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Abstract. The main purpose of this paper is to study Fredholm generalized composition operators on
weighted Hardy spaces.

1. Introduction

Let f be an analytic function on the open unit disk Ω in a complex plane C given by f (z) =

∞∑
n=0

fnzn,

where { fn}∞n=0 is a sequence of complex numbers. Let {βn} be a sequence of positive real numbers with

β(0) = 1. For p ∈ [1,∞), let Hp(β) = { f : f (z) =

∞∑
n=0

fnzn,
∞∑

n=0

| fn|pβ
p
n < ∞} be the space of formal series. Then

Hp(β) is a Banach space under the norm || f ||pβ =

∞∑
n=0

| fn|pβ
p
n. For p = 2, the space H2(β) is a Hilbert space under

the inner product defined as 〈 f , 1〉 =

∞∑
n=0

fn1nβ
2
n, where f (z) =

∞∑
n=0

fnzn and 1(z) =

∞∑
n=0

1nzn. The weighted

Hardy space is denoted by H2(β). Let ek(z) = zk and êk(z)= zk

βk
, clearly {ek}

∞

k=0 is an orthogonal basis for H2(β).
If φ : Ω→ Ω is a mapping such that the transformation Cφ : H2(β)→ H2(β) defined by Cφ f = f oφ, for every
f ∈ H2(β), is continuous , we shall call it a composition operator induced by φ. A generalized composition
operator Cd

φ : H2(β)→ H2(β) is defined by Cd
φ f = f ′oφ, where f ′ is the derivative of f . By the anti-differential

operatorDa we shall mean the operator Da : H2(β)→ H2(β) defined by

Da(
∞∑

n=0

fnzn) =

∞∑
n=0

fnzn+1

n + 1
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Also the Differential operator D on H2(β) is defined by

D(
∞∑

n=0

fnzn) =

∞∑
n=0

n fnzn−1

Composition operators on the spaces of analytic functions were studied by Cowen[1], Ryff[4], Schwartz[5]and
Singh[8]. Properties of generalized composition operators on weighted Hardy spaces were mentioned in
the papers of Sharma[6]-[7], further Fredholm composition and weighted composition operators can be
seen in the papers of Kumar[2], Maccluer[3] and Takagi[9]. In this paper we initiate the study of Fredholm
generalized composition operators on weighted Hardy spaces. The symbol B(H) denote the Banach algebra
of all bounded linear operators on H into itself and No denote the set {0, 1, 2, 3, .......}.

2. Fredholm generalized composition operators on weighted Hardy spaces

The necessary and sufficient condition for generalized composition operators to be Fredholm is investigated
in this section.

Theorem 2.1. Suppose φ : Ω → Ω is a mapping such that {φn : n ∈ N0} is an orthogonal family in H2(β). Then
kerCd

φ = span{e0}, where φn(z) = (φ(z))n.

Proof. If f = α0e0, then clearly Cd
φ f = 0, therefore f ∈ kerCd

φ

Next, if Cd
φ f = 0 then for f =

∞∑
n=0

fnen

We have

Cd
φ f =

∞∑
n=1

n fnφn−1 = 0

this implies that

||Cd
φ f ||2 =

∞∑
n=1

| fn|2n2β2
n||φ

n−1
||

2 = 0

so that
| fn| = 0 for every n ∈N

Hence
f = f0e0.

Theorem 2.2. Suppose φ : Ω→ Ω is a mapping such that {φn : n ∈ N0} is an orthogonal family in H2(β). Then Cd
φ

has closed range if and only if there exists ε > 0 such that n||φn−1
|| ≥∈ βn for all n ∈N.

Proof. We first assume that Cd
φ has closed range. Then Cd

φ is bounded away from zero on (kerCd
φ)⊥, therefore

there exists ε > 0 such that
||Cd

φen|| ≥ ε||en|| for all n ∈N

which implies that
n||φn−1

|| ≥ εβn for all n ∈N
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Conversely suppose that the conditions is true. Then for f ∈ (kerCd
φ)⊥ we have

||Cd
φ f ||2 = ||

∞∑
n=1

fnCd
φen||

2 =

∞∑
n=1

| fn|2n2
||φn−1

||
2
≥ ε2

∞∑
n=1

| fn|2β2
n = ε2

|| f ||2 for every f ∈ (kerCd
φ)⊥

Then Cd
φ is bounded away from zero on (kerCd

φ)⊥. Consequently Cd
φ has closed range.

Theorem 2.3. Let φ : Ω→ Ω be such that {φn : n ∈ N0} is an orthogonal family in H2(β). Then Cd
φ is Fredholm if

and only if there exists ∈> 0 such that

n||φn−1
||

βn
≥∈ for every n ∈N.

Proof. Suppose the condition is true. Then in view of the theorem (2.2) Cd
φ has closed range. Also in view

of theorem (2.1), kerCd
φ is a finite dimensional.

We show that kerCd∗
φ is zero dimensional. Let 1 ∈ kerCd∗

φ , then Cd∗
φ 1 = 0.

Therefore, for n ∈ N0 we have

0 = 〈Cd∗
φ 1, en〉 = 〈1,Cd

φen〉

= n〈1, φn−1
〉.

Hence g = 0, thus kerCd∗
φ = {0}. Hence Cd

φ is Fredholm.
The converse is easy to prove in view of theorem (2.1) and theorem (2.2).

Example 2.4. Let φ : Ω→ Ω be defined by φ(z) = z, let βn = n!, then n||φn−1
||

βn
=

nβn−1

βn
= 1. Therefore Cd

φ has closed
range. Now kerCd

φ = span{e0} and kerCd∗
φ = {0}.

Hence Cd
φ is Fredholm.

3. Fredholm Differential and Anti-Differential operators on weighted Hardy spaces

In this section we obtain adjoint of anti-differential operator on weighted Hardy spaces. The condition for
anti-differential operator to be Fredholm is also investigated in this section.

Theorem 3.1. Let f ∈ H2(β). Then

D∗a f =

∞∑
n=0

fn+1

(n + 1)

(
βn+1

βn

)2

zn

where D∗a is the adjoint of Da.

Proof. For any n ∈ N0
Consider

〈D∗aen+1, f 〉 = 〈en+1,Da f 〉 =
1

n + 1

(
βn+1

βn

)2

〈en, f 〉 for every f ∈ H2(β).

Therefore,

D∗aen+1 =
1

n + 1

(
βn+1

βn

)2

en and D∗ae0 = 0.
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Now for f =

∞∑
n=0

fnen

D∗a f =

∞∑
n=0

fnD∗aen =

∞∑
n=0

fn+1
1

n + 1

(
βn+1

βn

)2

en

Theorem 3.2. Let Da ∈ B(H2(β)). Then Da is Fredholm operator if and only if βn

nβn−1
≥∈ ∀ n ≥ 1.

Proof. Clearly, for n ≥ 1, D∗aen = 1
n ( βn

βn−1
)2en−1.

Since
D∗ae0 = 0, so e0 ∈ kerD∗a.

We shall show that kerD∗a = span{e0}

Let f ∈ kerD∗a, then

D∗a f = D∗a
∞∑

n=0

fnen =

∞∑
n=1

fn
1
n

(
βn

βn−1

)2

en−1 = 0

which implies that fn = 0,∀ n ≥ 1.
Hence f = f0e0
Thus kerD∗a = span{e0} = M
Next we will see that D∗a is bounded away from zero on (kerD∗a)⊥ if and only if βn

nβn−1
≥∈ ∀ n ≥ 1

Let f ∈ (kerD∗a)⊥ = M⊥

Consider

||D∗a f ||2 = ||

∞∑
n=1

fnD∗aen||
2 =

∞∑
n=1

(
1
n
βn

βn−1
)2
| fn|2β2

n ≥ ε
2
∞∑

n=1

| fn|2β2
n = ε2

|| f ||2

This is true for every f ∈ (kerD∗a)⊥

Hence D∗a has closed range. Also kerDa = {0}. For if we have Da f = 0,

then
∞∑

n=0

fnDaen = 0 implies that
∞∑

n=0

fn
en+1

n + 1
= 0 or fn

n+1 = 0 f or all n ∈ N0

This implies that f = 0.
Thus kerDa = {0}. Hence Da is Fredholm. The converse follows by reversing the arguments.

In the next theorem we characterize Fredholm differential operator.

Theorem 3.3. Let D ∈ B(H2(β)). Then D is Fredholm operator if and only if nβn−1

βn
≥ ε for every n ≥ 1.

Proof. We first note that kerD = span{e0}.
For if we suppose that D f = 0 for f ∈ H2(β),

then for f =

∞∑
n=0

fnen we have

D f =

∞∑
n=1

fnnen−1 = 0
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which implies that
∞∑

n=1

n2
| fn|2β2

n−1 = 0

which further implies that fn = 0 for all n = 1, 2, ....
Hence f = f0e0 so that f ∈ span{e0}.
Next we shall see that kerD∗ = {0}. Suppose f ∈ kerD∗.
Then D∗ f = 0
or

D∗(
∞∑

n=0

fnen) =

∞∑
n=0

fn(n + 1)(
βn

βn+1
)2en+1 = 0

which implies that fn = 0 for all n = 0,1,... . Thus f = 0.
Finally we can show that if the given condition is satisfied, then D has closed range.

Let f ∈ (kerD)⊥ and f =

∞∑
n=1

fnen.

Then

||D f ||2 = ||

∞∑
n=1

fnnen−1||
2 =

∞∑
n=0

| fn+1|
2(n + 1)2β2

n =

∞∑
n=0

| fn+1|
2(n + 1)2 β2

n

β2
n+1

.β2
n+1 ≥ ε

2
∞∑

n=0

| fn+1|
2β2

n+1 = ε2
|| f ||2

Thus D is bounded away from zero on (kerD)⊥ which proves that D has closed range. We can conclude that
D is Fredholm.

Conversely suppose D is Fredholm. Then D has closed range. Therefore D is bounded away from zero
on (kerD)⊥.
We can find ε > 0 such that

||Den|| ≥ ε||en|| ∀ n = 1, 2, ...

or
n βn−1

βn
≥ ε ∀ n = 1, 2, ...

This complete the proof of the theorem.
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