. Agashe and M. R. Chafle [1] introduced a semi-symmetric non-metric connection on a Riemannian
manifold and this was further studied by U. C. De etc. [4–7], T. Imai [15], P. B. Zhao and H. Z. Song [27],
and so on.

D. K. Sen and J. R. Vastane [19] studied the Weyl manifold by using the idea of semi-symmetric
connections. Later the Weyl structure was extended in the semi-Riemannian distribution framework by
O. Constantinescu and M. Crasmareanu, see [3]. I. Hinterleitner and J. Mikeš [13] studied the geodesic
mappings onto Weyl manifolds. M. Tripathi and N. Nakkar [20] studied the semi-symmetric non-metric
connection in a Kenmotsu manifold. B. Barua and A. K. Ray [2] studied the curvature properties of semi-
symmetric metric connections and derived a sufficient and necessary condition for the Ricci tensor being
of symmetric.

H. B. Yilmaz, F. O. Zengin and S. Aynur Uysal [22] considered a manifold equipped with a semi-
symmetric metric connection whose torsion tensor satisfied a special condition and proved that if a manifold
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mentioned as above was conformally flat, then it was a mixed quasi-Einstein manifold. F. Y. Fu, X. P. Yang
and P. B. Zhao [9] considered the geometric and physical properties of conformal mappings for the semi-
Riemannian manifolds.

J. Mikeš [17, 18] studied the projective and geodesic mappings of special Riemannian spaces. F. Y. Fu and
P. B. Zhao [10] studied the geodesic mapping of pseudo-symmetric Riemannian Manifolds. In particular,
the second author [23] recently studied the conformal and projective characteristics of sub-Riemannian
manifolds by using the so-called non-holonomic sub-Riemannian connection. I. Hinterleitner [11] studied
geodesic mappings on compact Riemannian manifolds. I. Hinterleitner and J. Mikeš [12, 13, 16] studied
projective and affine connections. M. Zlatanović and etc. [24–26] studied geodesic mappings and similar
problems.

However, to the author’s knowledge, the study of geometric and analysis in sub-Riemannian manifolds
on view of the semi-symmetric metric connection in sub-Riemannian manifolds is still a gap.

In this paper, we will, based on the setting of [14], investigate a class of semi-symmetric non-holonomic
connections, find the sub-Weyl projective invariant, and study the projective flatness of sub-Riemannian
manifolds.

2. The SSNH-Projective Transformation

Let (M,4, 14) be a n-dimensional sub-Riemannian manifold, where 4 is a `-dimensional sub-bundle
of tangent bundles, and is called a horizontal bundle, and 14 is a Riemannian metric defined on 4. In
particular, when 4 = TM, (M,4, 14) will be degenerated into a Riemanian manifold. Without loss of
generality, we assume 4 , TM. In this subsection, we will define a semi-symmetric non-holonomic(SSNH)
metric connection and discuss the SSNH-projective transformation following the work in [14].

We use unless otherwise noted the following ranges for indices: i, j, k, h, · · · ∈ {1, · · · , `}. The repeated
indices with one upper index and one lower index indicates the summation over their range. The projection
of X on the horizontal bundle is denoted by Xh.

Definition 2.1. A non-holonomic connection on sub-bundle Q ⊂ TM is a mapping ∇ : Γ(Q) × Γ(Q) → Γ(Q)
satisfying the following

∇Xh (Yh + Zh) = ∇Xh Yh + ∇Xh Zh,∇Xh ( f Yh) = Xh( f )Yh + f∇Xh Yh,∇ f Xh+1Yh Zh = f∇Xh Zh + 1∇Yh Zh,

where X, Y, Z ∈ Γ(TM), f , 1 ∈ C∞(M).

Definition 2.2. A non-holonomic connection is said to be metric and symmetric if it satisfies respectively,

(∇Zh1∆)(Xh,Yh) = Zh(1∆(Xh,Yh)) − 1∆(∇Zh Xh,Yh) − 1∆(Xh,∇Zh Yh) = 0,
T(Xh,Yh)) = ∇Xh Yh − ∇Yh Xh − [Xh,Yh]h = 0.

Definition 2.3. A non-holonomic connection is said to be a sub-Riemannian connection if it is both metric and
symmetric.

Definition 2.4. A horizontal curve γ(t) : [0, 1] → M (i.e. γ̇(t) ∈ ∆γ(t)) is said to be a sub-Riemannian parallel (in
briefly, SR-parallel) curve if it satisfies

∇γ̇γ̇ = 0, (1)

where ∇ is the sub-Riemannian connection.

Let γ : xa = xa(t), the corresponding equation (1) is

d2xk

dt2 + {ki j}
dxi

dt
dx j

dt
= 0, (2)

where t is an affine parameter.
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Definition 2.5. Let D1,D2 be two classes of non-holonomic connections. If a SR-parallel curve corresponding to D1
coincides always with one corresponding to D2, then we say that D1 is a projective correspondence to D2.

The second author [23] proved that a non-holonomic symmetric connection D is a projective correspondence
if and only if there exists a smooth horizontal 1-form ϕ (i.e. a 1-form defined on 4), such that, for any two
horizontal vector fields Xh,Yh, there holds

DXh Yh = ∇Xh Yh + ϕ(Xh)Yh + ϕ(Yh)Xh. (3)

If D is a non-holonomic connection with torsion, then we have the following

Proposition 2.6. A non-holonomic connection D with torsion is a projective correspondence to ∇ if and only if there
exists 1-form λ such that the symmetric part of tensor A(Xh,Yh) = DXh Yh − ∇Xh Yh is of the form

(A(Xh,Yh) + A(Yh,Xh))/2 = λ(Xh)Yh + λ(Yh)Xh, for X,Y ∈ Γ(TM). (4)

Proof. The necessity is obvious. We only prove the sufficiency. If (4) holds, we denote by (DXh Yh+DYh Xh)/2 =
D̃Xh Yh, (∇Xh Yh + ∇Yh Xh)/2 = ∇̃Xh Yh, then (4) is equivalent to D̃Xh Yh − ∇̃Xh Yh = λ(Xh)Yh + λ(Yh)Xh. Hence D̃
and ∇̃ have the same SR-parallel curves by (3).

On the other hand, if γ(t) is a SR-parallel curve of D, then γ(t) is also a SR-parallel curve of D̃ by a simple
computation. Hence D̃ and D also have the same SR-parallel curves, so do ∇̃ and ∇. Therefore, D and ∇
have the same SR-parallel curves, namely, D is a projective correspondence of ∇.

Definition 2.7. If ∇̄ is a projective correspondence to ∇ with torsion,

T̄(Xh,Yh) = π(Yh)Xh − π(Xh)Yh, (5)

where π is a given 1-form, then we say that ∇̄ is a semi-symmetric non-holonomic projective connection, in briefly, a
SSNH-projective connection.

Theorem 2.8. ∇̄ is a SSNH-projective connection if and only if there exist two 1-form p, q such that

∇̄Xh Yh = ∇Xh Yh + p(Xh)Yh + q(Yh)Xh, (6)

for any X,Y ∈ Γ(TM).

Proof. Let A(Xh,Yh) = ∇̄Xh Yh − ∇Xh Yh. Since ∇̄ is a SSNH-projective connection, from Proposition 2.6, there
exists a smooth 1-form ϕ such that

(A(Xh,Yh) + A(Yh,Xh))/2 = ϕ(Xh)Yh + ϕ(Yh)Xh, f orX,Y ∈ TM (7)

and 1-form π such that the torsion of ∇̄ is of the form T̄(Xh,Yh) = π(Yh)Xh − π(Xh)Yh, we can deduce from
the above equation

A(Xh,Yh) − A(Yh,Xh) = π(Yh)Xh − π(Xh)Yh. (8)

By (6) and (8), we arrive at A(Xh,Yh) = (ϕ − π/2)(Xh)Yh + (ϕ + π/2)(Yh)Xh for p = ϕ − π/2, q = ϕ + π/2.
Conversely, we assume ∇̄Xh Yh = ∇Xh Yh + p(Yh)Xh + q(Xh)Yh, then

(A(Xh,Yh) + A(Yh,Xh))/2 =
p + q

2
(Yh)Xh +

p + q
2

(Xh)Yh,

A(Xh,Yh) − A(Yh,Xh) = (p − q)(Yh)Xh − (p − q)(Xh)Yh.

By virtue of Proposition 2.6 again, we know ∇̄ is a projective correspondence to ∇, and we get

T̄(Xh,Yh) = ∇̄Xh Yh − ∇̄Yh Xh − [Xh,Yh]h = (p − q)(Yh)Xh − (p − q)(Xh)Yh.

Let π = p − q, then T̄(Xh,Yh) = π(Yh)Xh − π(Xh)Yh.
This completes the proof of Theorem 2.8.
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In a basis {ei}, (6) can be rewritten as

Γ̄k
i j = {ki j} + piδ

k
j + q jδ

k
i = {ki j} + ϕiδ

k
j + ϕ jδ

k
i + ρ jδ

k
i − ρiδ

k
j ,

where ρi = πi/2, pi = ϕi−ρi, qi = ϕi +ρi. The Schouten curvature tensor, Ricci tensor and sub-Weyl projective
curvature tensor are given, respectively, as

R̄h
ijk = Rh

ijk + βi jδh
k + αikδh

j − α jkδh
i − δ

h
kΩ

s
i jps −Ωh

ijpk,

R̄ jk = R jk + βkj − (` − 1)α jk −Ωs
k jps −Ωε

ε jpk,

Wh
ijk = Rh

ijk + 1
`−1 (δh

j Rik − δh
i R jk),

(9)

where

βi j = (∇ip)(e j) − (∇ jp)(ei) = ϕi j − ϕ ji + ρ ji − ρi j,

αi j = (∇iq)(e j) − q(ei)q(e j) = ϕi j + ρi j − ϕiρ j − ϕ jρi,

ϕi j = ei(ϕ j) − Γe
i jϕe − ϕiϕ j = ∇iϕ j − ϕiϕ j,

ρi j = ei(ρ j) − Γe
i jρe − ρiρ j = ∇iρ j − ρiρ j,

R jk = Rε
ε jk, R̄ jk = R̄ε

ε jk.

(10)

Theorem 2.9. The tensor Sh
ijk is an invariant under a SSNH-projective transformation, where

Sh
ijk = Rh

ijk +
1

` − 1
(δh

j Rik − δ
h
i R jk)

+
1

(` − 1)(`2 − ` − 2)
{δh

j (Rik − Rki) − δh
i (R jk − Rkj) − (` − 1)δh

k(Ri j − R ji)}

+
1

`2 − ` − 2
{δh

j Aik − δ
h
i A jk − (` − 1)δh

kAi j}, (11)

and Ai j = Rs
i js.

Proof. For simplicity, we choose {ei} as a local frame field such that [ei, e j] ∈ VM, and hence we have Ωh
ij = 0.

Then the Schouten curvature tensors and Ricci curvature tensors can be written simply as

R̄h
ijk = Rh

ijk + βi jδ
h
k + αikδ

h
j − α jkδ

h
i and R̄ jk = R jk + βkj − (` − 1)α jk,

Let k = h = ε, and denote by Ai j = Rεi jε, Āi j = R̄εi jε, one obtains

Āi j = Ai j + `βi j + αi j − α ji,

hence one arrives at

β jk =
1

`2 − ` − 2
[(R̄ jk − R̄kj) − (R jk − Rkj) + (` − 1)(Ā jk − A jk)],

α jk =
1

` − 1
(R jk − R̄ jk) −

1
(` − 1)(`2 − ` − 2)

[(R̄ jk − R̄kj) − (R jk − Rkj)]

−
1

(` − 1)(`2 − ` − 2)
(Ā jk − A jk).
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moreover one has

R̄h
ijk = Rh

ijk +
δh

k

`2 − ` − 2
[(R̄i j − R̄ ji) − (Ri j − R ji) + (` − 1)(Āi j − Ai j)]

+
δh

j

` − 1
(Rik − R̄ik) −

δh
j

(` − 1)(`2 − ` − 2)
[(R̄ik − R̄ki) − (Rik − Rki)]

−

δh
j

(` − 1)(`2 − ` − 2)
(Āik − Aik) −

δh
i

` − 1
(R jk − R̄ jk)

+
δh

i

(` − 1)(`2 − ` − 2)
[(R̄ jk − R̄kj) − (R jk − Rkj)]

+
δh

i

(` − 1)(`2 − ` − 2)
(Ā jk − A jk).

Rewriting the above equation by

R̄h
ijk −

δh
k

`2 − ` − 2
(R̄i j − R̄ ji) +

` − 1
`2 − ` − 2

δh
kĀi j +

1
` − 1

δh
j R̄ik

+
1

(` − 1)(`2 − ` − 2)
δh

j (R̄ik − R̄ki) +
1

(` − 1)(`2 − ` − 2)
δh

j Āik

−
1

` − 1
δh

i R̄ jk −
1

(` − 1)(`2 − ` − 2)
δh

i (R̄ jk − R̄kj) −
1

(` − 1)(`2 − ` − 2)
δh

i Ā jk

= Rh
ijk −

δh
k

`2 − ` − 2
(Ri j − R ji) +

` − 1
`2 − ` − 2

δh
kAi j +

1
` − 1

δh
j Rik

+
1

(` − 1)(`2 − ` − 2)
δh

j (Rik − Rki) +
1

(` − 1)(`2 − ` − 2)
δh

j Aik

−
1

` − 1
δh

i R jk −
1

(` − 1)(`2 − ` − 2)
δh

i (R jk − Rkj) −
1

(` − 1)(`2 − ` − 2)
δh

i A jk,

that is

R̄h
ijk +

1
` − 1

(δh
j R̄ik − δ

h
i R̄ jk) +

1
(` − 1)(`2 − ` − 2)

{δh
j (R̄ik − R̄ki) − δh

i (R̄ jk − R̄kj)

−(` − 1)δh
k(R̄i j − R̄ ji)} +

1
`2 − ` − 2

{δh
j Āik − δ

h
i Ā jk − (` − 1)δh

kĀi j}

= Rh
ijk +

1
` − 1

(δh
j Rik − δ

h
i R jk) +

1
(` − 1)(`2 − ` − 2)

{δh
j (Rik − Rki) − δh

i (R jk − Rkj)

−(` − 1)δh
k(Ri j − R ji)} +

1
`2 − ` − 2

{δh
j Aik − δ

h
i A jk − (` − 1)δh

kAi j}.

Denote by

S̄h
ijk = R̄h

ijk +
1

` − 1
(δh

j R̄ik − δ
h
i R̄ jk) +

1
(` − 1)(`2 − ` − 2)

{δh
j (R̄ik − R̄ki) − δh

i (R̄ jk − R̄kj)

−(` − 1)δh
k(R̄i j − R̄ ji)} +

1
`2 − ` − 2

{δh
j Āik − δ

h
i Ā jk − (` − 1)δh

kĀi j},

and

Sh
ijk = Rh

ijk +
1

` − 1
(δh

j Rik − δ
h
i R jk) +

1
(` − 1)(`2 − ` − 2)

{δh
j (Rik − Rki) − δh

i (R jk − Rkj)

−(` − 1)δh
k(Ri j − R ji)} +

1
`2 − ` − 2

{δh
j Aik − δ

h
i A jk − (` − 1)δh

kAi j}.
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then one obtains Sh
ijk = S̄h

ijk. This ends the proof of Theorem 2.9.

We now similarly define the sub-Weyl projective curvature tensor of the SSNH-projective connection by

W̄h
ijk = R̄h

ijk +
1

` − 1
(δh

j R̄ik − δ
h
i R̄ jk), (12)

then we have

W̄h
ijk = Wh

ijk + δh
k(βi j −Ωs

i jps) +
1

` − 1
(δh

jβik − δ
h
i β jk)

−
1

` − 1
(δh

j Ω
s
ki − δ

h
i Ω

s
k j)ps − [Ωh

ij −
1

` − 1
(δh

j Ω
ε
iε − δ

h
i Ω

ε
jε)]pk.

We denote by

Bh
ijk = δh

k(βi j −Ωs
i jps) +

1
` − 1

(δh
jβik − δ

h
i β jk)

−
1

` − 1
(δh

j Ω
s
ki − δ

h
i Ω

s
k j)ps − [Ωh

ij −
1

` − 1
(δh

j Ω
ε
iε − δ

h
i Ω

ε
jε)]pk,

then it is obvious that W̄h
ijk = Wh

ijk + Bh
ijk.

Definition 2.10. If the 1-form p and q in (6) are horizontally closed, that is,

dp(Xh,Yh) = Xh(p(Yh)) − Yh(p(Xh)) − p([Xh,Yh]h) = 0,
dq(Xh,Yh) = Xh(q(Yh)) − Yh(q(Xh)) − q([Xh,Yh]h) = 0,

then we call a SSNH-projective connection ∇̃ the special SSNH-projective connection.

Theorem 2.11. The sub-Weyl projective curvature tensor is an invariant under a special SSNH-projective transfor-
mation.

Proof. If ∇̃ is a special SSNH-projective connection, then the 1-form p and q in (9) are all horizontally closed.
Therefore there holds

0 = dp(ei, e j) = ei(p j) − ei(p j) − p([ei, e j]h) = ϕi j − ϕ ji + ρi j − ρ ji,

0 = dq(ei, e j) = ei(q j) − ei(q j) − q([ei, e j]h) = ϕi j − ϕ ji + ρ ji − ρi j.

By adding above two equations one gets ϕi j = ϕ ji, and ρi j = ρ ji by subtracting these equations. Then one
obtains βi j = 0 and

R̃h
ijk = Rh

ijk + αikδ
h
j − α jkδ

h
i ,

Contracting by i and h, one gets

R̃ jk = R jk − (` − 1)α jk,

Therefore, one obtains

W̃h
ijk = R̃h

ijk +
1

` − 1
(δh

j R̃ik − δ
h
i R̃ jk)

= Rh
ijk + αikδ

h
j − α jkδ

h
i +

1
` − 1

δh
j (Rik − (` − 1)αik) −

1
` − 1

δh
i (R jk − (` − 1)α jk)

= Wh
ijk.

The proof is finished.
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Remark 2.12. It is obvious that a projectively flat sub-Riemannina manifold is transformed to a projectively flat
sub-Riemannina manifold by a SSNH-projective transformation.

Theorem 2.13. A sub-Riemannian manifold (M,4, 14) is projective flat if and only if the Schouten curvature tensor
R̃ of the special SSNH-projective connection D̃ is vanished.

Proof. If ∇̃ is a special SSNH-projective connection and

R̃h
ijk = Rh

ijk + βi jδ
h
k + αikδ

h
j − α jkδ

h
i = 0, (13)

then by contracting (13) with i, h, we have R̃ jk = R jk + βkj − (` − 1)α jk = 0. Since ∇̃ is special, then the 1-form
p is horizontally closed. Hence we get βi j = 0, and

Rh
ijk = α jkδ

h
i − αikδ

h
j , Rik = (` − 1)αik, (14)

By substituting (14) into the following equation

Wh
ijk = Rh

ijk +
1

` − 1
(δh

j Rik − δ
h
i R jk),

we obtain Wh
ijk = 0, that is, M is projectively flat.

Conversely, if M is projectively flat, then Wh
ijk = 0, and Rh

ijk = 1
`−1 (δh

i R jk−δh
j Rik), namely, Ri jkh = 1

`−1 (1ihR jk−

1 jhRik). Since Ri jhh = 0, we get Rik = R
` 1ik. If the 1-form p is horizontally closed, then the equation

R̃i j = Ri j + βi j − (` − 1)αi j = 0 is equivalent to

(∇iq)(e j) − qiq j =
R

`(` − 1)
1i j, (15)

where (∇iq)(e j) − qiq j = αi j.
Now taking a covariant derivative of Equation (15), we get

(∇i∇ jq)(ek) + (∇ jq)(∇iek) − (∇iq)(e j)q(ek) − q(∇ie j)q(ek) − q(e j)(∇iq)(ek) − q(∇iek)q(e j)

=
K

`(` − 1)
(1(∇ie j, ek) + 1(e j,∇iek))

= (∇∇ie j q)(ek) − q(∇ie j)q(ek) + (∇ jq)(∇iek) − q(∇iek)q(e j),

where the last equality follows from Equation (15). Namely,

(∇i∇ jq)(ek) − (∇iq)(e j)q(ek) − q(e j)(∇iq)(ek) = (∇∇ie j q)(ek). (16)

Since the horizontal 1-form p is closed, then by (15), (16) and Wh
ijk = 0, we obtain

(∇i∇ jq − ∇ j∇iq − ∇[ei,e j]h q)(ek) = −Rh
ijkqh, (17)

therefore there exists a solution q to Equation (15), let

Γ̃k
i j = {ki j} + piδ

k
j + q jδ

k
i , (18)

where p is a closed horizontal 1-form.
By Theorem 2.8, we know ∇̃ whose connection coefficients are defined by (18) is a SSNH-projective

connection. On the other hand, αi j is proportional to 1i j by (15), so it is symmetric and dq(ei, e j) = αi j−α ji = 0,
which implies that the 1-form q is horizontally closed.

This completes the proof of Theorem 2.13.
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3. Example

Example 3.1. (Almost contact metric sub-Riemannian manifold)

Let (M,∆, 1∆) be a (2n + 1)-dimensional sub-Riemannian manifold, an almost contact structure is denoted
by (ϕ, ξ, η), where ϕ is a horizontal (1, 1)-tensor field(i.e. ϕ(Xh) ∈ ∆), ξ is a vector field and η is a 1-form
such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, 1(ϕXh, ϕYh) = 1(Xh,Yh) − η(Xh)η(Yh).

then (M,∆, 1, ϕ, ξ, η) is called an almost contact metric sub-Riemannian manifold. In virtue of this 1-form
η, one defines a metric connection,

∇̃Xh Yh = ∇Xh Yh + η(Xh)Yh + η(Yh)Xh, (19)

in local coordinate, that is,

Γ̃k
i j = Γk

i j + ηiδ
k
j + η jδ

k
i , (20)

where ∇ is the sub-Riemannian connection, then ∇̃ is actually a SSNH-projective connection.
In fact, if γ : xa = xa(t) is a SR-parallel curve with respect to sub-Riemannian connection, then it satisfies

Equations (2), substituting (20) into the above Equations, one obtains,

d2xk

dt2 + Γ̃k
i j

dxi

dt
dx j

dt
= −2ηi

dxi

dt
dxk

dt
,

Now we introduce a new parameter s by the equation

s =

∫
e
∫
−2ηidxi

dt,

and obtain the following relations by straight-forward calculation,

ds
dt

= e
∫
−2η jdx j

,
d2s
dt2 = e

∫
−2η jdx j

(−2η j
dx j

dt
),

dxi

dt
= e
∫
−2η jdx j dxi

ds
,

d2xi

dt2 = e2
∫
−2η jdx j

(
d2xi

ds2 − 2η j
dx j

ds
dxi

ds
).

hence, we have

d2xk

ds2 + Γ̃k
i j

dxi

ds
dx j

ds
= 0.

that is γ : xa = xa(t) is also a SR-parallel curve associated with the connection (19). On the other hand, one
can prove the converse statement is also true by the same method. Therefore, the metric connection (19) is
a SSNH-projective connection.
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