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Abstract. In this paper, the complete moment convergence and the integrability of the supremum for
weighted sums of negatively orthant dependent (NOD, in short) random variables are presented. As
applications, the complete convergence and the Marcinkiewicz-Zygmund type strong law of large numbers
for NOD random variables are obtained. The results established in the paper generalize some corresponding
ones for independent random variables and negatively associated random variables.

1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins [7] as follows. A sequence of
random variables {Un,n ≥ 1} is said to converge completely to a constant C if

∑
∞

n=1 P(|Un − C| > ε) < ∞ for
all ε > 0. In view of the Borel-Cantelli lemma, this implies that Un → C almost surely (a.s.). The converse
is true if the {Un,n ≥ 1} are independent. Hsu and Robbins [7] proved that the sequence of arithmetic
means of independent and identically distributed (i.i.d.) random variables converges completely to the
expected value if the variance of the summands is finite. Erdös [5] proved the converse. The result of
Hsu-Robbins-Erdös is a fundamental theorem in probability theory and has been generalized and extended
in several directions by many authors. One can refer to Baum and Katz [2] for instance. On the other hand,
Chow [4] introduced the concept of complete moment convergence, which is more general than complete
convergence.

The concept of complete moment convergence was introduced by Chow [4] as follows: let {Zn,n ≥ 1}
be a sequence of random variables, and an > 0, bn > 0, q > 0. If

∑
∞

n=1 anE{b−1
n |Zn| − ε}

q
+ < ∞ for all ε > 0, then

{Zn,n ≥ 1} is called to converge in the sense of complete moment convergence. It is well known that the
complete moment convergence can imply complete convergence.

Since the concept of complete moment convergence was introduced by Chow [4], many applications
have been found. See for example, Sung [15] established general methods for obtaining the complete
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moment convergence for sums of random variables satisfying the Marcinkiewicz-Zygmund type moment
inequality. Liang et al. [10] provided necessary and sufficient conditions for complete moment convergence
of negatively associated (NA, in short) random variables. Wu et al. [26] studied the complete moment
convergence forρ∗-mixing random variables. Yang et al. [27] investigated complete convergence for moving
average process based on asymptotically almost negatively associated (AANA, in short) sequence. Yang et
al. [28] studied complete convergence for moving average process based on martingale differences. Wang
and Hu [19] established the equivalence of the complete convergence and complete moment convergence
for a class of random variables. Wang and Hu [20] studied the complete convergence and complete moment
convergence for martingale difference sequence. The main purpose of the present investigation is to study
the complete moment convergence for weighted sums of negatively orthant dependent random variables.

Now, let us recall the definitions of negatively associated random variables and negatively orthant
dependent random variables.
Definition 1.1. A finite collection of random variables X1,X2, · · · ,Xn is said to be negatively associated (NA, in
short) if for every pair of disjoint subsets A1,A2 of {1, 2, · · · ,n},

Cov{ f (Xi : i ∈ A1), 1(X j : j ∈ A2)} ≤ 0,

whenever f and 1 are coordinatewise nondecreasing such that this covariance exists. An infinite sequence {Xn,n ≥ 1}
is NA if every finite subcollection is NA.
Definition 1.2. A finite collection of random variables X1,X2, · · · ,Xn is said to be negatively orthant dependent
(NOD, in short) if

P(X1 > x1,X2 > x2, · · · ,Xn > xn) ≤
n∏

i=1

P(Xi > xi)

and

P(X1 ≤ x1,X2 ≤ x2, · · · ,Xn ≤ xn) ≤
n∏

i=1

P(Xi ≤ xi)

for all x1, x2, · · · , xn ∈ R. An infinite sequence {Xn,n ≥ 1} is said to be NOD if every finite subcollection is NOD.
Since the concepts of NA and NOD sequences were introduced by Joag-Dev and Proschan [8], many

applications have been found. Obviously, independent random variables are NOD. Joag-Dev and Proschan
[8] pointed out that NA random variables are NOD. So we can see that NOD is weaker than NA. A
number of limit theorems for NOD random variables have been established by many authors. See for
example, Taylor et al. [17] studied strong law of large numbers, Volodin [18] established the Kolmogorov
exponential inequality, Amini and Bozorgnia [1], and Wu [23] obtained complete convergence for NOD
random varialbes, Ko and Kim [9] established almost convergence for weighted sums of NOD random
variables, Shen [11] studied the strong limit theorems for arrays of rowwise NOD random variables, Sung
[16] established exponential inequalities for NOD random variables, Wu [25] and Wang et al. [21] obtained
the complete convergence theorem for weighted sums of arrays of rowwise NOD random variables, Shen
[12] studied the strong convergence rate for weighted sums of arrays of rowwise NOD random variables,
and so forth.

The main purpose of the present investigation is to provide the complete moment convergence for
weighted sums of NOD random variables. We will present some simple conditions to prove the complete
moment convergence. The techniques used in the paper are the truncation method and the Rosenthal type
inequality for NOD random variables.
Definition 1.3. A sequence {Xn,n ≥ 1} of random variables is said to be stochastically dominated by a random
variable X if there exists a positive constant C such that

P(|Xn| > x) ≤ CP(|X| > x)

for all x ≥ 0 and n ≥ 1.
Throughout the paper, I(A) stands for the indicator function of set A and C denotes a positive constant

which may be different in various places. Denote x+ = max{x, 0} and x− = max{−x, 0}.
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2. Main Results

Our main results are as follows.
Theorem 2.1. Let r > 1, 0 < p < 2 and pr > 1. Assume that {Xn,n ≥ 1} is a sequence of mean zero NOD random
variables which is stochastically dominated by a random variable X such that EX2 < ∞. Let {ani, i ≥ 1,n ≥ 1} ba an
array of real numbers. For some q > max{ 2p(r−1)

(2−p) , pr}, we assume that E|X|pr logq(1 + |X|) < ∞ and

n∑
i=1

|ani|
q = O(n). (2.1)

Then for any ε > 0,

∞∑
n=1

nr−2−1/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − εn1/p


+

< ∞. (2.2)

Remark 2.1. It can be found that the complete moment convergence can imply complete convergence. Let
the conditions of Theorem 2.1 hold. Then for any ε > 0,

∞∑
n=1

nr−2P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > εn1/p

 < ∞. (2.3)

In fact, it can be checked that for any ε > 0,

∞∑
n=1

nr−2−1/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − εn1/p


+

=

∞∑
n=1

nr−2−1/p
∫
∞

0
P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − εn1/p > t

 dt

≥

∞∑
n=1

nr−2−1/p
∫ εn1/p

0
P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − εn1/p > t

 dt

≥ ε
∞∑

n=1

nr−2P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > 2εn1/p

 .
So (2.2) implies (2.3).
Corollary 2.1. Let r > 1, 0 < p < 2 and pr > 1. Assume that {Xn,n ≥ 1} is a sequence of mean zero NOD random
variables which is stochastically dominated by a random variable X such that EX2 < ∞. Let {an,n ≥ 1} be a sequence
of real numbers. For some q > max{ 2p(r−1)

(2−p) , pr}, we assume that E|X|pr logq(1 + |X|) < ∞ and

n∑
i=1

|ai|
q = O(n). (2.4)

Then for any ε > 0,

∞∑
n=1

nr−2−1/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aiXi

∣∣∣∣∣∣∣ − εn1/p


+

< ∞, (2.5)

and for 1 < r < 2,

∞∑
n=1

nr−2E

sup
k≥n

∣∣∣∣∣∣∣ 1
k1/p

k∑
i=1

aiXi

∣∣∣∣∣∣∣ − ε


+

< ∞. (2.6)
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On the other hand, for any 0 < p < 1 and r = 1/p, we obtain the following result.
Theorem 2.2. Let 0 < p < 1 and {Xn,n ≥ 1} be a sequence of mean zero NOD random variables which is stochastically
dominated by a random variable X such that E|X| log3(1+ |X|) < ∞. Let {ani, i ≥ 1,n ≥ 1} ba an array of real numbers
such that

n∑
i=1

|ani|
2 = O(n). (2.7)

Then for any ε > 0,

∞∑
n=1

n−2E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − εn1/p


+

< ∞. (2.8)

Corollary 2.2. Let 0 < p < 1 and {Xn,n ≥ 1} be a sequence of mean zero NOD random variables which is
stochastically dominated by a random variable X such that E|X| log3(1 + |X|) < ∞. Let {an,n ≥ 1} be a sequence of
real numbers such that

n∑
i=1

|ai|
2 = O(n). (2.9)

Then for any ε > 0,

∞∑
n=1

n−2E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aiXi

∣∣∣∣∣∣∣ − εn1/p


+

< ∞, (2.10)

and for 1
2 < p < 1,

∞∑
n=1

n1/p−2E

sup
k≥n

∣∣∣∣∣∣∣ 1
k1/p

k∑
i=1

aiXi

∣∣∣∣∣∣∣ − ε


+

< ∞. (2.11)

In particular, for any ε > 0,

∞∑
n=1

n1/p−2P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aiXi

∣∣∣∣∣∣∣ > εn1/p

 < ∞. (2.12)

Remark 2.2. Let the conditions of Corollary 2.1 hold. Denote Sn =
∑n

i=1 aiXi for n ≥ 1. Then for any ε > 0,

∞∑
n=1

nr−2P
(
max
1≤k≤n

|Sk| > εn1/p
)
< ∞, (2.13)

and for 1 < r < 2,

∞∑
n=1

nr−2P
(
sup
k≥n

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > ε) < ∞. (2.14)
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In fact, it can be checked that for any ε > 0,
∞∑

n=1

nr−2−1/pE
(
max
1≤k≤n

|Sk| − εn1/p
)+

=

∞∑
n=1

nr−2−1/p
∫
∞

0
P
(
max
1≤k≤n

|Sk| − εn1/p > t
)

dt

≥

∞∑
n=1

nr−2−1/p
∫ εn1/p

0
P
(
max
1≤k≤n

|Sk| − εn1/p > t
)

dt

≥ ε
∞∑

n=1

nr−2P
(
max
1≤k≤n

|Sk| > 2εn1/p
)
.

So (2.5) implies (2.13).
Meanwhile, inspired by the proof of Theorem 12.1 of Gut [6], it can be checked that

∞∑
n=1

nr−2P
(
sup
k≥n

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > 22/pε

)
=

∞∑
m=1

2m
−1∑

n=2m−1

nr−2P
(
sup
k≥n

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > 22/pε

)

≤

∞∑
m=1

P

 sup
k≥2m−1

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > 22/pε

 2m
−1∑

n=2m−1

2m(r−2)
≤

∞∑
m=1

2m(r−1)P

 sup
k≥2m−1

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > 22/pε


=

∞∑
m=1

2m(r−1)P
(
sup
l≥m

max
2l−1≤k<2l

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > 22/pε

)
≤

∞∑
m=1

2m(r−1)
∞∑

l=m

P
(

max
1≤k≤2l

|Sk| > ε2(l+1)/p
)

=

∞∑
l=1

P
(

max
1≤k≤2l

|Sk| > ε2(l+1)/p
) l∑

m=1

2m(r−1)
≤ C

∞∑
l=1

2l(r−1)P
(

max
1≤k≤2l

|Sk| > ε2(l+1)/p
)

= 22−rC
∞∑

l=1

2l+1
−1∑

n=2l

2(l+1)(r−2)P
(

max
1≤k≤2l

|Sk| > ε2(l+1)/p
)

≤ 22−rC
∞∑

l=1

2l+1
−1∑

n=2l

nr−2P
(
max
1≤k≤n

|Sk| > εn1/p
)

(since r < 2)

≤ 22−rC
∞∑

n=1

nr−2P
(
max
1≤k≤n

|Sk| > εn1/p
)
.

Combining (2.13) with the inequality above, we obtain (2.14) immediately. �
Remark 2.3. Since r > 1, it can be seen by (2.13) that

∞∑
n=1

n−1P
(
max
1≤k≤n

|Sk| > εn1/p
)
≤

∞∑
n=1

nr−2P
(
max
1≤k≤n

|Sk| > εn1/p
)
< ∞.

By the inequality above and the standard method, we can obtain the Marcinkiewicz-Zygmund type strong
law of large numbers for NOD sequence as follows:

n−1/p
n∑

i=1

aiXi → 0 a.s., as n→∞.

3. Preliminary Lemmas

The following lemmas are our basic techniques to prove the main results. The first one is a basic property
for NOD random variables.



Xuejun Wang et al. / Filomat 31:5 (2017), 1195–1206 1200

Lemma 3.1. (cf. Bozorgnia et al. [3]). Let {Xn,n ≥ 1} be a sequence of NOD random variables, and let { fn,n ≥ 1}
be a sequence of nondecreasing (or nonincreasing) functions, then { fn(Xn),n ≥ 1} is still a sequence of NOD random
variables.

The next one is the Rosenthal type inequality for NOD random variables which can be found in Wu
[24].
Lemma 3.2. Let {Xn,n ≥ 1} be a sequence of NOD random variables with EXn = 0 and E|Xn|

q < ∞ for some q ≥ 2.
Then there exists a positive constant Cq depending only on q such that

E

max
1≤i≤n

∣∣∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣∣∣
q ≤ Cq logq n


n∑

i=1

E|Xi|
q +

 n∑
i=1

EXi
2


q/2

 , n ≥ 1.

The following one is a basic property for stochastic domination. For the proof, one can refer to Wu [22],
Shen and Wu [13], or Shen et al. [14].
Lemma 3.3. Let {Xn,n ≥ 1} be a sequence of random variables which is stochastically dominated by a random variable
X. For any α > 0 and b > 0, the following two statements hold:

E|Xn|
αI(|Xn| ≤ b) ≤ C1[E|X|αI(|X| ≤ b) + bαP(|X| > b)],

E|Xn|
αI(|Xn| > b) ≤ C2E|X|αI(|X| > b),

where C1 and C2 are positive constants.
The last one is the moment inequality for the maximum partial sum of random variables, which plays

an important role to prove the main results of the paper.
Lemma 3.4. (cf. Sung [15]). Let {Yn,n ≥ 1} and {Zn,n ≥ 1} be sequences of random variables. Then for any q > 1,
ε > 0 and a > 0,

E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Yi + Zi)

∣∣∣∣∣∣∣ − εa


+

≤

(
1
εq +

1
q − 1

)
1

aq−1 E max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Yi

∣∣∣∣∣∣∣
q

+ E max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Zi

∣∣∣∣∣∣∣ .

4. Proofs of the Main Results

Proof of Theorem 2.1. For fixed n ≥ 1, denote for 1 ≤ i ≤ n that

Yni = −n1/pI(Xi < −n1/p) + XiI(|Xi| ≤ n1/p) + n1/pI(Xi > n1/p),

Y∗ni = n1/pI(Xi < −n1/p) − n1/pI(Xi > n1/p) + XiI(|Xi| > n1/p)

and
Ỹni = Yni − EYni.

Obviously, it has Xi = Y∗ni + EYni + Ỹni. Applying Lemma 3.4 with a = n1/p, we have

∞∑
n=1

nr−2−1/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − εn1/p


+

≤

∞∑
n=1

nr−2−1/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniY∗ni

∣∣∣∣∣∣∣
 +

∞∑
n=1

nr−2−1/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniEYni

∣∣∣∣∣∣∣


+C
∞∑

n=1

nr−2−q/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniỸni

∣∣∣∣∣∣∣
q

� H + I + J. (4.1)
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By (2.1) and Hölder’s inequality, we have for 1 ≤ k ≤ q that

n∑
i=1

|ani|
k
≤ (

n∑
i=1

|ani|
q)k/q(

n∑
i=1

1)1−k/q
≤ Cn. (4.2)

For H, noting that |Y∗ni| ≤ |Xi|I(|Xi| > n1/p), we have by (4.2)(taking k = 1), Lemma 3.3 and E[|X|rp logq(1+|X|)] <
∞ that

H ≤ C
∞∑

n=1

nr−2−1/p
n∑

i=1

|ani|E
(
|Xi|I(|Xi| > n1/p)

)
≤ C

∞∑
n=1

nr−2−1/p
n∑

i=1

|ani|E|X|I(|X| > n1/p)

= C
∞∑

n=1

nr−1−1/p
∞∑

m=n

E|X|I(m < |X|p ≤ m + 1)

= C
∞∑

m=1

E|X|I(m < |X|p ≤ m + 1)
m∑

n=1

nr−1−1/p

≤ C
∞∑

m=1

mr−1/pE|X|I(m < |X|p ≤ m + 1)

≤ CE|X|rp < ∞. (4.3)

Meanwhile, noting that EXn = 0,n ≥ 1, we get that

EYni = E[−n1/pI(Xi < −n1/p) + XiI(|Xi| ≤ n1/p) + n1/pI(Xi > n1/p)]
= E[−n1/pI(Xi < −n1/p) − XiI(|Xi| > n1/p) + n1/pI(Xi > n1/p)]. (4.4)

Consequently, combining (4.4) with the proof of (4.3), one has that

I ≤ 3
∞∑

n=1

nr−2−1/p
n∑

i=1

|ani|E
(
|Xi|I(|Xi| > n1/p)

)
≤ CE|X|rp < ∞. (4.5)

Noting that ani = a+
ni − a−ni, we have by Cr inequality that

J =

∞∑
n=1

nr−2−q/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniỸni

∣∣∣∣∣∣∣
q

≤ C
∞∑

n=1

nr−2−q/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

a+
niỸni

∣∣∣∣∣∣∣
q + C

∞∑
n=1

nr−2−q/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

a−niỸni

∣∣∣∣∣∣∣
q .

Hence, without loss of generality, we may assume that ani ≥ 0 for all 1 ≤ i ≤ n and n ≥ 1. Obviously, by
Lemma 3.1, we can find that for fixed n ≥ 1, {aniỸni, 1 ≤ i ≤ n} are still NOD random variables with mean
zero. Therefore, applying Lemma 3.2, we can check that

J =

∞∑
n=1

nr−2−q/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniỸni

∣∣∣∣∣∣∣
q

≤ C
∞∑

n=1

nr−2−q/p logq n

 n∑
i=1

|ani|
2EỸ2

ni


q/2

+ C
∞∑

n=1

nr−2−q/p logq n
n∑

i=1

|ani|
qE|Ỹni|

q

� CJ1 + CJ2. (4.6)
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Since q > (r − 1)/(1/p − 1/2), it can be seen by (4.2)(taking k = 2), Lemma 3.3 and EX2 < ∞ that

J1 =

∞∑
n=1

nr−2−q/p logq n

 n∑
i=1

|ani|
2EỸ2

ni


q/2

≤ C
∞∑

n=1

nr−2−q/p logq n

 n∑
i=1

|ani|
2EY2

ni


q/2

≤ C
∞∑

n=1

nr−2−q/p logq n

 n∑
i=1

|ani|
2EX2

i


q/2

≤ C
∞∑

n=1

nr−2−q/p logq n

 n∑
i=1

|ani|
2EX2


q/2

≤ C
∞∑

n=1

nr−2−q/p+q/2 logq n < ∞. (4.7)

For J2, it follows from Lemma 3.3 that

J2 =

∞∑
n=1

nr−2−q/p logq n
n∑

i=1

|ani|
qE|Ỹni|

q
≤ C

∞∑
n=1

nr−2−q/p logq n
n∑

i=1

|ani|
qE|Yni|

q

≤ C
∞∑

n=1

nr−2−q/p logq n
n∑

i=1

|ani|
qE

[
|Xi|

qI(|Xi| ≤ n1/p) + nq/pI(|Xi| > n1/p)
]

≤ C
∞∑

n=1

nr−1−q/p logq nE
[
|X|qI(|X| ≤ n1/p)

]
+ C

∞∑
n=1

nr−1 logq nP(|X| > n1/p)

� CJ21 + CJ22. (4.8)

Since q > pr and E[|X|rp logq(1 + |X|)] < ∞, one has

J21 =

∞∑
n=1

nr−1−q/p logq n
n∑

m=1

E
[
|X|qI((m − 1)1/p < |X| ≤ m1/p)

]
=

∞∑
m=1

E
[
|X|qI((m − 1)1/p < |X| ≤ m1/p)

] ∞∑
n=m

nr−1−q/p logq n

≤ C
∞∑

m=1

E
[
|X|rp
|X|q−prI((m − 1)1/p < |X| ≤ m1/p)

]
mr−q/p logq(1 + m)

≤ CE|X|rp logq(1 + |X|) < ∞. (4.9)

For J22, it follows from pr > 1 that

J22 =

∞∑
n=1

nr−1−1/p logq nE
[
|X|I(|X| > n1/p)

]
= C

∞∑
n=1

nr−1−1/p logq n
∞∑

m=n

E
[
|X|I(m1/p < |X| ≤ (m + 1)1/p)

]
= C

∞∑
m=1

E [|X|I(m < |X|p ≤ (m + 1))]
m∑

n=1

nr−1−1/p logq n

≤ C
∞∑

m=1

E [|X|I(m < |X|p ≤ (m + 1))] mr−1/p logq(1 + m)

≤ CE|X|rp logq(1 + |X|) < ∞. (4.10)

Therefore, (2.2) follows from (4.1)–(4.10) immediately. The proof is completed. �
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Proof of Corollary 2.1. Similarly to the proof of Theorem 2.1, we obtain (2.5) immediately. It is easy to see
that

∞∑
n=1

nr−2E
(
sup
k≥n

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ − ε22/p
)+

=

∞∑
n=1

nr−2
∫
∞

0
P
(
sup
k≥n

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > ε22/p + t
)

dt

=

∞∑
m=1

2m
−1∑

n=2m−1

nr−2
∫
∞

0
P
(
sup
k≥n

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > ε22/p + t
)

dt

≤ 22−r
∞∑

m=1

∫
∞

0
P

 sup
k≥2m−1

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > ε22/p + t

 dt
2m
−1∑

n=2m−1

2m(r−2)

≤ 22−r
∞∑

m=1

2m(r−1)
∫
∞

0
P

 sup
k≥2m−1

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > ε22/p + t

 dt

= 22−r
∞∑

m=1

2m(r−1)
∫
∞

0
P
(
sup
l≥m

max
2l−1≤k≤2l

∣∣∣∣∣ Sk

k1/p

∣∣∣∣∣ > ε22/p + t
)

dt

≤ 22−r
∞∑

m=1

2m(r−1)
∞∑

l=m

∫
∞

0
P
(

max
1≤k≤2l

|Sk| > (ε22/p + t)2(l−1)/p
)

dt

= 22−r
∞∑

l=1

∫
∞

0
P
(

max
1≤k≤2l

|Sk| > (ε22/p + t)2(l−1)/p
)

dt
l∑

m=1

2m(r−1)

≤ 22−r
∞∑

l=1

2l(r−1)
∫
∞

0
P
(

max
1≤k≤2l

|Sk| > (ε22/p + t)2(l−1)/p
)

dt
(
let s = 2(l−1)/pt

)
≤ C

∞∑
l=1

2l(r−1−1/p)
∫
∞

0
P
(

max
1≤k≤2l

|Sk| > ε2(l+1)/p + s
)

ds

= 22+1/p−rC
∞∑

l=1

2l+1
−1∑

n=2l

2(l+1)(r−2−1/p)
∫
∞

0
P
(

max
1≤k≤2l

|Sk| > ε2(l+1)/p + s
)

ds

≤ 22+1/p−rC
∞∑

l=1

2l+1
−1∑

n=2l

nr−2−1/p
∫
∞

0
P
(
max
1≤k≤n

|Sk| > εn1/p + s
)

ds (since r < 2)

≤ 22+1/p−rC
∞∑

n=1

nr−2−1/pE
(
max
1≤k≤n

|Sk| − εn1/p
)+

, (4.11)

where Sn =
∑n

i=1 aiXi for n ≥ 1.

Therefore, (2.6) follows from (2.5) and (4.11) immediately. �

Proof of Theorem 2.2. Similarly to the proof of Theorem 2.1, and applying Lemma 3.4 with a = n1/p and
q = 2, we can obtain that
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∞∑
n=1

n−2E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − εn1/p


+

≤

∞∑
n=1

n−2E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniY∗ni

∣∣∣∣∣∣∣
 +

∞∑
n=1

n−2

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniEYni

∣∣∣∣∣∣∣
 + C

∞∑
n=1

n−2−1/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniỸni

∣∣∣∣∣∣∣
2

� H∗ + I∗ + CJ∗. (4.12)

Similarly to the proof of (4.3), we have by E|X| log3(1 + |X|) < ∞ that

H∗ ≤ C
∞∑

n=1

n−1E[|X|I(|X| > n1/p)] = C
∞∑

n=1

n−1
∞∑

m=n

E[|X|I(m < |X|p ≤ m + 1)]

= C
∞∑

m=1

E[|X|I(m < |X|p ≤ m + 1)]
m∑

n=1

n−1

≤ C
∞∑

m=1

log(1 + m)E[|X|I(m < |X|p ≤ m + 1)]

≤ CE[|X| log(1 + |X|)] < ∞. (4.13)

Meanwhile, similarly to the proofs of (4.5) and (4.13), we have

I∗ ≤ C
∞∑

n=1

n−1E[|X|I(|X| > n1/p)] ≤ CE[|X| log(1 + |X|)] < ∞. (4.14)

On the other hand, without loss of generality, we assume that ani ≥ 0 for all 1 ≤ i ≤ n and n ≥ 1. Similarly
to the proof of (4.6), we have by (2.7) that

J∗ =

∞∑
n=1

n−2−1/pE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniỸni

∣∣∣∣∣∣∣
2 ≤ C

∞∑
n=1

n−2−1/p log2 n
n∑

i=1

|ani|
2E|Ỹni|

2

≤ C
∞∑

n=1

n−2−1/p log2 n
n∑

i=1

|ani|
2
|EYni|

2

≤ C
∞∑

n=1

n−2−1/p log2 n
n∑

i=1

|ani|
2E

[
|Xi|

2I(|Xi| ≤ n1/p) + n2/pI(|Xi| > n1/p)
]

≤ C
∞∑

n=1

n−1−1/p log2 nE
[
|X|2I(|X| ≤ n1/p)

]
+ C

∞∑
n=1

n−1+1/p log2 nP(|X| > n1/p)

� CJ∗1 + CJ∗2. (4.15)

Since E|X| log3(1 + |X|) < ∞, one has

J∗1 =

∞∑
n=1

n−1−1/p log2 n
n∑

m=1

E
[
|X|2I((m − 1)1/p < |X| ≤ m1/p)

]
=

∞∑
m=1

E
[
|X|2I((m − 1)1/p < |X| ≤ m1/p)

] ∞∑
n=m

n−1−1/p log2 n

≤ C
∞∑

m=1

E
[
|X|2I((m − 1)1/p < |X| ≤ m1/p)

]
m−1/p log2(1 + m)

≤ CE|X| log2(1 + |X|) < ∞. (4.16)
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For J∗2, it has

J∗2 ≤

∞∑
n=1

n−1 log2 nE
[
|X|I(|X| > n1/p)

]
= C

∞∑
n=1

n−1 log2 n
∞∑

m=n

E
[
|X|I(m1/p < |X| ≤ (m + 1)1/p)

]
= C

∞∑
m=1

E [|X|I(m < |X|p ≤ (m + 1))]
m∑

n=1

n−1 log2 n

≤ C
∞∑

m=1

E [|X|I(m < |X|p ≤ (m + 1))] log3(1 + m)

≤ CE|X| log3(1 + |X|) < ∞. (4.17)

Hence, (2.8) follows from (4.12)-(4.17) immediately. �

Proof of Corollary 2.2. Similarly to the proof of Theorem 2.2, we obtain (2.10) immediately. Meanwhile,
for 0 < p < 1, combining (2.10) and (4.11), we obtain (2.11) immediately. Finally, by the proof of (2.13) in
Remark 2.2, (2.12) also holds. �
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