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On Generalized Spiral-like Analytic Functions

Khalida Inayat Noor?, Nazar Khan?, Muhammad Aslam Noor?
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Abstract. In this paper, we use the concept of bounded Mocanu variation to introduce a new class of
analytic functions, defined in the open unit disc, which unifies a number of classes previously studied such
as those of functions with bounded radius rotation and bounded Mocanu variation. It also generalizes
the concept of p-spiral likeness in some sense. Some interesting properties of this class including inclusion
results, arclength problems and a sufficient condition for univalency are studied.

1. Introduction

Let A denote the class of functions f :

fz)=z+ i a,z", 1)

n=2

which are analytic in the open unit disk E = {z : |z| < 1}. Let 5, S*, C and M, be the subclasses of A which
consist of, respectively, univalent, starlike (with respect to origin), convex and a-starlike functions. Let
P be the class of functions p, analytic in E with p(0) = 1 and satisfying Re{p(z)} > 0, z € E. The class
P is called the class of analytic functions with positive real part. It is well-known [3] that a number of
important classes of analytic functions (e.g.C, S*, M,) are related through their derivatives by the functions
in P. These functions play a significant role in solving problems from signal theory and construction of
quadrature formulas. In the recent years, several interesting subclasses of analytic functions have been
introduced and investigated, see [1,7,9,10,12,17,20,21]. Motivated and inspired by the recent research going
on, we introduce and investigate a new class of analytic function using the concept of bounded Mocanu
variation. This new class of analytic functions unifies a number of classes previously studied. We obtain
some new results including inclusion results, radius problem and arclength problems for this new class of
analytic functions. A sufficient condition for univalency is investigated. Results obtained in this paper may
stimulate further research in this field.
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Let Py be the class of functions p, analytic in E, satisfying the properties
p(0)=1, z=reand

27 —it
P =3 [ ) @

1—ze it

where p(t) is a function with bounded variation on [0, 27t] such that, for k > 2,

271 270
f du(t)=2, and f |du)| < k. ()
0 0

This class has been studied in [7]. For k = 2, we have the class P.
From (2) and (3), it easily follows that p € P, if and only if,

k k
P(z) = (Z + %)Pl(Z) - (Z - %)pz(Z), p1,p2 € P. (4)

In the following, we list some known classes of analytic functions.

(@) S;(ﬁ)={f:f€ﬂ, eiﬁZTfIEP, B real, z€E, |ﬁ|<g}.

It is known that S;(8) C S and f € 5;(p) is called B-spiral like function, see [3].

(i) Sy(B) = {f fed, |cosﬁ((‘z]]:,) )+ isinﬁ%] €P, zeE [pi< g}
The functions in this class are called -spiral convex and it is shown [22] that

5p(B) € S,(B)-

(i) M'(a,p) = { Fifed, [(efﬁ ~ acosp) Z}( +arcos 5(1 N ZJ{ )] € p}

where a,farereal |f|<7F, z€E.
It is shown in [19] that

M (a, ) € S,(B).
We note that
M (a,00=M,, M(1,p)= S;(‘B), and M'(0,8) = S,(B)-

We now define the following.
Definition 1.1. Let f € A. Then, for frealand || < 7, f € Ri(B) if and only if

{eiﬁz%} €P., ze€Ek>2.

Wenote that R} (0) = Ry, the class of functions of bounded radius rotation, see[3]and  R}(B) = 5,(B) and R;(0) =
S*.
Definition 1.2. Let f € A and let, for [OF@ 4 0in E,

G, 19

Jap. ) = (¢ = acos) =5 e

acosf (1 + 6)

Then
feMa,p) ifandonlyif Ji(a,pB,f)€Pr, for z€E, ap realand |[f]< g
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We note. as a special case, that the class M (a, 0) coincides with the class of functions with bounded Mocanu
variation, see [2].

Definition 1.3. Let f € A with w #0in E, and let

zf'(z) acosp B Zf”(Z)]}
f@ Ty [l A TEN I

forreala, 8, |Bl < % and _71 <y <1.Then

J(a, B,y f(2) = {<€iﬁ — @ cos ﬁ)

feBia,By) < JB v, f)eP for z€E, k=>2.

For any real a, ‘71 <y <1, B =0, we note that the identity function belongs to Bi(«,0,y) so that

Bi(a, B, y) is not empty in general.

Special Cases.
(i) For g =0, we have the class Bi(«, ) introduced and studied in [8].

(ii) Withk=2, 0<a <1, Bj(a,0,0)isasubclass of A introduced by Mocanu [6].
(iii) The class By(«, 0, ) consists entirely of univalent functions, see [18].

(iv) By(a,B,0) = M;(a, B).

(v)  Bi(0,0,y) = R, where Ry denotes the class of bounded radius rotation, see [4].
(vi)  By(0,8,0)=S,(B) C S.

(vii)  B(1,8,0) = S;(B).

2. Preliminary Results

In this Section, we recall some known results which we shall need later.
Lemma 2.1 [15]. Letp € P for z € E. Then, fors > 0, u # —1(complex),

szp'(z)
Re{p(z) + )+ [J} >0,

for

|y + 1]

\/A + JAIS |2 1P

This bound is best possible.

|z <

, A=2(s+1%+uf -1 (6)

Lemma 2.2 [16]. Let f € A with w # 0in E. Then f belongs to the class of Bazilevic (univalent)
functions if and only if, for 0<6; <0, <2mand 0<r <1, wehave

. 2f"(2) 2f'(2) 2f'(2)
fel [Re{1+ 125 +(p-1) @ }—allm @ ]d@z—n,
i0

wherez =re"¥, p>0and a; real.
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Lemma 2.3 [5]. Let u = uy +iup, v =10 +iv; and let W(u, v) be a complex -valued function satisfying the

conditions:

(i). W(u,v) is continuous in a domain D c C?.

(ii). (1,0) € D and W¥(1,0) > 0.

(iii). Re{W(iup, v1) < 0 whenever (iup, v1) € D and v; < %1(1 + u%).

Ifh(z) = 1+c1z+coz%+. .. isafunctionanalyticin E,such that  (h(z),zl'(z)) € Dand Re{W(h(z), zh'(z))} > 0

for z € E, then Reh(z) > 0in E.

Lemma 2.4 [13]. Let f € R}() = S,()- Then for each B, || < 7, the following sharp inequality holds.

Rezf’(z) S 1 — 2(cos B)r + (cos 2B)r? ‘
@ -7

3. Main Results
Theorem 3.1. Leta >0, |[fl< 3, k=2 Then M(a,p)C Ri(B)
Proof. Let f € M;(a,p) and let

oif zf'(z)
f(@)

where p(z) is analytic in E with p(0) = 1.
After simple computation, we have

= (cosB) p(z) +isinp,

o @) 2f"(2)
J(a,B,f(z) = (eﬁ—acosﬁ)m+acosﬁ(1+m)
zp'(2)

(cos B)p(z) +isin B + acos® B s p)
and J(a, B, f) € Pyin E.

Define

B 1 z . itanf z
C1+itanB(1-2)%  1+itanf (1 —z)a+l’

q)a,ﬁ (Z)

Then, using similar convolution technique, see [8], we have

D) e

(p(z) * p(z) +itanB’

Now, from (4), (7) and (8), we have

azpi(z)

(COS ‘B)Re [pl(Z) + M

We formulate the functional W(u, v) by choosing u = u; +iuy = pj(z) and v = vy + iv; = zp;.(z) as

oo

VY(,v)=u+ ———.
(W, 0) = u u+itanp

p(z) +isinp’

}>O, for j=1,2 and z€E.
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We note that the first two conditions of Lemma 2.3 are clearly satisfied. We verify the third condition as

follows.
)

This shows that all the conditions of Lemma 2.3 are satisfied and therefore p; € P, z € E, j=1,2
Consequently p € Pk in E and this completes the proof. O

Re‘I/(iuz, 01)

Theorem 3.2. For O<a;<ar <1, M]:((xz,ﬁ) - M;(al,ﬁ).

Proof. Let f € M;(az, ff). Then

_ ar\ ; zf'(z)

J(ai, B, f(z) = (1 - a—z)eﬁﬁ

o zf'(z) zf"(2)
+é [(eﬁ - cosﬁ) I +ap cosﬁ(l + 125 )}
:@—%ﬁ@+%mpH@
where
_ g2f(2)
pz) = € @ € P, by Theorem 3.1.
h(z) = J(az,pB, f(z)) € Py, since f € M(az, p).

The class Py is known [3] to be a convex set, and hence it follows that H € Py. Thisimpliesthat  f € M;(a1, p).
O

We now deal with the converse case of Theorem 3.2 as follows.
Theorem 3.3. Let f € R;(f). Then, fora >0, f € M;(a,p) for |z| < ro, where

secf

) \/A + A% —sec*B

This result is sharp.
Proof. Let
o zf'(z)
f@)

where p(z) is given by (4).
Proceeding as in Theorem 3.1, we have

, A=2@+17+tan’f - 1. 9)

7o

= (cosP)p(z) +isinf, p € Py

zp! (2)

(cosB)p1(z) +isinp
zp}(z)

(cos B)pa(z) +isinp |’

J@, B, f2) = (E4-%)kamﬁnn@)+ignﬁ+(aco¥5)

(£~ 1)[icossro s+ wcostp o

4 2
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Now, for j=1,2
zp/(2)

Re [(cos Bpj(z) +isinf + (a cos? B) (cos p)p;(2) + isinp

i ozzp}(Z)
= cos BRe |pj(z) + pi(z) +itanp |’

Using Lemma 2.1, withs = a > 0, p =itanp, it follows that

azp'(z)

Re [P](Z) + W] >0, for z< 1o,
where 1y is given by (9). Consequently, form (10), it follows that  J(a, 8, f) € Py for |z| < rp and the proof is
]

complete.
Theorem 3.4. Let f € RZ(,B) Then f € Ry for |z| < rg, where
1
= 11
e cos 3 + sinf (11)
This result is sharp.
Proof. Let
zf'(z) B (k1 kK 1
e p(z) = (Z + E)pl(z) - (Z - E)PZ(Z),
where p is analytic in E with p(0) = 1. Then
#2 @ (K D) iy o) (K2 L (o
e o \a +5 (e pl(z)) 17 (e pz(z)).
Since f € R;(p), it follows that ~ e#pj;(z) € Py, j=1,2. Using Lemma 2.4, we have
1 — 2(cos B)r + (cos 2B)r?
Relpj(z)} = f > P
—r
and thus it follows that p; € P for |z| < r3, where g is given by (11) The function
(2) = E+1 1+z [k 1\1-z
PE=a"2)12 "1 2)1+2

gives us the sharpness.

Theorem 3.5. Let f € A.Then f € Bi(e,B,y),
R;(B) such that

f(Z) — l:mj(; tm—l (@) acosp dt“ ,

where

1-v) (eiﬁ - acos ﬁ)

m=1+ .
acosf

O

a # 0,if and only if, there exists a function g € Bx(0,3,7) =

(12)

(13)
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Proof. From (12), we have after some computation,

ST @ mwb_+ww]
rE AT @
= Jp,7. f2).
If the right hand side belongs to P, so does the left hand side and conversely. ]

Theorem 3.6. Let f € By(a, B, 7). Then the function g € R;(ﬁ), where

oif ef—acos B wcos
g@):G@) (F@) ™. (14)

z V4

Proof. Logarithmic differentiation of (14) and simple calculations yield

2O #@cmw[ zﬂﬂ
J = (¢ macosp) = ANy

and since f € By(a, B, y), we immediately obtain the required result. m]

Theorem 3.7.  By(a,B,y) C Bi(a1,B,7), 0< a1 <a.
Proof. Let f e B(a,B,y). Now

b [(eiﬁ - Cos ﬁ) (1- Zf ® + a1 cos P (1 - ZfN(Z )]

1=y f (@) f'(@
a1 |/ zf'(z) acosp zf"(z)
= ;1 [(eﬂ —acosﬁ> @ + = (1 -y + iz5 )]
_( ) g2 \&) zf'(z)
a f(z)
= L) +(1- 2 ) = He),
o a
where
H, = (lﬁ_acosﬁ)z}c %Osf(l—y+2]]:,)€Pk
H, = eiﬁZ;’ € Py, (by Theorem 3.1.).
Since Py is a convex set [11], H € P and this completes the proof. o

Theorem 3.8. Let f e Bi(a,,7), a>0.Then fis univalentin E for
2[a cosf(l+2y)+1- 7/]

1-y
Proof. Let f € Bi(a,pB,y). Then

H(z) = {(eiﬁ - acosﬁ) M + acosp (1 Zf”( ))} €P;, z€E.

fz)  1-y f'(2)
That is
(1 -pcospraycosp 1z@)  EF@) | [(1-))sing|zf@)
acosp @ IZ®) acosp | f@)

H(z) +y.
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Therefore, for 0 < 61 < 6, <2m, z = re'?, we have

2 e qu_ 4&q
L%“ﬂ>%”m>wﬁww

|5 (w2

where
_ (I=p)cosp+aycosp 1-y+ay
fr = acosf B a
1-y
ap = > tan 5.

Using lemma 2.2, it follows that f is univalent if

(E-1) ()2 <

and this proves the result. m]

Theorem 3.9. Let f € Bi(a,f,7), «>0and letL,(f)denote the length of the curve C,
C=f(re"), 0<6<2m, and M()= max |f(re)].

Then, forO<r<1,

2
aly;osﬁ]l O<a<?2

—¢if
[k(1+|acos[3 e |)+ =

TtM(r)
acosf

Li(f) < (15)

2wy cos B
1=y

Proof. With z = re’?, and integration by parts, we have
271 on ‘ /
f |2f(2)|d6 = f 2f (2)e B g
0 0

271 , ’
f(z)e " aB8E @R, {—(Z;, ((j)) ) } do

Re {f(a, B,v, f(2)) + (acos g - ¢¥)

k(1+ \/a(oz—Z)coszﬁ+1)+ , a>?2

L:(f)

M(r)
acospf
M(r)
acosf

M 271
! CO(S)ﬁ [(a cosfi =] f

< %(gs)ﬁ [kn + |acosﬁ - eiﬁ| (k) + ——

zf'(z) aycosp
f@ =y Hde

271
[ReJ(a, B, 7, f(2))| 4O

AN,
el
20()/ cos [3

IA

zx)/ cos ﬁ

2

and this gives us the required result. O

Remark 3.1. Fora >0and f € Bi(a,f3,y), we can write (3.9) as

nM( ) 2ay cos B }

LS eoss e

{k(Z +acosp) +
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Theorem 3.10. Let f € By(,,7), a > 0and be given by (1). Then, forn > 2,

nlay] = 0(1)M(”;1),

where O(1) is a constant depending on  «, ,y and k only.
Proof. The result follows immediately from Theorem 3.9, since

_zlrnf 1zf(z)|d9— L(f)

nlay|
]
Theorem 3.11. The class Bi(0, 3, ) is preserved under the integral operator I.(f) defined as follows.
I(f) = F(z) = C+1f £ F(Bdt, > 0. (16)
Proof. Set
eiﬁ% = (cosP)p(z)+isinp
= (g + 1) [(cos B)p1(z) + isinB]
(i—; - E) [(cos B)p2(z) +isinf], (17)
where p(z) is analytic in E with p(0) = 1. Then, from (16), we have
5@ - /()
e @ - cosﬁ[p(z) +isinf + (@) + csech+itanp| (18)
Define
_ 1 z csecf+itanf z
Peple) = (1 +csecf + itanﬁ) 1-z (1 +csecf + itanﬁ) (1-2)%
Then
c ﬁ( 2) zp'(2)
( (@) x ) [p(z)+p(z)+csec‘8+itanﬁ]' (19)

From (17), (18) and (19), we have

o ZJ{(S) - (Z 2) ((COS B)pi(z) +isinp +

(cosB)pi(z) + c +isinf

(cos? B)zp)(2) }

(cos? B)zp; (2) ]

(cosB)pa(z) + c +isinB |

(Z - %)((cosﬁ)pz(z) +isinf +

Since

lﬁzf (2)
f(2)

it follows that

e€P,, for z€E,

o (cos’ B)zp'(2) ,
(cosP)pj(z) +isinf + >0, z€E, j=1,2

Re (cosB)pj(z) + ¢ +isinf




K. I Noor et al. / Filomat 28:7 (2014), 1493-1503 1502

We want to show that Re{p;(z)} > 0 in E, which will imply that p € Py in E. We proceed by performing the
functional W(u,v) withu = u; +iup = pj(z)and v =101 +ivy = zp;.(z). Thus

v
u+csecf+itanp’

W(u,v)=u+itanp +

The first two conditions of Lemma 2.3 are clearly satisfied. We verify the condition (iii) as follows.

U1
¢ csecf +i(up + tan )
c(sec B)uy
c?sec? B + (up + tan B)?
—1 csecB(1 +u3)

2 ?sec? B+ (up +tanp)> ~

ReVW(iuy, v1)

This proves  Re{pj(z)} >0, j=1,2and the proof is complete. m]

Using the similar technique of Theorem 3.3, we can easily prove the converse case of Theorem 3.11 as
follows.

Theorem 3.12. Let F € Bi(0,B,y) and be defined by (16). Then f € B(0,8,y) for |z| < r1, where the
value of 71 is exact and is given by (6) in Lemma 2.1 with s = 1 and u = (csecp + itan ).

Conclusion. In this paper, we have used the concept of bounded Mocanu variation to introduce some
new classes of analytic functions in the unit disk. The main results in the paper deal with containment
properties between such classes and some distortion estimates. We have also discussed several specials
cases of our main results. The ideas and techniques of this work may motivate and inspire the others to
explore this interesting field further.
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