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Abstract. This work is devoted to the existence of positive solutions for nonlinear fractional differential
equations with p-Laplacian operator. By using five functionals fixed point theorem, the existence of at least

three positive solutions are obtained. As an application, an example is presented to demonstrate our main
result.

1. Introduction

In this paper, we are concerned with the existence of positive solutions for the fractional differential
equations with p-Laplacian:

(¢p(D9 L x()) = f(t,x(t),x'(1), te€(0,1),
x(O) =aD, x(1), (1.1)
X' (0) = bx 1), '
xD0)=0, i=23,.,n-1,

where Dgw Dg., Dé are Caputo fractional derivatives with0 < <1,0<y <1,2<n—-1 < a < n, where
n is an integer, and the constants a and b satisfy 0 < b < 1, a > 0. ¢,(s) is a p-Laplacian operator, i.e.,

Bp(s) = IsPP~2s for p > 1, () (s) = Py(s) where ;19 + % =1land f € C([0,1] X [0, ) X [0, ), [0, 0)) is a given
nonlinear function.

Fractional differential equations have gained considerable importance due to their application in various
sciences, such as physics, mechanics, chemistry and engineering. There has been a significant development
in the study of fractional differential equations in recent years, see the monographs of Kilbas et al. [4],
Miller et al. [8], Podlubny [9] and Samko et al. [10].

Since the p-Laplacian operator and fractional calculus arises from many applied fields such as turbulant
filtration in porous media, blood flow problems, rheology, modelling of viscoplasticity, material science, it is
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worth studying the fractional p-Laplacian differential equations. The research of boundary value problems
for p-Laplacian equations of fractional order has just begun in recent years, see [2, 3, 5-7, 11, 12].

Very few works has been done to the existence of positive solutions to Caputo fractional boundary value
problems involving p-Laplacian operator, see [5-7]. In particular, we would like to mention some results of
Liu et al. [5, 6].

In [5], Liu et al. considered the existence and uniqueness of solutions of the Caputo fractional differential
eqation involving the p-Laplacian operator

(@p(Dx(®)) = f(t,x(t), te(0,1),
with the boundary value conditions

x(0) = rox(1),
x'(0) = rx'(1),
x0)=0, i=2,3,..,[a]-1.

By using the Banach contraction mapping principle, some new results on the existence and uniqueness of
a solution for the model were obtained.

In [6], Liu et al. were concerned with the multiple positive solutions of Dirichlet-Neumann boundary
value problems for a type of fractional differential equation involving p-Laplacian operator

(@p(Dx())" = Pp(MV)f (£, x(B), X' (1)), £ €(0,1),
with the boundary value conditions

koX(O) - k1X(1) =0,
mox’(0) — myx’(1) =0,
xD0)=0, r=23,..mn.

By using Avery-Peterson fixed point theorem, they obtained the existence of at least three positive solutions
of the model.

Motivated by the above mentioned papers, we apply the five functionals fixed point theorem [1] to
verify the existence of at least three positive solutions for the boundary value problem (BVP) (1.1).

The paper is organized as follows. In Section 2, we introduce some definitions and lemmas to prove our
main result. In Section 3, we prove our main result. Finally, an example is given in Section 4 to illustrate
the usefulness of our main result.

2. Preliminaries

In this section, we introduce some preliminary facts which are used throughout this article. Now we
recall the following definitions, which can be found in [4, 8-10].
Definition 2.1 Let a > 0 for a function y : (0, 0) — IR. The fractional integral of order a of y is defined by

1 (.
f@iﬁu—@ y(s)ds

provided the integral exists.
Definition 2.2 Let a > 0. The Caputo fractional derivative of a function y : (0, ) — R is given by

Ipoy(t) =

a _ 1 ' _ \n—a-1,,(n)
D30 = g | (=9 s

where 1 = [a] + 1, [a] denotes the integer part of number a, provided that the right-hand side is pointwise
defined on (0, o).
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Proposition 2.1. Ify € L'(0,1), v > 0 > 0, then
DI I3 y(t) = I y(t);

(@)D I y(t) = I"y(t);

(1) DG, 15, y(t) = y(t).

Lemma 2.2. [6] Let 0 <n—1 < a < n. If weassume y € C"(0,1) N L[O, 1], the fractional differential equation
D*y(t) = 0 has a unique solution

’ // (n—1)
y'©) ©p L ¥0

vt =y + L+ 2 TEn

Lemma 2.3. Suppose that h € C[0, 1]. Then the boundary value problem

Df, (9p(Dgx(t) = h(t), € (1),
x(0) = aDy, x(1),

x'(0) = bx'(1), 21)
xD0)y=0, i=23,.,n-1,
has a unique solution
x(f) = L P Lo (I8 h(1)) + 1%, o (P, (t)) + al” o (I, (1)) (2.2)
1-b r(z _ 7/) 0+ qa\o+ 0+ q\to+ q\to+ . .

Proof. The definition of the Caputo derivatives implies that “D*x(0) = 0, and from Lemma 2.1 we have
Dp(D5 (1) = p(DG. x(0)) + I, (h(t).

So,
x(#)

x(0) + X' (0) + I3, g (I8 u(8)) 2.3)

x(o)+x(0t+m f (t = 5)* " g (I, h(s))ds. (2.4)

Hence, we get

X' () = x'(0) + %

1 t
T(@) fo (- S)“_l¢q(1ﬁ+h(s))ds] )

ie.,
/ / 1 ' a—
X'(H) = ¥(0) + =T fo (t = 5)* 2y (15 h(s))ds. (2.5)
From the boundary value condition x’(0) = bx’(1) and (2.5), one has
x'(0) = bx'(0) + 5— f (1= 5)* 20, (IF h(s))ds,
ie.,
’ _ b ! a-2 B
X (O) = mﬁ (]. - S) qbq(l +h(S))dS. (26)

Since x(0) = aD}, x(1), we get

x(0)=a [x (0) f (1= ) 7ds + 15,7 oI5 h(1)) | - 2.7)

F(l )
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Substituting (2.6) and (2.7) into (2.3), we can obtain that

b

1-b [r(za ot 37y (15 1(V)) + 15, g (I (1)) + aly (10, h(1)).

x(t) =

So, the proof is complete. [

Let E = C'[0, 1], ||x|| = max {max |x(t)], max |x’(t)|}. Then (E, ||.I]) is a Banach space. Set
te[0,1] te[0,1]
P = {x € E : x is a nonnegative, monotone increasing and convex function on [0, 1]}.
So, PisaconeonE.

Lemma 2.4. If x € P is a solution of BVP (2.1), then

min x(t) > y max x(t),

te[0,1] te[0,1]

where
ab

B+ T +al-0)r2-y) 28

Proof. From Lemma 2.2, we have
1 [ 1 (7
x(f) = @ j(; (t -9y, [Tﬁ) f(; (s —r)ﬁ‘lh(r)dr] ds
b a ! a-2 5-1
D [r(z Sy [t g ) oo
a r-1 _ -1
F(a ) on [F(ﬁ) f (s=rf"h r)dr] ds.
1

0= [ R0, s,

where
(ts), 0<s<t<l,

Fit,s) = { gl(t, s, 0<t<s<l, (29)

and
a-1 b a a=2 a a-y-1
qi(t,s) = T(a )( -8+ d-hl@a-1) [F(Z—y) +t] 1-5)""+ 1“(0(_]/)(1 —8)*r T, (2.10)
_ b a _ a2 a _ o\a—y-1
ga(t,s) = A-br@-1 [F(Z—y) +t] 1-9)""+ F(a—y)(l S)*¥ T, (2.11)
The proof is divided into two cases.
Case 1. If 0 < s <t <1, then by (2.10) we have
agl(tls) _ b a— 1 a—
o Cad-pra-nt Y + Ta-n¢ >0
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Since g1 (t, s) is increasing with respect to ¢, we have for s < ¢
91(5/5) < gl(t/s) < 91(1/5)'
Case 2. If 0 <t <5 <1, then by (2.11) we have

Ip(t,s) b
o0 (1-bI(a-1)

Since g5(t, s) is increasing with respect to f, we have

(1-95)*2>0.

72(0,8) < ga(t, 5) < g2(s, 9).

Summing up the above analysis Case 1 and Case 2, it follows that

92(0/ S) < min {!71(5/ S)/ 92(0/ S)} < F(t/ S) < max{gl(ll S)/ !]2(5/ S)}/
s€[0,1] s€[0,1]

72(0,8) < F(t,s) < g1(1,s) = max F(t,s).
te[0,1]

It remains to show that
F(t/ S) 2 [ng(lf S), t,s€ [0/ 1]/

and
F(t,s) gz(O,S)
> = u(s).
0t = gt MO
From (2.10) and (2.11), for s € (0, 1) we have

ab(1 — s5)%2 a(l —s)* -1
(s) = 9200,) (1-HI2-yIa-1) I —)
He = a(l,s) b(1-s)*2 [ a4 . 1_ . a(l —s)* 1
1-pr@-1)[I'2-y) | Ila—=7y)
ab
S (1-HI2-y)I(a-1)
) b @ + 1_ + 4 + 1
1-(@-1)|T2-y) | T(a-y) TI(w)
ab
ab+ (L+a(l-b)I2—y)
and so
F ’
gl(é,ss)) >y, s€(0,1).

For t,s € [0,1],
F(t,s) > ugi(1,s) = yg}g\ﬁ F(t,s).

Hence

min F(t,s) > umax F(t, s).
t€[0,1] (t,) ‘utE[O,ll (t,5)

By (2.12), we have

min x(t) > u max x(t).
t€[0,1] ®) ‘ute[o,l] ®

This completes the proof. [

1269

(2.12)
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a al'(a — 1)
2y Ta-7) } L

Lemma 2.5. If x € P is a solution of BVP (2.1), then ||x|| < Mx’(1), where M = max{

Proof. From (2.4), it follows that

x(1) = x(0) + x’(0) + ﬁ fol(l - s)“‘1¢q(lﬁ+h(s))ds (2.13)
and from (2.5) we get that
1
(1) =x'(0)+ @D fo (1= 5)* 20, (I h(s))ds. (2.14)

Substituting (2.7) into (2.13), it is easy to get that

B x’(0) a1 f
x(1) = “[r(z_y) o f (1= 571y (s )ds]

O+ s f (1 - 9"y 0, h(s))ds
< ()[ ) 1Hr(%—y>+ﬁ} f 1(1—s)“*quq(ﬁius))ds
[r(ziy>+1]+[arr<f:yl>)*all]rm 1f (1= (0 s
< max{ 4 +1,”F("‘_1)+1}[x'(o)+m fo (1 = )20, (I h(s))ds
{

r2-y) Ta-7y)

a al'(a = 1) ,
@—7) +1, Ta—7) +1}x (D).

So that
||x]l = max {max [x(t)], max Ix’(t)l} < Mmax |x'(t)],
te[0,1] te[0,1] te[0,1]

i.e., |lx]| £ Mx'(1). The proof is complete. [J

Define the operator T : P — E by

(Tx)(t) = 1 f t(t—s)“’lqb L f (s = 1YL f(r, x(r), ' (r))dr | ds
- Ia) Jo ! ') Jo ’ ’

b i e (=)t , ]
(1 b)l"(a—l)[r(z 7/)+t}f(1 s) %[ LT ———f(r,x(r), X' (r))dr|ds

1 S
L _ oya—y-1 1 _ a\p-1 ’ ]
+1"(a — y) jO‘ (1 S) ¢q [r(ﬁ) L (S 1’) f(?’, X(T’),X (V))d?’ dS. (215)

It is clear that x € C"[0,1] is the solution of the BVP (1.1) if and only if x € E is the fixed point of the
operator T.

Lemma 2.6. T : P — P is completely continuous.
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Proof. By the definition of the operator T, for x € P it is easy to see (Tx)(t) > 0 for any ¢ € [0,1]. Using the
property of the fractional integrals and derivatives, we can get that

(T () = — f (=52, 0.6, (5), ¥ O))s + —— f (1 =2y 0 fls, X9, ¥ O)s
T T-1) J ol 1-bT(a-1) Jo o
1
= ol [t oo o+ s [ a-a=e o om] @10
>0,
and
t
(T (1) = ﬁ%[ fo (t—s)“‘z%aéf(s,x(s),x'(s)))ds]

1 t
= g | 9o e, Yo 20

Then Tx is nonnegative, monotone increasing and convex on [0, 1]. Thus, Tx € P. It is easy to prove that T
is continuous and compact. This completes the proof. [J

3. Main Results

In this section we state and prove our main result. Now we will present the five functionals fixed point
theorem.

Letd, b, ¢, d, h > 0be positive constants, 9, { be two nonnegative continuous concave functionals on
the cone P, x, ¢, 0 be three nonnegative continuous convex functionals on the cone P. Define the convex
sets as follows:

P(x, ) {xeP:x(x) <cd,
P(x,9,4d,c) (x e P:9(x) >4, x(x) <c},
P(x,0,9,d,b,c) = {x eP:9(x)>4,0(x)<bh, x(x) < c},
Qx, p,d,c) {
Qx, @, ¢, h,d,c) {
Lemma 3.1. [1] (Five Functionals Fixed Point Theorem) Let E be a real Banach space, P be a nonempty cone in

E, 9, ¢ be two nonnegative continuous concave functionals on the cone P, x, ¢, O be three nonnegative continuous
convex functionals on the cone P. There exist constant M > 0 such that

xeP:px)<d, x(x)<c},
x€P:ip(x) = h,e(x) <d, x(x) <c}.

J(x) < p(x), lIxll < Mx(x) for all x € P(x, c).

Furthermore, suppose that h, d, a, b, ¢ > 0 are constants with d < a. Let T : P(x,c) — P(x,c) be a completely
continuous operator. If

(C1) {x € P(x,0,8,d,b,0): 9(x) > &} # O and S(Tx) > a for every x € P(x,0,9,d,b,c);
(C2) {xe Qx, @, ¢, h,d,c) : p(x) <d} # 0 and p(Tx) < d for every x € Q(x, ¢, Y, h,d, c);
(C3) §(Tx) > dfor x € P(x,9,d,c) with O(Tx) > b;

(C4) @(Tx) < d for each x € Q(x, @, d, ¢) with P(Tx) < h;

then T has at least three fixed points x1, X2, x3 € P(x, ¢) such that p(x1) < d, 8(x2) > d and p(x3) > d with 3(x3) < 4.
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Define the functionals on P by

x(x) = maxx'(¢),
te[0,1]
0x) = @k = max x(t),

I(x) = II[I(}H] x(t)

Y(x)

It is easy to see that 9, i are two nonnegative continuous concave functionals on the cone P, x, ¢, 0 are
three nonnegative continuous convex functionals on the cone P and 9(x) < ¢(x) for all x € P.

Theorem 3.2. Suppose that Q, W and () are given by

0 T(gg—p+1)

(L - DITE+ DI T+ pg—p)’
" aT(pg—p+1)

B+ DI Ta—y+pg—p+1)’
Q = MQ

and there exist positive constants ey, e, and c such that

c2%>ez>el>O,W>Q.
If

(C5) f(t,u,v) <y (é)for allt €10,1], u € [0,Mc], v € [0,c];

(C6) f(t,u,v)>¢,,( )forallte[O 1], ue[ez,y] vel0,cl;

(C7) fit,u,0) < by (%)for all t € [0,1], u € [per, er], v € [0, cl;
then BVP (1.1) has at least three increasing positive solutions x1, X, x3 such that
x1(1) < eq, x2(0) > e, x3(1) > e1 and x3(0) < e,.

Proof. To apply Lemma 3.1, we prove that all conditions in Lemma 3.1 are satisfied. By the definitions, it is
easy to see that 3, ¢ are two nonnegative continuous concave functionals on the cone P, x, ¢, 0 are three
nonnegative continuous convex functionals on the cone P and 9(x) < ¢(x) for all x € P. From Lemma 2.5
we have ||x|| < Mx’'(1), i.e., ||x]| £ Mx(x) for all x € P.

Corresponding to Lemma 3.1,

- z €
c=c,h=ype;, d=e,d=e, b=—=

Now, we prove that (C1)-(C4) of Lemma 3.1 hold. One sees that 0 < e; < e;. The remainder is divided into
four steps.

Step 1. Prove that T : P(x,c) — P(x,c);
For x € P(x,c), we have x(x) < c. Then rrh?ﬁ X'(t) <cand 0 < x'(t) < cforall t € [0,1]. So from Lemma 2.5
te[0,

implies that

max x(t) <M max x'(t) < M.
te[0,1] te[0,1]
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So (C5) implies that
£ x(0, X () < 6 (5) |
We have

(Tx)'(1)

" f (1= 512 (I8 £(5, x(5), ¥ (5))ds

—5)a— B
*m f (1= 5)" 2y (T f(5,x(5), x'(5)))ds

= —_ o\a— ﬁ ’
= m fo (1 = 5)* 2y (I1. f(5,x(5), X' (5)))ds

e 1 (e, L S_ﬁ—l]
Q(l—b)F(a—l)fo(l %) qz"’[Hﬁ)fo (s =) dr|ds

_ i 1 ! _ a2 ( Sﬁ )
= Q(l—b)T(a—l)fo (=970 grgy |

— ¢ 1 ! a—=2 Sﬁ !
= Qa-or@-nJ, 7Y (F(ﬁ+1)) &

c 1 1
T QU-bI@-1)[TE+ 1)]q—15 (@=1,pq-p+1)

c 1 1 I'(Bg-p+1)

QA -b)T(B+ 1)y T(a+pg—p)

IA

Il
a

Then T : P(x,c) — P(x,c).
This completes Step 1.
Step 2. Prove that

{x € P()(, 0,3, e, %,c) (9(x) > ez} #0,

and 9(Tx) > e, for every x € P(x,0,9, ez,e—z,c). Choose x(t) = %2 for all t € [0,1]. It follows that
{x € P()(, 0,9, e, eﬁ,c) D 9(x) > ez} # 0.

Forx e P ()(, 0,9,e, eﬁ, c), one has that

€2
9 t)y>ep, O f) <=, = "(t) <c.
(x) = m(}rll x(t) > ez, O(x) = max x(t) X(x) max.x (t) <c

Then e; < x(t) < ; t€[0,1] and 0 < x’(t) < c. Thus (C6) implies that f(t, x(t), x'(t)) > qbp( ) t€[0,1]. W
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get

§Tx) = (Tx)(0)

1 S
; g [ [, ()]
> F(oz—y)j;(l s) %[r(ﬁ)j(;(s 7) (pp(w)dr ds
1 S
- K4 a1 |1 Bl ]
W=y Jy ¢ 7 ‘Pq[r(ﬁ)fo (o= drds
e a ! . s
= Wr(a—wfo(l_s) ' 1‘75’7(r</3+‘1))ds

e a 1 . ¢
B Wr(a—y)fo(l_s) H[r(ﬁﬂ)] ds

_ & a 1 B ~
Y T(@—7y) [T+ 1)1 pla—y,pg—-p+1)
=2 a TBg-p+1)
T W@+ D I@—y+pg—p+1)
= e

This completes Step 2.

Step 3. Prove that

{x € Qx, @, Y, per,e1,¢) : p(x) <er} #0,

and ¢(Tx) < e; for every x € Q(x, @, , uei, e1,c). Choose x(t) = uer. Then x € P and 1(x) = n[lén x(t) = pey,
p(x) = 0(x) = max x(t) per <eq, x(x) = }r}gﬁ x'(t) = 0 < c. It follows that
lo,

{x € QUx, @, ¢, er,e1,0) - p(x) <er} # 0.

For x € Q(x, ¢, ¢, uei, e1, c), one has that

Y(x) = m1r11 x(t) > pey, 0(x) = max x(t) < ey, x(x) = maxx (t) <c.

Hence we get that ey < x(t) < e;and 0 < x/(t) < cfort € [0,1]. Then (C7) implies that f(t, x(t), x'(t)) < ¢, (%)
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for t € [0,1]. From Lemma 2.5 and (2.16) we get

p(Tx) = max Tx(t)
< M trr;gﬁ(Tx) ®
= M(Tx) (1)
= m f (1= 9)" 2y (I, 1(5))ds
< TEoTEoH fo 1= [Tﬁ) fo S (Eﬁl)dr] *
B Me, ! . s
- Faonima ), 00 [F(ﬁ n 1>]ds
M€1 ! —2 Ba—
= 1 —5)* 25P1Bg4
['(a-1)1-bQ[rB+ D] f (L =85 ds
M€1
= -1,B-B+1
['(@ - 1)1 -bQ[I(B + 1)]‘7‘1ﬁ(a pa=p+1)
_ Me, (g -p+1)
1 -bnQ[rB+1]"" Ha+pg—p)
= €1.
This completes Step 3.

Step 4. Prove that 9(Tx) > a for x € P(x, 9, ez, ¢) with 6(Tx) > eﬁ. We have that 9(x) = tn[%gl] x(t) > e,
€[o,

x(x) = max x'(t) < c with 6(Tx) = max Tx(t) > =y From Lemma 2.4
te[0,1] te[0,1] U

I(Tx) = trer[l(},ln](Tx)(t) =y trgr}gﬁ(Tx)(t) > up(Tx) > ey.

This completes Step 4.
Step 5. Prove that ¢(Tx) < d for each x € Q(x, ¢;d,c) with ¢(Tx) < h
For x € Q(x, ; e1,c) with (Tx) < pe;, we have

X(x) = max Ix Bl <c

X max x(t) < ey,
px) = maxx(h) < e

Y(Tx) = g[l(}%(Tx)(t) < uey.
Then Tx € P implies from Lemma 2.4
(Tx) = max(Tx)(t) < 1 min(Tx)(t) <e
¢ " tel01] T telo] v

This completes Step 5.
Then Lemma 3.1 implies that T has at least three fixed points x1, x», x3 € P such that

@(x1) < e, 9(x2) > ez, P(x3) > e1, dHxz) < en.

Hence BVP (1.1) has three positive solutions x;, x, and x3. The proof is complete. O
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4. An Example

Example 4.1 Consider the following boundary value problem,

D2 (65 DEx(®) = (6, x(0,x(1), te (D),
%(0) = 5007, x(1),

X (0) = 37 (),

X00)=0, i=23,

4.1)

where
LA (t,u,0) € [0,1] x [0,1] X [0, 15;
1(290 5" 15000 ,
flt,u,0) = 19@ + 52 (@Bu+7) + 1= ) (t,u,v) € [0,1] x [1,4] x [0, 15];
7000 ™ S5730900 (48000u + 112972788) + =, (¢, 1,0) € [0,1] X [4,0) x [0, 15].

1 6 7 1 1
Here,B=E,p=§,q=6,a=§,y=§,a=50,b=§,n=4.Thenwehave

Mzmax{ a ar(a—1)}+1gmax{ 50  66.465

, , 1 = 57.4206, 1 = 0.3539,
T2—7) T@-y) 08862 2 } - H

Taking e; =1, e; =4, ¢ =15, we get %2 = 11.3026, ue; = 0.3539, Mc = 861.309, W = 1.0558, Q = 0.7599,
Q = MQ = 43.6339. We can obtain that
€2
c>=>e>e1>0 W>Q.

It is easy to verify that (C5)-(C7) hold:

<
Q
ftuw) > 132> ¢, (;—\2/) = 13052, t € [0,1], u € [4.11,3026], v € [0, 15];

f(tu,0) < 1.802< qbp( ) ~ 1.81579, t € [0,1], u € [0,861.309], v € [0, 15];

F(t,u,0) 0.402 < ¢, (%) ~ 04699, t € [0,1], u € [0.3539,1], v € [0,15].

IA

Then, all conditions of Theorem 3.2 hold. Hence, we get the BVP (4.1) has at least three positive solutions
x1, X2 and x3 such that

xl(l) <1, XZ(O) >4, X3(1) >1, X3(0) < 4.
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