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Quantitative Estimates for GBS Operators of Chlodowsky-Szasz Type

Nurhayat Ispir®

?Gazi University, Faculty of Sciences, Department of Mathematics, 06500, Ankara, TURKEY

Abstract. In this study we construct the GBS (Generalized Boolean Sum) operators associated with
combination of Chlodowsky and modified Szasz operators and estimate the degree of approximation for
these operators in terms of the mixed (Bogel) modulus of smoothness. Furthermore, we improve the
measure of smoothness by the mixed K-functional.

1. Introduction

In order to make analysis in multidimensional spaces, Karl Bogel introduced the concepts of B-
continuous and B-differentiable function in [10] and [11]. In [12], the important theorems of the real
functions in one variable are improved using the concepts of B-continuity and B-differentiability. Approxi-
mation theory of the well-known Korovkin theorem is developed for B-continuous functions by C. Badea
et.al in [2] and [3]. In [2], the authors proved a Korovkin type theorem for approximation of B-continuous
functions using the Boolean sum approach (see also [3], [4]).

The approximation properties of the bivariate Bernstein type operators and corresponding generalized
Boolean sum operators were investigated in [7], [8], [25], [26] and [27]. In [16], [17], using the concept of
A-statistical convergence, Korovkin type theorems were studied for Bogel continuous functions. In the
recent years, several researchers have made significant contributions on this topic. We refer the reader to
some of the related papers ( [9], [18], [19], [20],[28] and [29]).

In [21], the authors introduced a bivariate operator associated with combination of Chlodowsky and
modified Szasz type operators as follows

Lum (fi%,y) = ;gp(%)Qj (5m}/)f(§an,#) (1)

foralln,m e N, f € C(l,) withI,, = {(x,y) : 0 < x < a,,0 < y < co}. Here (a,) is an unbounded sequence of
positive numbers such that lim (a,/n) = 0 and also (y,,), (Bx) denote the unbounded sequences of positive

numbers such that lim,, e ¥5 =0, Bu/ym =1+ O (1/yy) and Py (x) = Cix (1 - x)"7*, Qjly)=e (yf/j!).
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It is clear that the operator L, : C(Ia,) — C(la,) is the tensorial product of ,B, and S, i.e., Lym =
xBn oy Siy where

= Y (2] (- 2 ()

and

(o] ] 1
yS (frx,y) = e Pr¥ Z %f ("’ yi)
j=0

In [21], the authors studied some approximation properties of the L, ,, operators given by (1) in a space of
continuous functions on compact subset of I, and given the degree of this approximation by means of total
and partial modulus of continuity. Furthermore, they investigated the weighted approximation properties
of the operators L, ,, for continuous functions and having polynomial growth on [0, o0) X [0, o) . Recently,
some generalizations of bivariate Chlodowsky polynomials were studied in [13], [14]. The bidimensional
case of modified Szész operators ,S,, (f; x, y) were studied in [30], [23].

The aim of this study is to introduce GBS (Generalized Boolean Sum) operators of bivariate Chlodowsky
and Szdsz type operators and give the order of approximation in terms of Bogel (mixed) modulus of smooth-
ness for B-continous and B-differentiable functions. Moreover, the smoothness properties are improved by
the means of the mixed K-functional for B-continous functions.

Notice that, the degree of approximation of the GBS operator associated with Chlodowsky and Szész
type operators to a function f is least as good as that of the bivariate Chlodowsky and Szdsz type operators
given in [21]. The results related to Korovkin type theorem and approximation properties will be true in a
wider space of functions because every continuous function is Bogel continuous.

2. Preliminaries

Now, let us give some basic definitions and notations which will be used in this study. The details can
be found in [12].

Let X and Y be compact real intervals and let A = X x Y. Let A, f [xo, Yo; x, y] be mixed difference of f
defined by A, f [x0, vo;x, y] = f (x, ) — f (x,y0) = f (x0, ¥) + f (x0, o) with (x, y), (x0, ¥o) € A. A function f :
A — Ris called a B-continuous (Bogel continuous) at a point (xo, yo) € A if lim(x,y)_)(x(]/yo) Axyf [x0, yo; %, y] =
0, for any (x,y) € A.

The function f : A — R is B-bounded on A if there exists M > 0 such that |A(x,y) fltsx, y]| < M for

every (x,y), (t,s) € A. Notice that, if A is a compact subset of R? then for each B-continuous function is a
B-bounded function on A.

Throughout this paper B, (A) and C, (A) denote the spaces of all B-bounded functions and B-continuous
functions on A, respectively. As usual B (4), C (A) denote the space of all bounded functions and the space
of all continuous (in the usual sense) functions on A endowed with the sup-norm ||.||, . It is known that
C(A) c Gy (A) ([12], page 52).

Let L : C,(A) — B(A) be a linear positive operator. The GBS (Generalized Boolean Sum) operator
associated to the operator L is defined by

GL(f;%,y) =L(f(xy) + f(x,0) = f(+,0);x,y) 2)

for every f € Cy(A) and for each (x,y) € A with GL : C, (A) — B(A) (cf. [2], [3], [7]). Here f (+,y) means
that f is considered as function of first variable and analogously f (x, ¢) means that f is a function respect
to second variable.
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3. Construction GBS Operator of Chlodowsky-Szasz Type

In this section we shall give a generalization of the operator (1) for the B-continuous functions. For
this, we shall introduce a GBS operator associated with the bivariate Chlodowsky-Szasz type operators
and investigate some of its smoothness properties. For I, = [0,a] X [0, c], Cy(ls) denotes the space of all
B-continuous functions on I, and let C(I,) be the space of all ordinary continuous functions on I,.

The operator L, (f;x, y) defined by (1) has the following properties:

Lemma ([21]) Let¢;; = x'y/, (i, j) € N x N°, with i + j < 2 and N° = IN U {0} be the two dimensional test
functions. Then

1. Lym(eoo; x,y) = 1;

2. Lym (e1,0;%,y) = x

B.Lum (e01;%,y) = £

4. Ly (e20;%,y) = (1 - l) x4+ Sy,

5. Lym (€02;%,y) = fz v+ fz v

Consequently, we have

Lym(t—x%y)=0

x(a, — x)
n

Lym ((t - x)zz' X, y) =

P ) 1
Lum (5= yix,y) = | == = 1|y + =—
(8= Y32, ) (ym Al v

2
L (6 = 95, y) = (ﬁm )yz+i_;ny_

m

We define the GBS operator associated with the operator L, , (f;x, y) as follows:

GLn,m(f;x/y) : _Gnm(fxy)_zzpnk( )Q](ﬁmy) (3)

k=0 j=0

f(:ian,y) +f(x )/Lm) —f(San, VLm)]

where the operator G}, is well-defined from the space C; (I,c) on itself and f € Cy () . It is clear that G;, ,,
is a linear positive operator and reproduces linear functions.

X

4. Degree of Approximation by G}

We begin by recalling the definition of Bogel (mixed) modulus of smoothness of f € Cy, (I,c) . The Bogel
(mixed) modulus of smoothness of f € Cy, (I,) is defined as

Wmized (f01,02) 1= wp(f; 01,62) = sup {|A(w)f [t,s;x,y]| e =t < 61, |y — 5| < 62}

for all (x, y), (t,s) € L, and for any (61,02) € (0, 00) X (0, o) with wg : [0, 00) X [0, 0) — R [4]. This modulus
will be useful to evaluating the approximation order of B-continuous functions using GBS operators. The
basic properties of wp were obtained by Badea et.al in [3] and [4] which are similar to properties of usual
modulus of continuity. For example, if f € Cy, (I,) then f is uniform B-continuous on A, and

hm g (f;0n,0m) =0

n,m—
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as 6, — 0" and 6,, — 0™.

We shall estimate the rate of convergence of the sequences of the operators (3) to f € Cp (I,) using
the Bogel modulus of smoothness. For this estimation, we use the well-known Shisha-Mond theorem for
B-continuous functions established by Gonska ([22]), Badea and Cottin ([3]).

Theorem 4.1. For every f € Cy (Iy), in each point (x, y) € Ly, the operator (3) verifies the following inequality

G (F32%,9) = £ (6, )| < Maog(f5, ™, y3,1) (4)

where M is a constant independent of n, m.

Proof. Using the definition of wp(f; 01, 02) and by the elementary inequality

wg(f; A101,A202) < (1 + A1) (1 + Ap) wp(f;01,02); A1, A2 >0

we can write,

IN

wp(f; |t — x|,

A(x,y)f [tfs;x/y]‘ 5_]/|)

IN

(1 + |t glxl)(l + |S (;zy|]a)8 (f,'61, 62) (5)

for every (x,y), (t,s) € I,c and for any 01,0, > 0.
From the definition of A(w) flt.s;x,y], we get

fas)+ f(Ly) = fts) = fOoy) =Dy flEsx Y]
Applying the operator G}, ,, (f;x, y) to this equality we can write
G (f2%,) = £ (6, 9) L (£3.%, y) (007 %, ¥) = Luym (5 %, ) (A(x,y)f [t,s:2, y]5 %, y) :

Since Ly (eo0; %, y) = 1, considering the inequality (5), using the linearity of the operator L, , and
applying Cauchy-Schwarz inequality we obtain,

G (F%,) = f (2, 9)| < L (‘A(x,y)f [£,s;%, 1|5, y)

< (Ln,m (e00; %, y) + 87" \/Ln,m (t=27;x,y)

)

+61‘162‘1 \/L”,m ((t -x)%;x, y) ((s - y)2 X, y)) wg(f; 01, 02).

From Lemma, for all (x, y) € I,., we have the following inequalities;

x(a, —x)
n

o o
—”(x2+x)s—"(a2+a)
n n

ay
M, - (6)

Ln,m ((t - x)Z 7 X, ]/)

IA

IA
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where M; = max {u, az} and similarly

O(ya) @ +y)
< My, )

Luw((s = )% %,y)

M, = {c, c2} .Therefore, taking 6; = an~l 6, = v, and M = max {M;, M,} we reach the desired inequality
4). O

Corollary 4.2. If f € Cy (Iyc), then
Jim G, (f;x,y) = f(xy)
uniformly on I,.

Proof. Since f € C,(Iy), f is uniform B-continuous on I, and then

lim wp (f, annfl,yfnl) =0.

n,m— 00

Hence, from (4), the desired result is obtained. O

Now, we recall the concept of a B-differentiable function. A function f : A ¢ R?> — R is called a
(@=x0)(y—vo)
exists and is finite. The limit is said the B-differential of f at the point (xo,yo) and it is denoted by
D, f (x0, ¥0) := Dg (f; %0, ¥0) - Dy (A) will be denoted the space of all B-differentiable functions. The partial
derivatives are following;:

B-differentiable (Bogel differentiable) function at the point (xy, yo) € A if the limit, lim(x/y)ﬁ(x(),yo)

Acf {[x0,x];
Duf (0 90) = DY (20, y0) = Jim 2100 21200)

and

Ay fixo; [vo, ]}
Dy (f; %0, o) = Dy (f; %0, ¥0) = yh—{?o y-w

where A.f{[xo,x];v0} = f(x,v0) — f (x0,y0) and A, f {x0; [vo, y]} = f (x0,¥) = f (x0, ¥o) . The second order
partial derivatives are analogous to the ordinary derivatives. For example, the derivative of D, (f; xo, Yo)
with respect to the variable y at point (x, yo) is defined by

Ay (Dyf) {x0; [Yo,

We would like to give an estimate for the rate of the convergence of the B-differentiable functions by
the operator G;, ,, (f;x,y). Notice that, an important theorem estimating the rate of convergence of the
B-differentiable functions was proved by O. T. Pop [26].

Theorem 4.3. Let the function f € Dy, (I,) with Dgf € B (I,c) . Then, for each (x,y) € I, we have

Gy (fix,y) = f (x,1)|

< [“DBf”m + Mwp (DBf; oc,,n_l,)/;fﬂ (ann_ly,;l)_l/z . (8)
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Proof. Since f € Dy (I,c), we have the identity A(x,y)f [t,s;x,y] =(t—x)(s—y)Dpf((,n) withx < C <ty <
n < s (cf. [12], page 62). It is clear that

Dyf(Cm) = Apy)Daf (Cm) + Daf (Cy) + Daf (x,n) = Daf (x, y) -

Since Dgf € B(l,.), by above relations, we can write

L (A f L5915, y)’ = |Lom (£ = 2) (s = y) Dsf (€, 1), y)|

;X y)
+Lom (It = s = y| (Do f (€ )| + Do f (x| + |Dsf (x, )

SLn,m(|t—x||5—]/|CUB(DBf}|C_x|/

< Ln,m (lt - X| |S - ]/| ‘A(x/y)DBf (CI 77)

)% y)

n-1v|);x )

+3 HDBf”oo Lym (It — x| )s -y|;x, y) .
Since the Bogel modulus of smoothness wp is nondecreasing, we have
ws (Dsf;1C -, ws (Daf3lt =, [s - y])
(1+ 07 1t —x1) (1+ 65" |s = y]) ws (61, 62) -

Substituting in the above inequality, using the linearity of L, ,, and applying Cauchy-Schwarz inequality
we obtain

IA

n-y)

IA

Lym (A(W)f [t,s;x,y];x, y)’

Gy (fix,y) = f(x,y)| =

<3]Dsfll, v/ (6 =07 5= 1)*;x,v)

+ [Ln,m (|t —x] |s -y|;x, y) + (51_1Ln,,,, ((t - x)2 (s -y|;x, y)
+6£1Ln,m (It —x|(s— y)2 i X, y)

+ 407165 L ((t = %)% (5 = v)* 5%, y)| wB(Ds 5 61, 62)

< 3]s, Lo (¢ =226 = ), 3)
+ [ \/Ln,m (=2 (=% y)+ 67! \/Ln,m (=2 G-y y)

+05" \/Ln,m ((t -2 (s-y)';x, y)
46710y L (£ =207 s = y)* 53, y) | @p(Ds £ 61, 82).

Taking into account (6), (7) and using the following equality, for (x, y), (t,s) € Ap and i, j € {1,2},
L ((t =% (s = )7 5%,9) = L (¢t = 0% 5%, y) Lum (5 = )7 5%, 9)

with 6; = a,n~! and 6, = y;,! , we reach the desired result (8). [
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In order to improve measure of smoothness the mixed K-functional is introduced in [6], [15] (see also
[1]). For f € Cy (I4) , we define the mixed K-functional by

Kuiea (fity ) = inf {lIf = g1 = g2 =, + £ [DF gl + &2 [P, + 1t D70 ) ©)

where g1 € Cé’o, g € Cg’z,h € Clzg’2 and, for0<i4,j <1, C"J denotes the space of the function f € Cy (I,.) with
continuous mixed partial derivatives Dg’q f, 0<p<i,0<q<j. The concept of mixed K-functional will be
useful to estimate the order of approximation by Boolean sum associated to positive linear operators.

We give an estimate for the order of approximation of the sequence {Gn m(f )} to the function f € Cp, (I,)
in terms of the mixed K-functional given by (9).

Theorem 4.4. Let G;,,, be GBS operator of Ly, given by (3). Then,

G;,m (f/ X, ]/) - f(xl y)| < CKmixc)d (fr ann_ll 7/;11)

foreach f € Cy (L), with C is a constant independent of n, m.

Proof. From Taylor formula for the function g; € Cé’o (L) , we get

t
71(t,8) = g1 (v, y) + (t = x) D" (x,5) + f (t—u) D3 (u,) du

([12], page 67-69). Since the operator G, ,, reproduces linear functions

t
Gum (9u%,y) = 1 (x, y) + Gy, [ f (t—u) D3’ g1 (u,5) du; x, y]

X

and by the formula (3)

|G (g152,y) = g1 (x, )| =

Ln,m [

IDZ 1|, Lo (2 = 2?52, y) < My [DF 01|, ctum

Similarly, we can write

t
Ly [ f (t =) [D3°91 (w,y) - D’ (u,9)] du; x, y]

]

ID3?g2ll,, Lo (G5 = )52, v)
M, [Dy?ga|| v

for g, € C%z (Ize) . For h € Cé’z (Isc) , considering Taylor formula for B-continuous functions, we have

IA

t
flt —u| )D‘é’ogl (n,y) - Dé’ogl (u, s)| du;x,y

IN

IA

Gy (72:%,9) — 72 (x, )|

IA

ht,s)=h(x,y)+ (- x)Dyh(x,y) + (s — y) Dy'h (x,y) + (t — x) (s — y) D' h (x, )

t s
+ f(t —u) Dé’oh (u, y)du + f(s -) D%zh (x,v)dv
x y
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f(s—y)(t—u)D21h(u y)du+f(t— ) (s = v) D*h (x,v) dv

ff (t—u s—U)Dzzh(u v) dodu.

Taking account into the definition of the operator G}, ,,, since G;, ,, ((t—x);x,y) =0and G}, (5—-y);x,y) =
0, we have

t s
|G:,,m (h;x,y)—h(x, y)| < |Lum ff(t —u)(s—0) Dé’zh (u,v)dodu; x,y
y

X

IA

~
3
3

t s
ff(t—u) (s—v)DzB'zh(u,v)dvdu ;XY
y

X

IA

t s
Lym fflt —ulls -1 (D%’zh (u, v)| dvdu; x, y
Xy

< 411 HDé’ZhHOO Lum ((t —x)*(s— ]/)2 ; X, y)

< M||D2H| aunlyi.
Therefore, for f € Cy, (I,.), we obtain

Gin (Fi%, ) = f @] < |(f = 91— 92 = W) (5. )| + |(91 = Gt (1)

+|(2 = Gouta) ()| + (= i) G )|+ [Go(f = 91 = g2 = s, )
<2||f = g1 = g2 = hlly + My [IDF" | v ™ + Mo |[DR? g |, 2t + Ms [[DFA]|, ey
Taking the infimum over all g; € Cg’o, g € C%Z, he C2B’2 with C = max {M, M, M3}, we reach the result. O

Now, we study the degree of approximation for the operators G;, ,, (f;x, y) by means of the Lipschitz
class for B-continuous functions. For f € Cj (I,), we define the Lipschitz class Lipy (A, p) with A, u € (0,1]
as follows

Lipm (A, ) = {f € Cy (Aw) : |A(x,y)f [tsx, y]| <M|t —x*
Theorem 4.5. Let f € Lipp (A, p), then we have
Grn (1, 9) = £ (e, )| < M50,
n ((t - 96)2;36)”00 , O = ” ySm ((s -y y)”Oo and A, p € (0,11, (x, y) € Ie.
Proof. By the definition of the operator G, ,, and by linearity of the operator L, ,;, we can write
G (fix,y) = Lam (f(x,8) + f(ty) = f(t9))
Lom (f (% y) = D f 152,915, y)

= f(x,y) Lum (e00; %, y) = Lum (A(w)f [t,s;x,9];x, y).

yy,for (t,8),(x,y) € Ioec, M > O}.

where 6, = ||x
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Lnm (‘A(x,y)f [t 52, y]| 5%, y)

B

¥ ;x,y)
B
)

= MLy (It = xI";2) Lym (
Now, using the Holder’s inequality with p1 = 2/A,q1 =2/ (2 - A)and p, = 2/u,q> = 2/ (2 — u), we have
Gouw(fix,y)—f(x, y)| < M,B, ((t - x)z;x)}\/2 By (eg; x) V72

ySm ((S -y y)ﬂ/z ySm (e0; y) 2.
In [21], from Lemma 3, we have B, ((t - x)z;x) =0 (ann‘l) (xz + x) and S, ((s -y)% y) =0 ()/,‘nl) W2 +y).
Taking 6, (x) = By, ((t - x)z;x) 2 Om (Y) =y Sm ((s - )% y) ,we obtain

Gon (F53,9) = f (5, y)| < Moy 2}

which implies the degree of approximation for f € Lipp (A, 1), (x, y) € Lpe. O

By the hypothesis, we get
G;,m (f/ X, ]/) - f(x/ y)|

IA

IN

MLn,m (It - x|a |

Extensions:

As an applications of Theoremsl and 2, similar results can be investigated for the Stancu, Schurer
generalizations of the operator G}, ,, and integral modifications of the operators L, ,,. We give some examples:

1. The Stancu variant of the operator (1) is defined, for all f € C(I,) and for every (x,y) € I, with
0<pi<o,i=1,2,

L (f%,9) 5 = ZZ ( )Q; ﬁmy)f(k+plan,j+p2

n+ao +0
k=0 j=0 1 Vm*02

where P( ) and Q; (By) are Bernstein and Szasz element functions given as (1).
Let GLn,m : Cp (Lae) = Cp (L) be the GBS operator of Stancu type defined by

GLuw (f3%,1),, = ZZ ( )Qj(ﬁmy)

k=0 j=0

i + k+ k+ i+
) ) s 2
Ym + 02 n+o1 n+ o1 Ym t 02
forall f € Cy (I,c) and all (x, y) € I,.. Theorems 1 and 2 can be obtained for the operator GL,,, (f;x, y) po with
f € Cp(y) and all (x, y) € L.

2. In [24], the Kantorovich type modification of the operator (1) is introduced and studied by Ispir and
Biiytikyazici. We define the Kantorovich variant of the operator L, , given by (1) as

(+1)/vm (ke Dan/n

nm(fxy)——VmZZPnk( )Q](ﬁmy)f ff(t,s)dtds.

k=0 70 ]/)’m ke, /n

Hence the GBS operator of Kantorovich type is defined by
CKium (f32,Y) = K (f;2,9) (f (1 y) + f (x,0) = f (+,0) s x.y)

for all (x, y) € I.. The approximation properties of these type operators will be studied elsewhere.
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