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Abstract. In this paper the n-tuples of commuting isometric semigroups on a Hilbert space and the product
semigroup generated by them are considered. Properties of the right defect spaces and characterizations of
the semigroups of type ”s” are given. Also, the Wold-type decompositions with 3n summands for n-tuples
of commuting isometric semigroups are introduced. The existence and uniqueness of such decompositions
are analysed and several connections with the Wold decompositions of each semigroup and their product
semigroup are presented.

1. Introduction

In the work on the behaviour of stationary time series [30], H. Wold obtained an important mathematical
principle of decomposition of a stationary stochastic process into a random part and its non-random part.
In the operator theory the well known Wold decomposition theorem states that every isometry on a Hilbert
space can be decomposed into the orthogonal sum between a unitary operator and a shift [13, 27].

In 1980, M. Słociński proposed a Wold-type decomposition of a pair of commuting isometries on a
Hilbert space [25]. His idea has been exploited by many mathematicians in different frameworks. We
mention a partial list of references [1–5, 10, 11, 20, 22, 23, 28].

In [14], Helson and Lowdenslager considered a Wold-type decomposition with three summands for
the continuous stationary processes. A Wold-type decomposition with three summands also occurs for a
semigroup of isometries on a Hilbert space. Such a decomposition was given by I. Suciu in the commutative
case [26] and by G. Popescu in the noncommutative case [19]. In the case of semigroups of isometries, the
Wold-type decompositions were considered by many researchers, see for example [8, 9, 12, 17, 18].

The Wold-type decompositions in various versions have numerous applications, such as: stochastic
processes, spectral analysis, prediction theory, audio signals, textured images [6, 15, 16, 24].

The present work is organized as follows:
In section 2, definitions, notions and properties we need in the following sections, are given. In section

3, some results about the right defect spaces and characterizations of semigroups of type ”s” are studied.
In section 4, Wold-type decompositions are presented.
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2. Preliminaries

In this part of the paper, we recall some results about semigroups of isometries acting on Hilbert spaces
[7],[25],[26] and we present some new results used in the following sections. Also, we introduce the frame
of our work.

In the sequel, H is a complex Hilbert space with inner product < x, y >, x, y ∈ H . By L(H) we denote
the algebra of all bounded linear operators onH . For T ∈ L(H), T∗ is the adjoint of T.

Let (S, ·) be an abelian semigroup having 1S as identity element. A semigroup of operators {V(σ)}σ∈S on
H is a mapping σ→ V(σ) from S to L(H) such that V(1S) = IH and V(σ · τ) = V(σ)V(τ) for all σ, τ ∈ S.

A closed subspaceK ofH is invariant for the semigroup {V(σ)}σ∈S if V(σ)K ⊆ K for each σ ∈ S. We say
thatK reduces {V(σ)}σ∈S if V(σ)K ⊆ K and V(σ)∗K ⊆ K for each σ ∈ S.

A closed subspace L ⊆ H is called wandering for {V(σ)}σ∈S if for any σ, τ ∈ S, σ , τ, V(σ)L⊥V(τ)L.
A semigroup of operators {V(σ)}σ∈S on H is called an isometric (a unitary) semigroup if V(σ) is an

isometry (a unitary operator) onH for any σ ∈ S.
A semigroup {V(σ)}σ∈S on H is called completely non-unitary (of type ”c”) if there is no reducing

subspaceM ⊆ H ,M , {0}, for {V(σ)}σ∈S such that {V(σ)|M}σ∈S is unitary.
According to I. Suciu [26], let (G, ·) be an abelian group and let S be a unital sub-semigroup of G such

that S ∩ S−1 = {1S} and G = SS−1, where S−1 = {σ−1
|σ ∈ S}. If {V(σ)}σ∈S is a semigroup of isometries on H ,

thenH decomposes into an orthogonal sum

H = Hu ⊕Hc (1)

such that Hu and Hc reduce {V(σ)}σ∈S, {V(σ)|Hu }σ∈S is unitary and {V(σ)|Hc }σ∈S is completely non-unitary.
The decomposition is unique and the unitary partHu of {V(σ)}σ∈S is given by

Hu = {h ∈ H | ‖V(σ)∗h‖ = ‖h‖ for all σ ∈ S}. (2)

We remark that Hu is the maximal subspace of H reducing the semigroup {V(σ)}σ∈S to a unitary
semigroup [9].

Taking into account the structure ofHu,Hu =
⋂
σ∈S

V(σ)H , it easily results the following:

Proposition 2.1. Let {V(σ)}σ∈S be a semigroup of isometries on a Hilbert space H and let X ∈ L(H). If XV(σ) =
V(σ)X for all σ ∈ S, then XHu ⊆ Hu.

I. Suciu [26] gave a more precise structure of the completely non-unitary part. In order to mention this
decomposition, we remind that a semigroup of isometries {V(σ)}σ∈S onH is called of type ”e” if

H =
∨

σ−1
·τ<S−1

(σ,τ)∈S×S

V(σ)∗V(τ)H

and there is no reducing subspaceM ⊆ H ,M , {0}, for {V(σ)}σ∈S such that {V(σ)|M}σ∈S is unitary.
The semigroup of isometries {V(σ)}σ∈S onH is called of type ”s” if there is a wandering subspace R ⊆ H

for {V(σ)}σ∈S such that
H =

⊕
σ∈S

V(σ)R.

It was proved that the restriction of an isometric semigroup to a reducing subspace is of the same type
as the semigroup is (see [26]).

I. Suciu’s decomposition for an isometric semigroup {V(σ)}σ∈S onH is given by

H = Hu ⊕He ⊕Hs,
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such that the subspacesHu,He,Hs reduce {V(σ)}σ∈S, and {V(σ)|Hu }σ∈S is unitary (of type ”u”), {V(σ)|He }σ∈S is
of type ”e”, {V(σ)|Hs }σ∈S is of type ”s”. Moreover, the decomposition is unique and

Hs =
⊕
σ∈S

V(σ)R,

where

R = H 	
∨

σ−1
·τ<S−1

(σ,τ)∈S×S

V(σ)∗V(τ)H =
⋂

σ−1
·τ<S−1

(σ,τ)∈S×S

ker V(τ)∗V(σ) (3)

is the right defect space of {V(σ)}σ∈S (see [7],[17],[19]).
We remark that the subspaceHα, α ∈ {u, e, s}, in the I. Suciu’s decomposition is the largest subspace that

reduces {V(σ)}σ∈S to a semigroup of type ”α” [9], [26].
Now, let us introduce the general framework of the present paper. Throughout this paper n is a natural

number, n ≥ 2 and In stands for the set {1, 2, . . . ,n}.
We consider n unital sub-semigroups S1,S2, . . . ,Sn of multiplicative abelian groups G1,G2, . . . ,Gn respec-

tively, such that Si ∩ S−1
i = {1Si } and Gi = SiS−1

i , i ∈ In. Also, let {Vi(σi)}σi∈Si , i ∈ In, be commuting isometric
semigroups on a Hilbert spaceH , i.e.

Vi(σi)V j(σ j) = V j(σ j)Vi(σi) for all σi ∈ Si, σ j ∈ S j, i, j ∈ In.

We say that the semigroups {Vi(σi)}σi∈Si , i ∈ In, are doubly commuting on a Hilbert spaceH if they commute
and

Vi(σi)∗V j(σ j) = V j(σ j)Vi(σi)∗ for all σi ∈ Si, σ j ∈ S j, i, j ∈ In, i , j.

Let {V(σ)}σ∈S be the product semigroup generated by the commuting semigroups of isometries {Vi(σi)}σi∈Si ,
i ∈ In, defined by V(σ) = V1(σ1)V2(σ2) . . .Vn(σn), σ = (σ1, σ2, . . . , σn) ∈ S1 × S2 × . . . × Sn = S. It is clear that
{V(σ)}σ∈S is an isometric semigroup.

At the end of this section, we give a description of the unitary part of {V(σ)}σ∈S.

Proposition 2.2. Let {Vi(σi)}σi∈Si , i ∈ In, be commuting semigroups of isometries on a Hilbert space H and let
{V(σ)}σ∈S be the corresponding product semigroup. If H i

u is the unitary part of {Vi(σi)}σi∈Si , i ∈ In, and Hu is the

unitary part of {V(σ)}σ∈S, thenHu ⊆
n⋂

i=1
H

i
u. Moreover, if the semigroups {Vi(σi)}σi∈Si , i ∈ In, are doubly commuting

onH , thenHu =
n⋂

i=1
H

i
u.

Proof. Let i ∈ In. Using (2) for {V(σ)}σ∈S and taking σ j = 1S j for all j ∈ In, j , i one gets Hu ⊆ H
i
u, whence

Hu ⊆
n⋂

i=1
H

i
u.

Now, let us assume that the semigroups {Vi(σi)}σi∈Si , i ∈ In, are doubly commuting onH . It only remains

to prove that
n⋂

i=1
H

i
u ⊆ Hu. Using Proposition 2.1, it results

V1(σ1)V2(σ2) . . .Vn(σn)

 n⋂
i=1

H
i
u

 ⊆ V1(σ1)V2(σ2) . . .Vn(σn)Hn
u

⊆ V1(σ1)V2(σ2) . . .Vn−1(σn−1)Hn
u ⊆ H

n
u .

Similarly, one obtains V1(σ1)V2(σ2) . . .Vn(σn)
(

n⋂
i=1
H

i
u

)
⊆ H

j
u for all j ∈ In. Therefore

n⋂
i=1
H

i
u is invariant for the

semigroup {V(σ)}σ∈S.
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Analogously, using our assumption it follows
n⋂

i=1
H

i
u is invariant for the semigroup {V(σ)∗}σ∈S. Thus,

n⋂
i=1
H

i
u is a reducing subspace for the semigroup {V(σ)}σ∈S. It is obvious that the semigroup {V(σ)| n⋂

i=1
H i

u
}σ∈S is

unitary, whence
n⋂

i=1
H

i
u ⊆ Hu.

3. Right Defect Spaces

Let us consider an n-tuple of commuting semigroups of isometries {Vi(σi)}σi∈Si , i ∈ In, on a Hilbert space
H and the corresponding product semigroup {V(σ)}σ∈S. In this section, connections between the right defect
space R of {V(σ)}σ∈S and the right defect spaces Ri of {Vi(σi)}σi∈Si , i ∈ In, are given.

The first result establishes some inclusions between the aforementioned right defect spaces.

Theorem 3.1. Let {Vi(σi)}σi∈Si , i ∈ In, be commuting isometric semigroups on a Hilbert space H and let Ri, i ∈ In,
be their corresponding right defect spaces. If R is the right defect space of the product semigroup {V(σ)}σ∈S, then the
following relations

a) R ⊆
n⋂

i=1
Ri;

b)
⊕
σ̌i∈Ši

V1(σ1) . . .Vi−1(σi−1)Vi+1(σi+1) . . .Vn(σn)R ⊆ Ri, i ∈ In, where

σ̌i = (σ1, . . . , σi−1, σi+1, . . . , σn) ∈ S1 × . . . × Si−1 × Si+1 × . . . × Sn = Ši;

c)
⊕
σ j∈S j

V j(σ j)R ⊆
n⋂

i=1
i, j

Ri, j ∈ In,

hold.
Also, if R′ is a closed subspace ofH such that

R
′
⊆ R1,

⊕
σ1∈S1

V1(σ1)R′ ⊆ R2, . . . ,
⊕
σ̌n∈Šn

V1(σ1) . . .Vn−1(σn−1)R′ ⊆ Rn,

then R′ is a wandering subspace for the semigroup {V(σ)}σ∈S.

Proof. a) By the definition of R it follows that

R =


∨

σ−1
1 ·τ1<S−1

1

(σ,τ)∈S×S

V1(σ1)∗ . . .Vn(σn)∗V1(τ1) . . .Vn(τn)H ∨ . . .∨

∨
σ−1

n ·τn<S−1
n

(σ,τ)∈S×S

V1(σ1)∗ . . .Vn(σn)∗V1(τ1) . . .Vn(τn)H


⊥ (4)

Consequently, if x ∈ R, then for every i ∈ In we have the following:

x⊥V1(σ1)∗ . . .Vi(σi)∗ . . .Vn(σn)∗V1(τ1) . . .Vi(τi) . . .Vn(τn)H (5)

for all (σ, τ) ∈ S × S with the properties σ−1
i · τi < S−1

i .
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Let i ∈ In. If we put in (5) σ j = τ j = 1S j , j , i one gets x⊥Vi(σi)∗Vi(τi)H for all σi, τi ∈ Si with the property

σ−1
i · τi < S−1

i , whence x ∈ Ri. Therefore R ⊆
n⋂

i=1
Ri.

b) Let i ∈ In, fixed. Taking τ j = 1S j , j , i, j ∈ In, by (5) we deduce

x⊥V1(σ1)∗ . . .Vi−1(σi−1)∗Vi+1(σi+1)∗ . . .Vn(σn)∗Vi(σi)∗Vi(τi)H

for every x ∈ R, σ j ∈ S j and σ−1
i · τi < S−1

i . It results:

V1(σ1) . . .Vi−1(σi−1)Vi+1(σi+1) . . .Vn(σn)x⊥Vi(σi)∗Vi(τi)H

for every x ∈ R, σ j ∈ S j and σ−1
i · τi < S−1

i . Using relation (3), the conclusion follows.
c) It results by b).

Now, suppose that x, y ∈ R′. We will prove that V(σ)x⊥V(τ)y for every σ, τ ∈ S with σ , τ or equivalently

V(σ1) . . .Vn(σn)x⊥V1(τ1) . . .Vn(τn)y (6)

for every σi, τi ∈ Si, i ∈ In with σ j , τ j for some j, j ∈ In.
If σn , τn, taking into account that Rn is wandering for {Vn(σn)}σn)∈Sn , one gets

< V1(σ1) . . .Vn(σn)x,V1(τ1) . . .Vn(τn)y >=

=< Vn(σn)V1(σ1) . . .Vn−1(σn−1)x,Vn(τn)V1(τ1) . . .Vn−1(τn−1)y >
= 0,

i.e. relation (6) is proved.
If σn = τn, relation (6) is reduced to

V1(σ1) . . .Vn−1(σn−1)x⊥V1(τ1) . . .Vn−1(τn−1)y

with σk , τk for some k, k ∈ {1, 2, . . . ,n − 1}. Performing the above steps, the conclusion follows.

The next theorem furnishes sufficient conditions for the inclusions in Theorem 3.1 to become equalities.

Theorem 3.2. Suppose that the isometric semigroups {Vi(σi)}σi∈Si , i ∈ In, are doubly commuting on a Hilbert space
H . Then:
a) The right defect spaceRi of the corresponding semigroup {Vi(σi)}σi∈Si , i ∈ In, is a reducing subspace of the semigroup
{V j(σ j)}σ j∈S j , j ∈ In, j , i;

b) R =
n⋂

i=1
Ri;

c) Let i, j ∈ In, i , j. If the semigroup {Vi(σi)|R j }σi∈Si is of type ”s”, then⊕
σi∈Si

Vi(σi)
(
Ri ∩ R j

)
= R j;

d) Let i ∈ In, fixed. If the semigroup {Vi(σi)| n⋂
j=1
j,i

R j
}σi∈Si is of type ”s”, then

⊕
σi∈Si

Vi(σi)R =

n⋂
j=1
j,i

R j;

e) If the semigroup {V1(σ1) . . .Vn−1(σn−1)|Rn }σ̌n∈Šn
is of type ”s”, then⊕

σ̌n∈Šn

V1(σ1) . . .Vn−1(σn−1)R = Rn.
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Proof. a) Let i, j ∈ In, i , j and let x ∈ Ri = H 	
∨

σ−1
i ·τi<S−1

i

(σi,τi)∈Si×Si

Vi(σi)∗Vi(τi)H . Then x⊥Vi(σi)∗Vi(τi)y for every

y ∈ H and for all σi, τi ∈ Si such that σ−1
i · τi < S−1

i , hence x⊥Vi(σi)∗Vi(τi)V j(σ j)∗z for every z ∈ H , for all
σ j ∈ S j and for all σi, τi ∈ Si such that σ−1

i · τi < S−1
i .

Since {V j(σ j)}σ j∈S j and {Vi(σi)}σi∈Si are doubly commuting it follows that

< V j(σ j)x,Vi(σi)∗Vi(τi)z >=< x,Vi(σi)∗Vi(τi)V j(σ j)∗z >= 0

for every z ∈ H , for all σ j ∈ S j and for all σi, τi ∈ Si such that σ−1
i · τi < S−1

i . Therefore V j(σ j)x ∈ Ri for each
σ j ∈ S j, that is Ri is an invariant space of {V j(σ j)}σ j∈S j . Analogously one shows that Ri is an invariant space
of {V j(σ j)∗}σ j∈S j , hence Ri is a reducing subspace of {V j(σ j)}σ j∈S j , j , i.

b) By Theorem 3.1 side a), the inclusion R ⊆
n⋂

i=1
Ri holds. It only remains to prove that

n⋂
i=1
Ri ⊆ R.

Let x ∈
n⋂

i=1
Ri. Then

x⊥
∨

σ−1
i ·τi<S−1

i

(σi,τi)∈Si×Si

Vi(σi)∗Vi(τi)H

for each i ∈ In.
Let i ∈ In and let y ∈ H . Since the semigroups {V j(σ j)}σ j∈S j , j ∈ In, are doubly commuting, one obtains

< x,V1(σ1)∗ . . .Vn(σn)∗V1(τ1) . . .Vn(τn)y >=< x,Vi(σi)∗Vi(τi)z >= 0

for all (σ, τ) ∈ S × S with the property σ−1
i · τi < S−1

i , where
z = V1(σ1)∗ . . .Vi−1(σi−1)∗Vi+1(σi+1)∗ . . .Vn(σn)∗V1(τ1) . . .Vi−1(τi−1)Vi+1(τi+1) . . .Vn(τn)y. Taking into account

the relation (4) it results x ∈ R. Therefore
n⋂

i=1
Ri ⊆ R.

c) We denote by R′i the right defect space of the semigroup {Vi(σi)|R j }σi∈Si . For x ∈ R′i we have x ∈ R j and
x⊥Vi(σi)∗Vi(τi)R j for every σi, τi ∈ Si with σ−1

i τi < S−1
i . We deduce that Vi(τi)∗Vi(σi)x = 0 for every σi, τi ∈ Si

with σ−1
i τi < S−1

i and consequently x ∈ Ri.Thus R′i ⊆ Ri ∩R j, j , i. Since {Vi(σi)|R j }σi∈Si is of type ”s”, it easily
follows the conclusion.
d) Let R′ be the right defect space of the semigroup {Vi(σi)| n⋂

j=1
j,i

R j
}σi∈Si . As before one gets R′ ⊆

n⋂
i=1
Ri = R.

Now, using Theorem 3.1 c), we obtain

n⋂
j=1
j,i

R j =
⊕
σi∈Si

Vi(σi)R′ ⊆
⊕
σi∈Si

Vi(σi)R ⊆
n⋂

j=1
j,i

R j.

e) It immediately follows from c).

In the last theorem of this section, a characterization for the semigroup V(σ}σ∈S to be of type ”s” is given.

Theorem 3.3. If {Vi(σi)}σi∈Si , i ∈ In, are commuting semigroups of isometries on a Hilbert space H with the
corresponding right defect spaces Ri, then the following conditions are equivalent:
a) The semigroup {V(σ)}σ∈S, V(σ) = V1(σ1)V2(σ2) . . .Vn(σn) is of type ”s”;
b) For every i ∈ In, {Vi(σi)}σi∈Si and {V1(σ1) . . .Vi−1(σi−1)Vi+1(σi+1) . . .Vn(σn)}

σ̌i∈Ši
are doubly commuting isometric

semigroups of type ”s”;
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c) {Vi(σi)}σi∈Si , i ∈ In, are doubly commuting isometric semigroups of type ”s”;

d) {V1(σ1) . . .Vn−1(σn−1)}
σ̌n∈Šn

is of type ”s”, its right defect space is
n−1⋂
i=1
Ri and

⊕
σn∈Sn

Vn(σn)

 n⋂
i=1

Ri

 =

n−1⋂
i=1

Ri;

e) {Vn(σn)}σn∈Sn is of type ”s”, the subspace
n⋂

i=1
Ri is wandering for the semigroup {V1(σ1) . . .Vn−1(σn−1)}

σ̌n∈Šn
and

⊕
σ̌n∈Šn

V1(σ1) . . .Vn−1(σn−1)

 n⋂
i=1

Ri

 = Rn;

f) {V1(σ1)}σ1∈S1 is of type ”s” and
⊕
σ j∈S j

V j(σ j)
(

j⋂
i=1
Ri

)
=

j−1⋂
i=1
Ri, for every j ∈ In \ {1};

g)
n⋂

i=1
Ri is a wandering subspace for the semigroup {V(σ)}σ∈S and

⊕
σ∈S

V(σ)

 n⋂
i=1

Ri

 = H .

Proof. ”a) ⇒ b)” Let R be a wandering subspace for the semigroup {V(σ)}σ∈S such that H =
⊕
σ∈S

V(σ)R =⊕
σ1∈S1

V1(σ1)R′1, whereR′1 =
⊕
σ̌1∈Š1

V2(σ2) . . .Vn(σn)R. It follows thatR′1 is a wandering subspace for {V1(σ1)}σ1∈S1 ,

whence {V1(σ1)}σ1∈S1 is of type ”s” and R′1 = R1.
Analogously, the semigroups {V1(σ1) . . .Vi−1(σi−1)Vi+1(σi+1) . . .Vn(σn)}

σ̌i∈Ši
and {Vi(σi)}σi∈Si are of type ”s”.

In the sequel we prove that V1(σ1)∗ commutes with V2(σ2) . . .Vn(σn) for all (σ1, . . . , σn) ∈ S.
Let x ∈ H . Then x =

∑
σ1
′∈S1

V1(σ1
′)xσ1

′ , xσ1
′ ∈ R1. We have

V1(σ1)∗V2(σ2) . . .Vn(σn)x =
∑
σ1
′∈S1

V1(σ1)∗V1(σ1
′)V2(σ2) . . .Vn(σn)xσ1

′

=
∑
σ1
′
∈S1

(σ1
′)−1
·σ1<S−1

1

V1(σ1)∗V1(σ1
′)V2(σ2) . . .Vn(σn)xσ1

′ +

+
∑
σ1
′
∈S1

(σ1
′)−1
·σ1∈S−1

1

V1(σ1)∗V1(σ1
′)V2(σ2) . . .Vn(σn)xσ1

′

=
∑
σ1
′
∈S1

(σ1
′)−1
·σ1∈S−1

1

V1(σ1)∗V1(σ1
′)V2(σ2) . . .Vn(σn)xσ1

′

since xσ1
′ ∈ R1 implies V2(σ2) . . .Vn(σn)xσ1

′ ∈ R1 for every σi ∈ Si, i ∈ {2, 3, . . . ,n} and R1 is the right defect
space of {V1(σ1)}σ1∈S1 .

If (σ1
′)−1
· σ1 ∈ S−1

1 , there exists τ1 ∈ S1 such that (σ1
′)−1
· σ1 = τ−1

1 , hence σ1
′ = σ1 · τ1. Consequently,

V1(σ1)∗V2(σ2) . . .Vn(σn)x =
∑
τ1∈S1

V1(τ1)V2(σ2) . . .Vn(σn)xσ1τ1 .
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On the other hand,

V2(σ2) . . .Vn(σn)V1(σ1)∗x =
∑
σ1
′
∈S1

(σ1
′)−1
·σ1<S−1

1

V2(σ2) . . .Vn(σn)V1(σ1)∗V1(σ1
′)xσ1

′

+
∑
σ1
′
∈S1

(σ1
′)−1
·σ1∈S−1

1

V2(σ2) . . .Vn(σn)V1(σ1)∗V1(σ1
′)xσ1

′

=
∑
σ1
′
∈S1

(σ1
′)−1
·σ1∈S−1

1

V2(σ2) . . .Vn(σn)V1(σ1)∗V1(σ1
′)xσ1

′

since xσ1
′ ∈ R1 implies

< xσ1
′ ,V1(σ1

′)∗V1(σ1)y >=< V1(σ1)∗V1(σ1
′)xσ1

′ , y >= 0

for all y ∈ H and for all σ1, σ1
′
∈ S1 such that (σ1

′)−1
· σ1 < S−1

1 .
As before, we obtain that

V2(σ2) . . .Vn(σn)V1(σ1)∗x =
∑
τ1∈S1

V1(τ1)V2(σ2) . . .Vn(σn)xσ1τ1 .

Thus, the assertion is proved.
”b)⇒ c)” We show that the semigroups {V1(σ1)}σ1∈S1 and {V2(σ2)}σ2∈S2 are doubly commuting.

By our assumption

V1(σ1) (V2(σ2)V3(σ3) . . .Vn(σn))∗ = (V2(σ2)V3(σ3) . . .Vn(σn))∗ V1(σ1)

for all (σ1, . . . , σn) ∈ S. Taking σ3 = 1S3 , . . ., σn = 1Sn , the conclusion follows.
Similarly, the semigroups {Vi(σi)}σi∈Si and {V j(σ j)}σ j∈S j are doubly commuting, i, j ∈ In, i , j.

”b)⇒ e)” Corroborating the implication ”b)⇒ c)”, Theorem 3.2 a), Theorem 3.2 b), Theorem 3.2 e) and the
fact that the restriction of an isometric semigroup of type ”s” to one of its reducing subspaces is also of type
”s”, the conclusion follows.
”c)⇒ f)” By Theorem 3.2 a) and Theorem 3.2 d), for n = 2, n = 3, ..., it results the conclusion.

”e)⇒ g)” As like as in the end of the proof of Theorem 3.1, it results that
n⋂

i=1
Ri is a wandering subspace for

{V(σ)}σ∈S.
Since {Vn(σn)}σn∈Sn is a semigroup of type ”s”, we have

H =
⊕
σn∈Sn

Vn(σn)Rn

and using the hypothesis we obtain

H =
⊕
σ∈S

V(σ)

 n⋂
i=1

Ri

 .
”f)⇒ g)” First we prove that

n⋂
i=1
Ri is a wandering subspace for {V(σ)}σ∈S. Let σ, τ ∈ S such that σ , τ. Then

there exists k ∈ In such that σk , τk and σ j = τ j, for any j ∈ In, j < k. Let x, y ∈
n⋂

i=1
Ri. By hypothesis, we

deduce

Vk+1(σk+1) . . .Vn(σn)

 n⋂
i=1

Ri

 =

k⋂
i=1

Ri ⊆ Rk,
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whence
< V1(σ1) . . .Vk(σk)Vk+1(σk+1) . . .Vn(σn)x,V1(τ1) . . .Vk(τk)Vk+1(τk+1) . . .Vn(τn)y >=

< Vk(σk)Vk+1(σk+1) . . .Vn(σn)x,Vk(τk)Vk+1(τk+1) . . .Vn(τn)y >= 0.

Therefore the subspace
n⋂

i=1
Ri is wandering for the semigroup {V(σ)}σ∈S.

It is easy to show thatH =
⊕
σ∈Sσ

V(σ)
(

n⋂
i=1
Ri

)
.

”g)⇒ a)” It is obvious.
”c)⇒ d)” The conclusion follows by the equivalence ”c)⇔ b)” and by the assertions a), b) and d) of Theorem
3.2.
”d)⇒ g)” It immediately results.

Hence the theorem is completely proved.

A more precisely description of the subspace R in Theorem 3.1 is given in the following.

Proposition 3.4. Let {Vi(σi)}σi∈Si , i ∈ In, be commuting isometric semigroups on a Hilbert space H and let Ri,
i ∈ In, be their corresponding right defect spaces. If R is the right defect space of the product semigroup {V(σ)}σ∈S,

then R = H0 ∩
n⋂

i=1
Ri, whereH0 is the maximal subspace ofH that reduces {Vi(σi)}σi∈Si , i ∈ In, and the semigroups

{Vi(σi)|H0 }σi∈Si , i ∈ In, are doubly commuting.

Proof. Since double commutativity is a hereditary property, the Hilbert spaceH has the unique decompo-
sitionH = H0 ⊕H

⊥

0 , whereH0 has the aforementioned properties (see [29]). LetH = Hu ⊕He ⊕Hs be the
I. Suciu decomposition of the product semigroup. Using Theorem 3.3, the semigroups {Vi(σi)}σi∈Si , i ∈ In,
doubly commute onHs. ThereforeHu ⊕Hs ⊆ H0. Since R ⊆ Hs ⊆ H0, using Theorem 3.1 side a), it follows

R ⊆ H0 ∩
n⋂

i=1
Ri. It remains to proveH0 ∩

n⋂
i=1
Ri ⊆ R.

Let x ∈ H0 ∩
n⋂

i=1
Ri. By (3), we have Vi(τi)∗Vi(σi)x = 0 for any σi, τi ∈ Si, σ−1

i τi < S−1
i , i ∈ In. Let µ, ν ∈ S

such that µ−1ν < S−1. Then there exists j ∈ In with the property µ−1
j ν j < S−1

j . Since x ∈ H0, we deduce

V(ν)∗V(µ)x = Vn(νn)∗ . . .V1(ν1)∗V1(µ1) . . .Vn(µn)x
= Vn(νn)∗ . . .V j+1(ν j+1)∗V j−1(ν j−1)∗ . . .V1(ν1)∗V1(µ1) . . .V j−1(µ j−1)V j+1(µ j+1) . . .Vn(µn)V j(ν j)∗V j(µ j)x
= 0.

Therefore x ∈ R. This completes the proof.

In the case when Gi is totally ordered by Si, i ∈ In, a double commuting part of an n-tuple of isometric
semigroups can be identified.

Proposition 3.5. Let Gi, i ∈ In, be multiplicative abelian groups totally ordered by the unital sub-semigroups Si,
i ∈ In such that Si ∩ S−1

i = {1Si } and Gi = SiS−1
i , i ∈ In. Let {Vi(σi)}σi∈Si , i ∈ In, be an n-tuple of isometric semigroups

on a Hilbert spaceH . Then the subspaceHdc ofH given by

Hdc = {h ∈ H | V1(σ1)V1(τ1)∗V2(σ2)V2(τ2)∗ . . .Vn(σn)Vn(τn)∗h = Vn(σn)Vn(τn)∗ . . .V1(σ1)V1(τ1)∗h,

σi, τi ∈ Si, i ∈ In}

is the maximal subspace ofH that reduces {Vi(σi)}σi∈Si , i ∈ In, and the semigroups {Vi(σi)|Hdc }σi∈Si , i ∈ In, are doubly
commuting.
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Proof. The subspace Hdc is a closed subspace, being an intersection of bounded operator kernels. It is
obvious that the semigroups {Vi(σi)|Hdc }σi∈Si , i ∈ In, are doubly commuting.

For any h ∈ Hdc, σi, τi ∈ Si, i ∈ In and µ j ∈ S j, j ∈ In, we have

V1(σ1)V1(τ1)∗ . . .V j(σ j)V j(τ j)∗ . . .Vn(σn)Vn(τn)∗V j(µ j)h =

V1(σ1)V1(τ1)∗ . . .V j(σ j)V j(τ j)∗V j(µ j) . . .Vn(σn)Vn(τn)∗h.

By hypothesis, there exists s j ∈ S j such that µ j = τ js j or τ j = µ js j. Let us consider, for example, µ j = τ js j.
Then

V1(σ1)V1(τ1)∗ . . .V j(σ j)V j(τ j)∗ . . .Vn(σn)Vn(τn)∗V j(µ j)h =

= V1(σ1)V1(τ1)∗ . . .V j(σ j)V j(τ j)∗V j(µ j) . . .Vn(σn)Vn(τn)∗h
= V1(σ1)V1(τ1)∗ . . .V j(σ js j) . . .Vn(σn)Vn(τn)∗h
= Vn(σn)Vn(τn)∗ . . .V j(σ js j) . . .V1(σ1)V1(τ1)∗h
= Vn(σn)Vn(τn)∗ . . .V j(σ j)V j(τ j)∗V j(τ j)V j(s j) . . .V1(σ1)V1(τ1)∗h
= Vn(σn)Vn(τn)∗ . . .V1(σ1)V1(τ1)∗V j(µ j)h.

Therefore Hdc is invariant for {V j(σ j)}σ j∈S j , j ∈ In. Analogously, one proves that Hdc is invariant for
{V j(σ j)∗}σ j∈S j , j ∈ In. It is easy to see thatHdc is maximal. This completes the proof.

4. Wold-Słociński-Suciu Decompositions

In this section, in the Słociński’s spirit [25], we define a Wold-type decomposition for n-tuples of
commuting isometric semigroups. The existence and the uniqueness of such decomposition is proved.
Also, connection between our decomposition and the I. Suciu decomposition [26] of the product semigroup
generated by these n semigroups is given.

We denote ΛWSS = {u, e, s}. For every n ∈ N, n ≥ 2, let F(n,ΛWSS) be the set of all functions from In to
ΛWSS.

Definition 4.1. Let {Vi(σi)}σi∈Si , i ∈ In, be an n-tuple of commuting semigroups of isometries on a Hilbert spaceH .
Let {H f } f∈F(n,ΛWSS) be a set of closed subspaces ofH such that

H =
⊕

f∈F(n,ΛWSS)

H f .

Such a decomposition is called the Wold-Słociński-Suciu decomposition (WSSD) of {Vi(σi)}σi∈Si , i ∈ In, if the following
conditions are satisfied:
a) The spaceH f reduces {Vi(σi)}σi∈Si , i ∈ In, for every f ∈ F(n,ΛWSS);
b) For i ∈ In and f ∈ F(n,ΛWSS), {Vi(σi)|H f }σi∈Si is a unitary semigroup if f (i) = u, a semigroup of type ”e” if f (i) = e
and a semigroup of type ”s” if f (i) = s.

First result regards a connection between WSSD and I. Suciu’s decompositions with three summands of
each semigroup.

Proposition 4.2. Let {Vi(σi)}σi∈Si , i ∈ In, be an n-tuple of commuting isometric semigroups on a Hilbert space H ,
let H = H i

u ⊕ H
i
e ⊕ H

i
s be the I. Suciu decomposition of {Vi(σi)}σi∈Si , i ∈ In, and let H =

⊕
f∈F(n,ΛWSS)

H f be a

Wold-Słociński-Suciu decomposition of the given n-tuple. Then the following relations:
a)H i

u =
⊕

f∈F(n,ΛWSS)
f (i)=u

H f ,H i
e =

⊕
f∈F(n,ΛWSS)

f (i)=e

H f ,H i
s =

⊕
f∈F(n,ΛWSS)

f (i)=s

H f , i ∈ In ;

b)H f =
n⋂

i=1
H

i
f (i) , f ∈ F(n,ΛWSS),

hold.
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Proof. a) It immediately results;

b) Let f ∈ F(n,ΛWSS). By a) we haveH i
f (i) =

⊕
1∈F(n,ΛWSS)
1(i)= f (i)

H1 ⊃ H f for every i ∈ In, henceH f ⊆
n⋂

i=1
H

i
f (i).

Conversely, let f ∈ F(n,ΛWSS). For any 1 ∈ F(n,ΛWSS), 1 , f , there is j ∈ In such that f ( j) , 1( j).

Consequently
n⋂

i=1
H

i
f (i) ⊆ H

j
f ( j) ⊥ H

j
1( j) ⊇ H1. Then by H =

⊕
1∈F(n,ΛWSS)

H1 we get
n⋂

i=1
H

i
f (i) ⊥ H 	 H f which

finishes the proof.

Remark 4.3. Taking into account Proposition 4.2 side b), it easily results that the subspace H f is the maximal
subspace ofH reducing each semigroup {Vi(σi)}σi∈Si , i ∈ In, to a semigroup of type ” f (i)”.

As a consequence of the above proposition we can state:

Proposition 4.4. If a Wold-Słociński-Suciu decomposition of an n-tuple of commuting semigroups of isometries
exists, then it is unique.

A positive result about the problem of the existence of the WSSD is given in the following:

Proposition 4.5. Let {Vi(σi)}σi∈Si , i ∈ In, be an n-tuple of commuting semigroups of isometries on a Hilbert space
H and let H = H i

u ⊕ H
i
e ⊕ H

i
s be the I. Suciu decomposition of {Vi(σi)}σi∈Si , i ∈ In. Then, there exists the Wold-

Słociński-Suciu decomposition of the given n-tuple if and only if the subspacesH i
α, α ∈ {u, e, s}, i ∈ In, are reducing

for the semigroups {V j(σ j)}σ j∈S j , j ∈ In, j , i.

Proof. If the WSSD exists, then by Proposition 4.2 a), one deduces that H i
α, α ∈ {u, e, s}, i ∈ In, reduces

{V j(σ j)}σ j∈S j , j ∈ In, j , i.
Conversely, let us suppose thatH i

α, α ∈ {u, e, s}, i ∈ In, reduces {V j(σ j)}σ j∈S j , j ∈ In, j , i. We denote by Pi
α,

α ∈ {u, e, s}, i ∈ In, the orthogonal projection ofH onH i
α.

Recall that a subspaceK ⊂ H reduces X ∈ L(H) if and only if X commutes with the orthogonal projection
PK ontoK [3].

It is clear that Pi
αV j(σ j) = V j(σ j)Pi

α for all σ j ∈ S j, whence, by Proposition 2.1, it results Pi
αH

j
u ⊆ H

j
u. It

follows Pi
αP j

u = P j
uPi

α, α ∈ {u, e, s}, i, j ∈ In, j , i.
Now, let us prove that Pi

αH
j
s ⊆ H

j
s . Using H j

s =
⊕
σ j∈S j

V j(σ j)R j, it results that Pi
αH

j
s =

∨
σ j∈S j

V j(σ j)Pi
αR j.

Taking r ∈ R j, one gets
< Pi

αr,V j(σ j)∗V j(τ j)h >=< r,V j(σ j)∗V j(τ j)Pi
αh >= 0

for all h ∈ H and for allσ j, τ j ∈ S j withσ−1
j ·τ j < S−1

j .Therefore Pi
αR j ⊆ R j, hence Pi

αH
j
s =

⊕
σ j∈S j

V j(σ j)Pi
αR j ⊆ H

j
s ,

and consequently Pi
αP j

s = P j
sPi
α, α ∈ {u, e, s}, i, j ∈ In, j , i.

By Pi
e = IH −Pi

u −Pi
s, i ∈ In, one obtains Pi

eP
j
e = P j

ePi
e, for every i, j ∈ In, j , i. Hence Pi

αP j
β = P j

βP
i
α for every

α, β ∈ {u, e, s} and for all i, j ∈ In.
Thus, P1

α1
P2
α2
. . .Pn

αn
, αi ∈ {u, e, s}, i ∈ In, are the orthogonal projections onH1

α1
∩H

2
α2
∩ . . .∩Hn

αn
. Since the

sum of these projections is the identity operator onH , the conclusion follows.

Now, it is obvious that the following result holds:

Theorem 4.6. Every n-tuple of doubly commuting semigroups of isometries has the Wold-Słociński-Suciu decompo-
sition.

The existence of a multiple decomposition for an n-tuple of commuting isometric semigroups {Vi(σi)}σi∈Si ,
i ∈ In,may be concluded by various properties like: doubly commutativity, hyperreducivity of the Lebesgue
decomposition, finite dimensional wandering spaces ([2],[3],[20],[25]). Let k ∈ In, 2 ≤ k < n. We denote
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Sk = {J ⊆ In : |J| = j, 2 ≤ j ≤ k}. For a set J ∈ S, the corresponding j-tuple of isometric semigroups
is {V j(σ j)}σ j∈S j , j ∈ J. By Proposition 4.5 it is easy to see that the existence of the WSSD of an n-tuple of
commuting isometric semigropus implies the existence of WSSD of any k-tuple, k ∈ In, k < n. It raises the
question if a converse property holds. A positive answer is given in the next theorem.

Theorem 4.7. Let {Vi(σi)}σi∈Si , i ∈ In, n ≥ 3, be an n-tuple of commuting isometric semigroups on a Hilbert spaceH ,
let k ∈ In, 2 ≤ k < n fixed and let J1, J2, . . . , Jm be the minimum number of subsets ofSk such that the number of all their

distinct subsets with two elements is
(
n
2

)
. If for every corresponding jl-tuple of isometric semigroups {V jl (σ jl )}σ jl∈S jl

,

l ∈ {1, 2, . . . ,m}, the Wold-Słociński-Suciu decomposition exists, then the given n-tuple has the Wold-Słociński-Suciu
decomposition.

Proof. Let l ∈ {1, 2, . . . ,m}. Applying Proposition 4.5 for the jl-tuple {V jl (σ jl )}σ jl∈S jl
, it results the subspace

H
i
α, α ∈ {u, e, s}, i ∈ Jl, reduces {V j(σ j)}σ j∈S j , j ∈ Jl, j , i, whence every pair ({Vi(σi)}σi∈Si , {V j(σ j)}σ j∈S j ), i, j ∈ Jl,

i , j, has WSSD. Since l is arbitrary and the number of all pairs (i, j), i, j ∈ In, i < j is
(
n
2

)
, it follows that every

pair ({Vi(σi)}σi∈Si , {V j(σ j)}σ j∈S j ), i, j ∈ In, i , j, has WSSD. By Proposition 4.5 one gets every summand H i
α,

α ∈ {u, e, s}, of the I. Suciu decomposition of the semigroup {Vi(σi)}σi∈Si , i ∈ In, is reducing for {V j(σ j)}σ j∈S j ,
j ∈ In, j , i, which is what we set out to prove.

Remark 4.8. We notice that m =

(
n
2

)
for k = 2 and m = 3 for k = n− 1. Also, if there exists a pair of semigroups has

not WSSD, then the n-tuple has not WSSD.

The next result establishes relations between some subspaces of the WSSD and the subspaces of I. Suciu’s
decomposition.

Theorem 4.9. Suppose that H =
⊕

f∈F(n,ΛWSS)
H f is the Wold-Słociński-Suciu decomposition of the n-tuple of com-

muting semigroups of isometries {Vi(σi)}σi∈Si , i ∈ In, on a Hilbert spaceH . Let fu, fs ∈ F(n,ΛWSS), fu( j) = u, j ∈ In,
fs( j) = s, j ∈ In and let F = { f ∈ F(n,ΛWSS)| f , fu and there exists k ∈ In such that f (k) = u}. IfH = Hu⊕He⊕Hs
is the I. Suciu decomposition of the product semigroup {V(σ)}σ∈S of {Vi(σi)}σi∈Si , i ∈ In, then

Hu = H fu , Hs ⊆ H fs and He ⊃
⊕
f∈F

H f .

Moreover, if {Vi(σi)}σi∈Si , i ∈ In, are doubly commuting onH , then

Hs = H fs and He =
⊕

f∈F(n,ΛWSS)\{ fu, fs}

H f .

Proof. First we prove thatH fu = Hu.
SinceHu reduces the semigroup {V(σ)}σ∈S to a unitary semigroup, it results in particular thatHu reduces

the semigroups {Vi(σi)}σi∈Si , i ∈ In, to unitary semigroups. By Remark 4.3 one getsHu ⊆ H fu .
Taking into account thatH fu reduces the semigroups {Vi(σi)}σi∈Si , i ∈ In, to unitary semigroups, it follows

thatH fu reduces the semigroup {V(σ)}σ∈S to a unitary semigroup, whenceH fu ⊆ Hu. ThusH fu = Hu.
Using Theorem 3.3, it follows that {Vi(σi)|Hs }σi∈Si , i ∈ In, are doubly commuting semigroups of type ”s”,

whenceHs ⊆ H fs .
It is easy to see thatH f , f ∈ F reduces {V(σ)}σ∈S and the semigroup {V(σ)|H f }σ∈S is of type ”e”, whence⊕

f∈F
H f ⊆ He.

Now, if {Vi(σi)}σi∈Si , i ∈ In, doubly commute, by Theorem 3.3 it results thatH fs ⊆ Hs, whenceHs = H fs .
ThusHe =

⊕
f∈F(n,ΛWSS)\{ fu, fs}

H f and the theorem is completely proved.
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In the sequel, two results about a pair of doubly commuting isometric semigroups are presented.

Remark 4.10. In the particular case n = 2, we have F(2,ΛWSS) = { f1, f2, . . . , f9}, where f1(1) = f1(2) = u, f2(1) =
u, f2(2) = e, f3(1) = u, f3(2) = s, f4(1) = e, f4(2) = u, f5(1) = f5(2) = e, f6(1) = e, f6(2) = s, f7(1) = s, f7(2) = u,
f8(1) = s, f8(2) = e, f9(1) = f9(2) = s. The Wold-Słociński-Suciu decomposition of the pair of commuting semigroups

{V1(σ1)}σ1∈S1 and {V2(σ2)}σ2∈S2 has the form H =
9⊕

j=1
H f j . For a function f ∈ F(2,ΛWSS), H f can be denoted by

H f (1) f (2), where f (1) f (2) represents the concatenation of f (1) and f (2). Thus, the subspaces H f j , j ∈ {1, 2, . . . , 9}
become Huu, Hue, Hus, Heu, Hee, Hes, Hsu, Hse, Hss, respectively, which are in accordance with the Słociński
notations [25] for the summands in the Wold decomposition of a pair of commuting isometries. Thus, the WSSD has
the following form

H = Huu ⊕Hue ⊕Hus ⊕Heu ⊕Hee ⊕Hes ⊕Hsu ⊕Hse ⊕Hss (7)

Proposition 4.11. Let {V1(σ1)}σ1∈S1 and {V2(σ2)}σ2∈S2 be two commuting isometric semigroups on a Hilbert space
H and let H = Hu ⊕ He ⊕ Hs be the I. Suciu decomposition of the product semigroup {V1(σ1)V2(σ2)}(σ1,σ2)∈S1×S2 .
The following conditions are equivalent:
(i) the pair {Vi(σi)}σi∈Si , i ∈ {1, 2} has the Wold-Słociński-Suciu decomposition (7), the semigroups {V1(σ1)}σ1∈S1 and
{V2(σ2)}σ2∈S2 doubly commute on the subspacesHes,Hse,Hee andHss = Hs;
(ii) the semigroups {V1(σ1)}σ1∈S1 and {V2(σ2)}σ2∈S2 doubly commute onH .

Proof. Taking into account Theorems 4.6 and 4.9, it only remains to prove the implication (i)⇒ (ii).
The semigroup {V1(σ1)V2(σ2)|Hs }(σ1,σ2)∈S1×S2 is of type ”s”, hence, by Theorem 3.3, the semigroups

{V1(σ1)}σ1∈S1 and {V2(σ2)}σ2∈S2 are doubly commuting onHs = Hss.
Now, taking into account the Fuglede-Putnam-Rosemblum theorem [21], it results that the semigroups

{V1(σ1)}σ1∈S1 and {V2(σ2)}σ2∈S2 are doubly commuting onHuu,Hue,Hus,Heu,Hsu. Therefore {V1(σ1)}σ1∈S1 and
{V2(σ2)}σ2∈S2 doubly commute onH .

In the last proposition of the paper, the structure of the summands in the WSSD in the case of two doubly
commuting semigroups of isometries is given.

Proposition 4.12. Let {V1(σ1)}σ1∈S1 and {V2(σ2)}σ2∈S2 be two doubly commuting isometric semigroups on a Hilbert
spaceH and letR1 andR2 be their corresponding right defect spaces. Then the subspaces in the Wold-Słociński-Suciu
decomposition (7) have the following geometric structure:

Huu =
⋂

(σ1,σ2)∈S1×S2

V1(σ1)V2(σ2)H ; Hus =
⋂
σ1∈S1

V1(σ1)

⊕
σ2∈S2

V2(σ2)R2

 ;

Hue =

 ⋂
σ1∈S1

V1(σ1)H

 	 (Huu ⊕Hus) ; Hsu =
⋂
σ2∈S2

V2(σ2)

⊕
σ1∈S1

V1(σ1)R1

 ;

Hss =
⊕

(σ1,σ2)∈S1×S2

V1(σ1)V2(σ2) (R1 ∩ R2) ; Hse =

⊕
σ1∈S1

V1(σ1)R1

 	 (Hsu ⊕Hss) ;

Heu =

 ⋂
σ2∈S2

V2(σ2)H

 	 (Huu ⊕Hsu) ; Hes =

⊕
σ2∈S2

V2(σ2)R2

 	 (Hus ⊕Hss) ;

Hee = H 	 (Huu ⊕Hue ⊕Hus ⊕Heu ⊕Hes ⊕Hsu ⊕Hse ⊕Hss)

Proof. By Theorem 4.5, the structures ofHuu andHss are obtained.
Let H = H i

u ⊕ H
i
e ⊕ H

i
s be the I. Suciu decomposition of {Vi(σi)}σi∈Si , i ∈ {1, 2}. The subspace Hus is

the unitary part in the I. Suciu decomposition of {V1(σ1)|Hus⊕Hes⊕Hss }σ1∈S1 . Since Hus ⊕ Hes ⊕ Hss = H2
s =⊕

σ2∈S2

V2(σ2)R2, it followsHus =
⋂
σ1∈S1

V1(σ1)

 ⊕
σ2∈S2

V2(σ2)R2

.
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The I. Suciu decomposition of {(V2(σ2)|H1
u
}σ2∈S2 is H1

u = Huu ⊕ Hue ⊕ Hus. Therefore Hue = H1
u 	

(Huu ⊕Hus) =

[ ⋂
σ1∈S1

V1(σ1)H
]
	 (Huu ⊕Hus) .

The other geometric structures are similarly obtained.
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[8] D. Gaşpar, N. Suciu, On Wold decompositions of isometric semigroups, in: Approximation theory and functional analysis, ISNM

65, Birkhauser Verlag, Basel, 1984, pp. 99–108.
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[25] M. Słociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980) 255–262.
[26] I. Suciu, On the semigroups of isometries, Studia Math. 30 (1968) 101–110.
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