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Abstract. In this paper, we introduce the concepts of multi-generalized 2-normed space and dual multi-
generalized 2-normed space and we then investigate some results related to them. We also prove that, if
(E, ‖., .‖) is a generalized 2-normed space, {‖., .‖k}k∈N is a sequence of generalized 2-norms on Ek (k ∈N) such
that for each x, y ∈ E, ‖x, y‖1 = ‖x, y‖ and for each k ∈ N axioms (MG1), (MG2) and (MG4)( (DG4)) of (dual)
multi-generalized 2-normed space are true, then {(Ek, ‖., .‖k), k ∈ N} is a (dual) multi-generalized 2-normed
space. Finally we deal with an application of a dual multi-generalized 2-normed space defined on a proper
commutative H∗-algebra.

1. Introduction and Preliminaries

The notion of (dual) multi-normed spaces which are somewhat similar to the operator sequence spaces,
was initiated by H. G. Dales and M. E. Polyakov in [5]. That provides a suitable supply for the study of
multi-normed spaces together with many examples. Some results of (dual) multi-normed spaces are stable
under generalized 2-normed spaces [12]. In this paper we use these properties to discover new ones for
(dual) multi-generalized 2-normed spaces. In [12], Z. Lewandowska introduced a generalization of Gähler
2-normed space [7, 18], under the name of generalized 2-normed space. After that she published some
papers on this issue (e.g. [9–11]). In the following lines, we present some definitions and examples which
will be utilized in the sequel.

Definition 1.1. (see [12]) Let X and Y be linear spaces over the field K (C or R). A function ‖., .‖ : X × Y→ [0,∞)
is called a generalized 2-norm on X × Y if it satisfies the following conditions,
(i) ‖αx, y‖ = ‖x, αy‖ = |α|‖x, y‖ for all α ∈ K and x ∈ X, y ∈ Y;
(ii) ‖x, y1 + y2‖ ≤ ‖x, y1‖ + ‖x, y2‖ for all x ∈ X, y1, y2 ∈ Y;
(iii) ‖x1 + x2, y‖ ≤ ‖x1, y‖ + ‖x2, y‖ for all x1, x2 ∈ X, y ∈ Y.
The pair (X × Y, ‖., .‖) is called a generalized 2-normed space. If X = Y, then the generalized 2-normed space will be
denoted by (X, ‖., .‖).

Example 1.2. (see [11]) Let X be a real linear space having two seminorms ‖.‖1 and ‖.‖2. Then (X, ‖., .‖) is a
generalized 2-normed space with the generalized 2-norm defined by ‖x, y‖ = ‖x‖1‖y‖2 where x, y ∈ X.
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Email addresses: khanehgir@mshdiau.ac.ir (Mahnaz Khanehgir), MMkh926@gmail.com (Marzieh Moradian Khibary),

firozehasanvand@yahoo.com (Firoozeh Hasanvand), modabber@iauqeshm.ac.ir (Ahmad Modabber)



M. Khanehgir et al. / Filomat 31:3 (2017), 841–851 842

A sequence {xn}n in a generalized 2-normed space (X, ‖., .‖) is said to be a 2-Cauchy sequence if lim
n,m→∞

‖xn −

xm,u‖ = 0 for all u ∈ X. In addition, {xn}n is called 2-convergent if there exists x ∈ X such that lim
n→∞
‖xn − x,u‖ =

0 for all u ∈ X. A generalized 2-normed space is called generalized 2-Banach space if every 2-Cauchy
sequence is 2-convergent. Since Lewandowska up to now there are many mathematicians worked on
generalized 2-normed spaces and developed it in several directions, see [1, 3, 16, 17]) and references cited
therein.
The notion of (dual) multi-normed space first was introduced in [5]. This concept has some connections
with operator spaces and Banach lattices.
Let (E, ‖.‖) be a complex normed space. We denote by Ek (k ∈ N), the linear space E ⊕ . . . ⊕ E. The linear
operations on Ek are defined coordinatewise. The zero element of either E or Ek is denoted by 0. Following
notations and terminologies of [5], we denote by Nk the set {1, . . . , k} and by ςk the group of permutations
on k symbols. For σ ∈ ςk, x = (x1, . . . , xk) ∈ Ek and α = (α1, . . . , αk) ∈ Ck define Aσ(x) = (xσ(1), . . . , xσ(k)) and
Mα(x) = (α1x1, . . . , αkxk). Let n ∈N, we set x[n] = (x1, . . . , xk, x1, . . . , xk, . . . , x1, . . . , xk) ∈ Enk,where x[n] consists
of n copies of each block (x1, . . . , xk).
Take k ∈N and let S be a subset of Nk. For (x1, . . . , xk) ∈ Ek, we set QS(x1, . . . , xk) = (y1, . . . , yk), where yi = xi
(i < S) and yi = 0 (i ∈ S). Thus QS is the projection onto the complement of S.

Definition 1.3. ( see [5]) Let (E, ‖.‖) be a complex (respectively, real) normed space, and take n ∈ N. A multi-norm
of level n on {Ek, k ∈ Nn} is a sequence {‖.‖k} = {‖.‖k, k ∈ Nn} such that ‖.‖k is a norm on Ek for each k ∈ Nn, such
that ‖x‖1 = ‖x‖ for each x ∈ E (so that ‖.‖1 is the initial norm), and such that the following axioms (MN1)-(MN4) are
satisfied for each k ∈Nn with k ≥ 2:
(MN1) for each σ ∈ ςk and x ∈ Ek, ‖Aσ(x)‖k = ‖x‖k;
(MN2) for each α1, . . . , αk ∈ C (respectively, each α1, . . . , αk ∈ R) and x ∈ Ek,

‖Mα(x)‖k ≤ (max
i∈Nk

|αi|)‖x‖k;

(MN3) for each x1, . . . , xk−1 ∈ E, ‖(x1, . . . , xk−1, 0)‖k = ‖(x1, . . . , xk−1)‖k−1;
(MN4) for each x1, . . . , xk−1 ∈ E, ‖(x1, . . . , xk−1, xk−1)‖k = ‖(x1, . . . , xk−1)‖k−1.
In this case, {(Ek, ‖.‖k), k ∈Nn} is a multi-normed space of level n. A multi-norm on {Ek, k ∈N} is a sequence

{‖.‖k} = {‖.‖k, k ∈N}

such that {‖.‖k, k ∈ Nn} is a multi-norm of level n for each n ∈ N. In this case, {(En, ‖.‖n),n ∈ N} is a multi-
normed space. Moreover, if axiom (MN4) replaced by the following axiom, then it is called a dual multi-norm and
{(En, ‖.‖n),n ∈N} is called a dual multi-normed space.
(DM4) for each x1, . . . , xk−1 ∈ E, ‖(x1, . . . , xk−1, xk−1)‖k = ‖(x1, . . . , 2xk−1)‖k−1.

Example 1.4. (see [5]) Let (E, ‖.‖) be a normed space. For each k ∈N, put
(i) ‖(x1, . . . , xk)‖1k = max

i∈Nk

‖xi‖,

(ii) ‖(x1, . . . , xk)‖2k =
k∑

i=1

‖xi‖,

where x1, . . . , xk are in E. Then {(Ek, ‖.‖1k), k ∈ N} is a multi-normed space and {(Ek, ‖.‖2k), k ∈ N} is a dual multi-
normed space.

Suppose that {(Ek, ‖.‖k), k ∈N} is a (dual) multi-normed space. The following property is almost immediate
consequence of the axioms.

max
i∈Nk

‖xi‖ ≤ ‖(x1, . . . , xk)‖k ≤
k∑

i=1

‖xi‖ ≤ kmax
i∈Nk

‖xi‖ (x1, . . . , xk ∈ E).

It follows from the above assertion that, if (E, ‖.‖1) is a Banach space, then (Ek, ‖.‖k) is a Banach space for
each k = 2, 3, ..., in this case, {(Ek, ‖.‖k), k ∈N} is called a (dual) multi-Banach space.
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By now, many authors have already contributed to the theoretical development of the theory of multi-
normed spaces (e.g. see [6, 13–15]). In the present work we demonstrate the concept of (dual) multi-normed
space in the framework of generalized 2-normed spaces. We also provide many examples together with
an application of a dual multi-generalized 2-normed space defined on a proper commutative H∗-algebra
[2, 4, 8, 19]. We will describe H∗-algebras in more details in the section 4. This paper is organized as follows:
In section 2, we introduce the concept of (dual) multi-geneneralized 2-normed spaces and describe some
results concerned with these new ones. In section 3, we show that if (E, ‖., .‖) is a generalized 2-normed
space, {‖., .‖k}k∈N is a sequence of generalized 2-norms on Ek (k ∈N) such that for each x, y ∈ E, ‖x, y‖1 = ‖x, y‖
and for each k ∈ N axioms (MG1), (MG2) and (MG4)( (DG4)) of (dual) multi-generalized 2-normed space
are true, then {(Ek, ‖., .‖k), k ∈ N} is a (dual) multi-generalized 2-normed space. In section 4, we give an
application of a dual multi-generalized 2-normed space. Throughout this paper, we mean byT and by S the
unit ball and the closed unit ball ofC respectively, more preciselyT = {α ∈ C, |α| = 1} and S = {α ∈ C, |α| ≤ 1}.

2. (Dual) Multi-Generalized 2-Normed Space

In this section we introduce a (dual) multi-generalized 2-normed space and investigate some properties
of it. For this, we need the following definition.

Definition 2.1. Let (E, ‖., .‖) be a generalized 2-normed space (over the field K). A special generalized 2-norm on
{Ek, k ∈ N} is a sequence {‖., .‖k}k∈N such that for each k ∈ N, ‖., .‖k is a generalized 2-norm on Ek, ‖x, y‖1 = ‖x, y‖
for each x, y ∈ E and the following axioms (MG1)-(MG3) are satisfied for each k ∈N with k ≥ 2:
(MG1) for each σ ∈ ςk and x, y ∈ Ek, ‖Aσ(x),Aσ(y)‖k = ‖x, y‖k;
(MG2) for each α1, . . . , αk ∈ K and x, y ∈ Ek, ‖Mα(x), y‖k = ‖x,Mα(y)‖k ≤ (max

1≤i≤k
|αi|)‖x, y‖k;

(MG3) for each x1, . . . , xk−1, y1, . . . , yk−1 ∈ E,

‖(x1, . . . , xk−1, 0), (y1, . . . , yk−1, 0)‖k = ‖(x1, . . . , xk−1), (y1, . . . , yk−1)‖k−1.

Now consider two following more axioms.
(MG4) for each x1, . . . , xk−1, y1, . . . , yk−1 ∈ E,

‖(x1, . . . , xk−1, xk−1), (y1, . . . , yk−1, yk−1)‖k = ‖(x1, . . . , xk−1), (y1, . . . , yk−1)‖k−1.

(DG4) for each x1, . . . , xk−1, y1, . . . , yk−1 ∈ E,

‖(x1, . . . , xk−1, xk−1), (y1, . . . , yk−1, yk−1)‖k = ‖(x1, . . . , 2xk−1), (y1, . . . , yk−1)‖k−1.

A special generalized 2-norm is said to be a (dual) multi-generalized 2-norm if it is equipped with the axiom (MG4)
( (DG4)). In this case, {(Ek, ‖., .‖k), k ∈N} is called a (dual) multi-generalized 2-normed space.

We give the definition in the case where the index set isN. If the index set isNk (k ∈N), then special, multi-
and dual multi-generalized 2-normed spaces are of level k.

Remark 2.2. It is readily verified from the axioms (MG2) and (MG3), that

‖(x1, . . . , xk, 0), (y1, . . . , yk, yk+1)‖k+1 = ‖(x1, . . . , xk), (y1, . . . , yk)‖k,

where x1, . . . , xk, y1, . . . , yk+1 ∈ E. Indeed, we have

‖(x1, . . . , xk, 0), (y1, . . . , yk, yk+1)‖k+1 = ‖M(1,...,1,0)(x1, . . . , xk, 0), (y1, . . . , yk, yk+1)‖k+1

= ‖(x1, . . . , xk, 0),M(1,...,1,0)(y1, . . . , yk, yk+1)‖k+1

= ‖(x1, . . . , xk, 0), (y1, . . . , yk, 0)‖k+1

= ‖(x1, . . . , xk), (y1, . . . , yk)‖k.
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Example 2.3. Let (E, ‖., .‖) be a non-zero generalized 2-normed space. For each k ∈N, set
(i) ‖(x1, . . . , xk), (y1, . . . , yk)‖1k = max{‖x1, y1‖, . . . , ‖xk, yk‖},

(ii) ‖(x1, . . . , xk), (y1, . . . , yk)‖2k =
k∑

i=1

‖xi, yi‖,

where (x1, . . . , xk), (y1, . . . , yk) ∈ Ek. Then, {(Ek, ‖., .‖1k), k ∈N} is a multi-generalized 2-normed space and {(Ek, ‖., .‖2k),
k ∈N} is a dual multi-generalized 2-normed space.

Example 2.4. Let (E, ‖.‖) be an H∗-algebra (for the definition see section 4). Define a generalized 2-norm on Ek

(k ∈ N) by setting ‖(x1, . . . , xk), (y1, . . . , yk)‖k =
k∑

i=1

‖xiyi‖, then {(Ek, ‖., .‖k), k ∈ N} is a dual multi-generalized

2-normed space.

Example 2.5. (see [5]) Let {(Ek, ‖., .‖αk ), k ∈ N}α be a family of (dual) multi-generalized 2-normed spaces. For each
k ∈N and x1, . . . , xk, y1, . . . , yk ∈ E, define

‖(x1, . . . , xk), (y1, . . . , yk)‖k = sup
α
‖(x1, . . . , xk), (y1, . . . , yk)‖αk .

Then {(Ek, ‖., .‖k), k ∈N} is a (dual) multi-generalized 2-normed space, too.

Inspired by the examples of [5] we give some examples show that axioms (MG1)-(MG4) ( -(DG4)) are
independent of each other.

Example 2.6. Let (E, ‖., .‖) be a non-zero generalized 2-normed space. Set ‖x, y‖1 = ‖x, y‖ (x, y ∈ E).
(I) For each k ∈ N − {1}, set ‖(x1, . . . , xk), (y1, . . . , yk)‖k = max{‖x1, y1‖,

‖x2,y2‖

2 , . . . ,
‖xk,yk‖

k }, where (x1, . . . , xk),
(y1, . . . , yk) ∈ Ek. Then it is immediately checked that ‖., .‖k is a generalized 2-norm on Ek and that {‖., .‖k}k∈N
satisfies (MG2), (MG3) and (MG4). However, take x, y ∈ E with ‖x, y‖ = 1. Then ‖(2x, 3x), (2y, 4y)‖2 = 6, but
‖(3x, 2x), (4y, 2y)‖2 = 12. Thus ‖., .‖2 does not satisfy axiom (MG1).
(II) Set ‖(x1, x2), (y1, y2)‖2 = max{‖x1, y1‖, 2‖x2, y2‖}, where (x1, x2), (y1, y2) ∈ E2. Then it is immediately checked
that ‖., .‖2 is a generalized 2-norm on E2 and that ‖., .‖2 satisfies (MG2), (MG3) and (DG4). However, we claim
that ‖., .‖2 does not satisfy axiom (MG1). For this, similar previous part take x, y ∈ E with ‖x, y‖ = 1. Then
‖(2x, 3x), (2y, 4y)‖2 = 24, but ‖(3x, 2x), (4y, 2y)‖2 = 12, and so ‖., .‖2 does not satisfy axiom (MG1).

Example 2.7. (III) Let E = R and k ∈ N. Define ‖(x1, . . . , xk), (y1, . . . , yk)‖k = max{|(xi − x j)(yi − y j)|, i, j ∈
Nk∪{0}, x0, y0 = 0},where x1, . . . , xk, y1, . . . , yk ∈ E. We observe that {(Ek, ‖., .‖k), k ∈N} is a sequence of generalized
2-normed spaces, and (MG1), (MG3) and (MG4) are true. However we claim that (MG2) does not hold, because
obviously ‖Mα(x), y‖k , ‖x,Mα(y)‖k (x, y ∈ Ek, α ∈ Rk) and moreover, 4 = ‖(1,−1), (−1, 1)‖2 � ‖(1, 1), (−1, 1)‖2 = 1
giving the claim.
(IV) Let (E, ‖., .‖) be a non-zero complex generalized 2-normed space. For each k ∈ N, x1, . . . , xk, y1, . . . , yk ∈ E,
define ‖(x1, . . . , xk), (y1, . . . , yk)‖k = max{‖ηixi, ε jy j‖, i, j ∈ Nk, ηi, ε j ∈ T}. Clearly, ‖., .‖k is a generalized 2-norm
on Ek and axioms (MG1), (MG3) and (MG4) hold. Also ‖Mα(x), y‖k, ‖x,Mα(y)‖k ≤ (max

i∈Nk

|αi|)‖x, y‖k for each

α = (α1, . . . , αk) ∈ Ck and x, y ∈ Ek, but evidently ‖Mα(x), y‖k , ‖x,Mα(y)‖k.
(V) Let (E, ‖., .‖) be a non-zero generalized 2-normed space. For each k ∈N, x1, . . . , xk, y1, . . . , yk ∈ E, define

‖(x1, . . . , xk), (y1, . . . , yk)‖k = sup{max
i∈Nk

‖

k∑
j=1

η jx j, yi‖, η1, . . . , ηk ∈ S}.

Clearly, ‖., .‖k is a generalized 2-norm on Ek and (MG1), (MG3) and (DG4) hold. For (DG4), we have
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‖(x1, . . . , xk−1, xk−1), (y1, . . . , yk−1, yk−1)‖k
= sup{max

i∈Nk−1

‖η1x1 + · · · + ηk−1xk−1 + ηkxk−1, yi‖, η1, . . . , ηk−1, ηk ∈ S}

= sup{max
i∈Nk−1

‖η1x1 + · · · +
ηk−1 + ηk

2
(2xk−1), yi‖, η1, . . . ,

ηk−1 + ηk

2
∈ S}

= ‖(x1, . . . , 2xk−1), (y1, . . . , yk−1)‖k−1.

Further for nonzero α = (α1, . . . , αk) ∈ Ck,

1
max
i∈Nk

|αi|
‖Mα(x1, . . . , xk), (y1, . . . , yk)‖k =

1
max
i∈Nk

|αi|
sup{max

i∈Nk

‖

k∑
j=1

α jη jx j, yi‖, η1, . . . , ηk ∈ S}

= sup{max
i∈Nk

‖

k∑
j=1

η′jx j, yi‖, η
′

j ∈ S, j ∈Nk}

= ‖(x1, . . . , xk), (y1, . . . , yk)‖k,

where η′j =
1

max
i∈Nk

|αi|
η jα j ( j ∈Nk). This equality gives us the second part of (MG2). Similarly one can quickly checked

that
‖(x1, . . . , xk),Mα(y1, . . . , yk)‖k ≤ max

1≤i≤k
|αi|‖(x1, . . . , xk), (y1, . . . , yk)‖k,

but trivially ‖Mα(x1, . . . , xk), (y1, . . . , yk)‖k , ‖(x1, . . . , xk),Mα(y1, . . . , yk)‖k and so (MG2) does not hold in general.
(VI) Suppose that E = C and ‖z1, z2‖ = 2|z1z2| (z1, z2 ∈ E). Then (E, ‖., .‖) is a generalized 2-normed space.
Assume that ‖(z1, z2), (w1,w2)‖2 = 2|z1w1 + z2w2|, where (z1, z2), (w1,w2) ∈ E2. It is a generalized 2-norm on
E2 such that satisfies in the axioms (MG1), (MG3), (DG4) and for each (α1, α2) ∈ C2, ‖Mα(z1, z2), (w1,w2)‖2 =
‖(z1, z2),Mα(w1,w2)‖2. However the second part of axiom (MG2) does not hold. For instance, we have 4 =
‖(1, i), (1,−i)‖2 � ‖(1, 1), (1,−i)‖2 = 2

√
2.

Example 2.8. (VII) Let E = C, ‖x, y‖ = |xy| and ‖(x1, x2), (y1, y2)‖2 = 1
2 (|x1y1|+|x2y2|), where x, y, x1, x2, y1, y2 ∈ E.

It is not hard to see that (E, ‖., .‖) and (E2, ‖., .‖2) are generalized 2-normed spaces and (MG1), (MG2), (MG4) are
true but (MG3) is not.
(VIII) Suppose that E = R2 and ‖(x1, y1), (x2, y2)‖ = |x1y2 − y1x2|, then (E, ‖., .‖) is a generalized 2-normed space
(see [18]). Define
‖((x1, y1), (x2, y2)), ((z1,w1), (z2,w2))‖2 = 2 max{‖(x1, y1), (z1,w1)‖, ‖(x2, y2), (z2,w2)‖}.
We observe that (E2, ‖., .‖2) is a generalized 2-normed space and axioms (MG1), (MG2) are true. The calculation
‖((x1, y1), (x1, y1)), ((z1,w1), (z1,w1))‖2 = 2‖(x1, y1), (z1,w1)‖ = ‖2(x1, y1), (z1,w1)‖ shows that (DG4) is also valid.
On the other hand (MG3) does not hold, since ‖((1, 1), (0, 0)), ((−1, 1), (0, 0))‖2 = 4 but ‖(1, 1), (−1, 1)‖ = 2.

Example 2.9. (IX) Let E = C, ‖x, y‖ = |xy| and ‖(x1, x2), (y1, y2)‖2 = |x1y1| + |x2y2|, where x, y, x1, x2, y1, y2 ∈ E.
It is immediately verified that (E, ‖., .‖) and (E2, ‖., .‖2) are generalized 2-normed spaces and (MG1), (MG2), (MG3)
are true but (MG4) is not.

(X) Let E = R. For k ∈ N, and x1, . . . , xk, y1, . . . , yk ∈ E, define ‖(x1, . . . , xk), (y1, . . . , yk)‖k = (
k∑

i=1

|xiyi|
2)

1
2 . Then

{‖., .‖k, k ∈N} is a special generalized 2-norm on {Ek, k ∈N}, but both of axioms (MG4) and (DG4) are not true.

The four presented examples in the above are just in level 2. In the following lemma we assume (E, ‖., .‖)
is a generalized 2-normed space and {(Ek, ‖., .‖k), k ∈ N} is a special generalized 2-normed space with
‖x, y‖1 = ‖x, y‖ for all x, y ∈ E. The proof is trivial and so is omitted (see [5, pp. 44-47 ]).
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Lemma 2.10. Let j, k ∈N, x1, . . . , x j+k, y1, . . . , y j+k ∈ E and η1, . . . , ηk, ξ1, . . . , ξk ∈ T. Then
(i) ‖(η1x1, . . . , ηkxk), (ξ1y1, . . . , ξkyk)‖k = ‖(x1, . . . , xk), (y1, . . . , yk)‖k.
(ii) ‖(x1, . . . , xk), (y1, . . . , yk)‖k ≤ ‖(x1, . . . , xk, xk+1), (y1, . . . , yk, yk+1)‖k+1.
(iii) ‖(x1, . . . , x j, x j+1, . . . , x j+k), (y1, . . . , y j, y j+1, . . . , y j+k)‖ j+k ≤ ‖(x1, . . . , x j), (y1, . . . , y j)‖ j+
‖(x j+1, . . . , x j+k), (y j+1, . . . , y j+k)‖k.

(iv) max
i∈Nk

‖xi, yi‖ ≤ ‖(x1, . . . , xk), (y1, . . . , yk)‖k ≤
k∑

i=1

‖xi, yi‖ ≤ kmax
i∈Nk

‖xi, yi‖.

The last part of the above lemma guides us to the the following result.

Corollary 2.11. Suppose that {‖., .‖k}k∈N is a family of (dual) multi-generalized 2-norms on {Ek, k ∈N}, and (E, ‖., .‖1)
is a generalized 2-Banach space. Then for each k ∈N, (Ek, ‖., .‖k) is a generalized 2-Banach space, too.
In this case, {(Ek, ‖., .‖k), k ∈N} is called a (dual) multi-generalized 2-Banach space.

Lemma 2.12. Let {(Ek, ‖., .‖k), k ∈N} be a multi-generalized 2-normed space and x1, . . . , xk−2,
x′, x′′, y1, . . . , yk−2, y′, y′′ be in E. Then

‖(X, x′, x′′), (Y, y′, y′′)‖k ≤ ‖(X, x′, x′′), (Y, y′, y′)‖k + ‖(X, x′, x′′), (Y, y′′, y′′)‖k,

where X = x1, ..., xk−2, Y = y1, ..., yk−2.

Proof. Applying Lemma 2.10 and axiom (MG1), we deduce that

‖(X, x′, x′′), (Y, y′, y′′)‖k ≤ ‖(X, x′), (Y, y′)‖k−1 + ‖x′′, y′′‖
≤ ‖(X, x′, x′′), (Y, y′, y′)‖k + ‖(x′′,X, x′), (y′′,Y, y′′)‖k
= ‖(X, x′, x′′), (Y, y′, y′)‖k + ‖(X, x′, x′′), (Y, y′′, y′′)‖k,

Therefore we get the desired result.

The following lemma is a version of [5, Lemma 2.16] in the framework of multi-generalized 2-normed
spaces.

Lemma 2.13. Let {(Ek, ‖., .‖k), k ∈ N} be a multi-generalized 2-normed space, x = (x1, . . . , xk) and y = (y1, . . . , yk)
be in Ek, xk+1, xk+2, yk+1, yk+2 be in E and a, b, p, q ∈ [0, 1] with a + b = 1, p + q = 1. Then

‖(x, axk+1 + bxk+2, axk+1 + bxk+2), (y, pyk+1 + qyk+2, pyk+1 + qyk+2)‖k+2

≤ ‖X, (y, yk+1, yk+1)‖k+2 + ‖X, (y, yk+2, yk+2)‖k+2,

where X = (x1, ..., xk+2).

Proof. We have (x, axk+1+bxk+2, axk+1+bxk+2) = a2(x, xk+1, xk+1)+ab(x, xk+1, xk+2)+ab(x, xk+2, xk+1)+b2(x, xk+2, xk+2).
Similar relation holds when x, xk+1, xk+2, a, b substitute with y, yk+1, yk+2, p, q, respectively. Applying Lem-
mata 2.10 and 2.12 and also axiom (MG1), it follows that

‖(x, axk+1 + bxk+2, axk+1 + bxk+2), (y, pyk+1 + qyk+2, pyk+1 + qyk+2)‖k+2

≤ (a + b)2
‖(x, xk+1, xk+2), (y, pyk+1 + qyk+2, pyk+1 + qyk+2)‖k+2

= ‖X, p2(y, yk+1, yk+1) + pq(y, yk+1, yk+2) + pq(y, yk+2, yk+1) + q2(y, yk+2, yk+2)‖k+2

≤ p2
‖X, (y, yk+1, yk+1)‖k+2 + 2pq‖X, (y, yk+1, yk+1)‖k+2

+ 2pq‖X, (y, yk+2, yk+2)‖k+2 + q2
‖X, (y, yk+2, yk+2)‖k+2

= (p2 + 2pq)‖X, (y, yk+1, yk+1)‖k+2 + (q2 + 2pq)‖X, (y, yk+2, yk+2)‖k+2

≤ (p + q)2(‖X, (y, yk+1, yk+1)‖k+2 + ‖X, (y, yk+2, yk+2)‖k+2)
= ‖X, (y, yk+1, yk+1)‖k+2 + ‖X, (y, yk+2, yk+2)‖k+2.

Note that the the second inequality in the above relation holds by Lemma 2.12. So the proof is complete.
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By slightly modification in the proof of [5, Lemmata 2.19, 2.22], and using Lemma 2.10, one gets the
following proposition.

Proposition 2.14. Let {(Ek, ‖., .‖k), k ∈ N} be a dual multi-generalized 2-normed space and k′ and n be arbitrary
fixed elements in N. Then for each x1, . . . , xk′+n, y1, . . . , yk′+1 ∈ E, we have
(i) ‖(x1, . . . , xk′ , xk′+1 + xk′+2 + . . . + xk′+n), (y1, . . . , yk′ , yk′+1)‖k′+1

≤ ‖(x1, . . . , xk′ , xk′+1, . . . , xk′+n), (y1, . . . , yk′ , yk′+1, . . . , yk′+1)‖k′+n.

(ii) ‖(x1, . . . , xk′−2, xk′−1 + xk′ ), (y1, . . . , yk′−2, yk′−1 + yk′ )‖k′−1

≤ ‖(x1, . . . , xk′−2, xk′−1, xk′ ), (α1y1, . . . , αk′−2yk′−2, yk′−1, yk′−1)‖k′

+‖(x1, . . . , , xk′−2, xk′−1, xk′ ), (β1y1, . . . , βk′−2yk′−2, yk′ , yk′ )‖k′ ,

where αi, βi ≥ 0 and αi + βi = 1, for each i ∈Nk′−2.
(iii) sup{‖(ξ1x1 + ξ2x2 + . . . + ξk′xk′ ), (η1y1 + . . . + ηk′yk′ )‖, ξ1, . . . , ξk′ , η1, . . . , ηk′ ∈ T}

≤ ‖(x1, . . . , xk′ ), (y1, . . . , y1)‖k′ + ‖(x1, . . . , xk′ ), (y2, . . . , y2)‖k′ + . . . + ‖(x1, . . . , xk′ ), (yk′ , . . . , yk′ )‖k′ .

(iv) ‖(α1x, . . . , αkx), (y, . . . , y)‖k =
k∑

i=1

|αi|‖x, y‖, where α1, . . . , αk ∈ C and x, y ∈ E.

3. Main Result

We are now in a position to state the main result of this note which is a version of [5, Proposition 2.7] in
the framework of (dual) multi-generalized 2-normed spaces. We bring this result in two cases multi- and
dual multi-generalized 2-normed spaces separately, because of avoiding long proof.

Theorem 3.1. Let (E, ‖., .‖) be a generalized 2-normed space. Let {‖., .‖k}k∈N be a sequence such that ‖., .‖k is a
generalized 2-norm on Ek for each k ∈N and ‖x, y‖1 = ‖x, y‖ for all x, y ∈ E. Also axioms (MG1), (MG2) and (MG4)
are satisfied for each k ∈N. Then {‖., .‖k}k∈N is a multi-generalized 2-norm on {Ek, k ∈N}.

Proof. By Definition 2.1, it is enough to show that axiom (MG3) holds. For, let k ∈ N, x = (x1, . . . , xk) and
y = (y1, . . . , yk) be in Ek such that ‖x, y‖k = 1. Set α = ‖(x1, . . . , xk, 0), (y1, . . . , yk, 0)‖k+1, so that α ≤ 1. Indeed,
by axioms (MG2) and (MG4), we have

α = ‖M(1,...,1,0)(x1, . . . , xk, xk),M(1,...,1,0)(y1, . . . , yk, yk)‖k+1

≤ ‖(x1, . . . , xk, xk), (y1, . . . , yk, yk)‖k+1

= ‖(x1, . . . , xk), (y1, . . . , yk)‖k
= 1.

Let n be any arbitrary fixed element in N, take x[n+2], y[n+2]
∈ E(n+2)k, by (MG1), (MG4), ‖x[n+2], y[n+2]

‖(n+2)k =
‖x, y‖k = 1 (1). For 1 ≤ i ≤ n + 2, let Bi be the subset {(i−1)k+1, . . . , ik}ofN(n+2)k, and let QBi be a projection onto
the complement of Bi. We thus find that ‖QBi (x[n+2]),QB j (y[n+2])‖(n+2)k = ‖QBi∪B j (x[n+2]),QBi∪B j (y[n+2])‖(n+2)k
(2), by (MG2). Applying again axioms (MG1) and (MG4) we deduce that (2) is equal to α. Further,
n+2∑
i=1

QBi (x
[n+2]) = (n + 1)x[n+2] and

n+2∑
j=1

QB j (y[n+2]) = (n + 1)y[n+2] and it follows from (1) that

(n + 1)2 = (n + 1)2
‖x[n+2], y[n+2]

‖(n+2)k

= ‖(n + 1)x[n+2], (n + 1)y[n+2]
‖(n+2)k

≤

n+2∑
i, j=1

‖QBi (x
[n+2]),QB j (y[n+2])‖(n+2)k

= (n + 2)2α.
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Therefore α ≥ (n+1)2

(n+2)2 . Letting n tends to infinity, we obtain that α = 1 and our goal is achieved.

Theorem 3.2. Let (E, ‖., .‖) be a generalized 2-normed space, {‖., .‖k}k∈N be a sequence such that ‖., .‖k be a generalized
2-norm on Ek for each k ∈ N and ‖x, y‖1 = ‖x, y‖ for each x, y ∈ E. Also (MG1), (MG2) and (DG4) are satisfied for
each k ∈N. Then {‖., .‖k}k∈N is a dual multi-generalized 2-norm on {Ek, k ∈N}.

Proof. Let k ∈ N, and x = (x1, . . . , xk), y = (y1, . . . , yk) be in Ek. For convenience, by β we denote the real
number ‖(x1, . . . , xk), (y1, . . . , yk)‖k and by α the real number ‖(x1, . . . , xk, 0), (y1, . . . , yk, 0)‖k+1. If β = 0, then

0 ≤ α = ‖(x1, . . . , xk, 0), (y1, . . . , yk, 0)‖k+1

= ‖M(1,...,1,0)(x1, . . . , xk, xk),M(1,...,1,0)(y1, . . . , yk, yk)‖k+1

≤ ‖(x1, . . . , xk, xk), (y1, . . . , yk, yk)‖k+1 (MG2)
= ‖(x1, . . . , 2xk), (y1, . . . , yk)‖k (DG4)
≤ 2‖(x1, . . . , xk), (y1, . . . , yk)‖k (MG2)
= 2β = 0.

It forces that α = 0 too. Now assume that β is nonzero and n is an arbitrary fixed element of N, then
x[2n], y[2n] are in E(2n)k and so by axioms (MG1) and (DG4), ‖x[2n], y[2n]

‖(2n)k = 2nβ (3). For i = 1, . . . , 2n, let Bi be
the subset {(i − 1)k + 1, . . . , ik} of N(2n)k, and let QBi be a projection onto the complement of Bi. From (MG2),
it yields that ‖QBi (x[2n]),QB j (y[2n])‖(2n)k = ‖QBi∪B j (x[2n]),QBi∪B j (y[2n])‖(2n)k (4).
Using (MG1), (MG2) and (DG4) we deduce that the equality (4) is less than or equal to 2nα. Further,

2n∑
i=1

QBi (x
[2n]) = (2n

− 1)x[2n] and
2n∑
j=1

QB j (y[2n]) = (2n
− 1)y[2n] and it follows from (3) that

(2n
− 1)2 =

(2n
− 1)2

‖x[2n], y[2n]
‖(2n)k

2nβ

=
‖(2n
− 1)x[2n], (2n

− 1)y[2n]
‖(2n)k

2nβ

=

‖

2n∑
i=1

QBi (x
[2n]),

2n∑
j=1

QB j (y[2n])‖(2n)k

2nβ

≤

2n∑
i, j=1

‖QBi (x
[2n]),QB j (y[2n])‖(2n)k

2nβ

≤
(2n)22nα

2nβ

=
(2n)2α

β
.

Therefore α ≥ (2n
−1)2β

(2n)2 . Since this is true for any n, so letting n→∞, then α ≥ β.
For the reverse direction assume that x = (x1, . . . , xk, 0) and y = (y1, . . . , yk, 0). Then ‖x[2n], y[2n]

‖2n(k+1) = 2nα.
For i = 1, . . . , 2n, let Ci = {i(k+1)− k, . . . , i(k+1)} and let QCi be a projection onto the complement of Ci. Next,
put
X1 = (x1, . . . , xk, . . . , x1, . . . , xk, 0, . . . , 0),
Y1 = (y1, . . . , yk, . . . , y1, . . . , yk, 0, . . . , 0),
where the number of repetitions of each item xi and yi, i = 1, . . . , k is 2n

− 2 and also zero has repeated
(2n
− 2) + 2(k + 1) times in each of X1 and Y1.
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X2 = (x1, . . . , xk, . . . , x1, . . . , xk, 0, . . . , 0),
Y2 = (y1, . . . , yk, . . . , y1, . . . , yk, 0, . . . , 0),
where the number of repetitions of each item xi and yi, i = 1, . . . , k is 2n

− 2 and also zero has repeated 2k
times in each of X2 and Y2.
Finally, set γ = (1, . . . , 1, 0, . . . , 0), where 1 has repeated (2n

− 2)k times and zero has repeated 2k times. Then

‖QCi (x
[2n]),QC j (y[2n])‖2n(k+1) = ‖QCi∪C j (x

[2n]),QCi∪C j (y[2n])‖2n(k+1)

= ‖X1,Y1‖2n(k+1)

= ‖X2,Y2‖2nk

= ‖Mγx[2n],Mγy[2n]
‖2nk

≤ 2nβ. (by(MG2))

It is easily verified that
2n∑
i=1

QCi (x
[2n]) = (2n

− 1)x[2n] and
2n∑
j=1

QC j (y[2n]) = (2n
− 1)y[2n]. It follows that

(2n
− 1)2 =

‖(2n
− 1)x[2n], (2n

− 1)y[2n]
‖2n(k+1)

2nα

=

‖

2n∑
i=1

QCi (x
[2n]),

2n∑
j=1

QC j (y[2n])‖2n(k+1)

2nα

≤

2n∑
i, j=1

‖QCi (x
[2n]),QC j (y[2n])‖2n(k+1)

2nα

≤
(2n)22nβ

2nα
.

Hence, α ≤ 22n

(2n−1)2 β. Letting n → ∞, we conclude that α ≤ β. Therefore α = β and so we get our desired
result.

4. Application

In this section we give an application of multi-generalized 2-normed spaces. For this purpose, it is
convenient to make a few observation about H∗-algebras (see [2]).

Definition 4.1. An H∗-algebra, introduced by W. Ambrose [2] in the associative case, is a Banach algebra A, satisfying
the following conditions:
(i) A is itself a Hilbert space under an inner product 〈., .〉;
(ii) For each a in A there is an element a∗ in A, the so-called adjoint of a, such that we have both 〈ab, c〉 = 〈b, a∗c〉
and 〈ab, c〉 = 〈a, cb∗〉 for all b, c ∈ A. Recall that A0 = {a ∈ A, aA = {0}} = {a ∈ A : Aa = {0}} is called the
annihilator ideal of A. A proper H∗-algebra is an H∗-algebra with zero annihilator ideal. Ambrose proved that an
H∗-algebra is proper if and only if every element has a unique adjoint. The trace-class τ(A) of A is defined by the set
τ(A) = {ab, a, b ∈ A}. The trace functional tr on τ(A) is defined by tr(ab) = 〈a, b∗〉 = 〈b, a∗〉 = tr(ba) for each a, b ∈ A,
in particular tr(aa∗) = 〈a, a〉 = ‖a‖2, for all a ∈ A. A nonzero element e ∈ A is called a projection, if it is self-adjoint
and idempotent. In addition, if eAe = Ce, then it is called a minimal projection. For example each simple H∗-algebra
(an H∗-algebra without nontrivial closed two-sided ideals) contains minimal projections. Two idempotents e and e′

are doubly orthogonal if 〈e, e′〉 = 0 and ee′ = e′e = 0. Suppose that e is a minimal projection in a commutative, proper
H∗-algebra A, then Ae = eAe = Ce. Recall that if {ei}i∈I is a maximal family of doubly orthogonal minimal projections
in a proper H∗-algebra A, then A is the direct sum of the minimal left ideals Aei or the minimal right ideals eiA [2,
Theorem 4.1 ]. If M is a subset of an H∗-algebra A, then we mean by M⊥ the orthogonal complement of M.
For more details on H∗-algebras, see [4, 19] and references cited therein.
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Example 4.2. Let (E, ‖.‖) be an H∗-algebra. We know that Ek (k ∈N) is an H∗-algebra where the linear operations are

considered componentwise and moreover 〈(x1, . . . , xk), (y1, . . . , yk)〉 =
k∑

i=1

〈xi, yi〉, (x1, . . . , xk)∗ = (x∗1, . . . , x
∗

k). Define

a generalized 2-norm on Ek by setting

‖(x1, . . . , xk), (y1, . . . , yk)‖k =
k∑

i=1

|〈xi, yi〉|. Then {(Ek, ‖., .‖k), k ∈ N} is a dual multi-generalized 2-normed space.

Furthermore we can improve the axiom (MG3) as follow:
(MG′3) Let (E, ‖.‖) be a proper commutative H∗-algebra, {ei}i∈I be a maximal family of doubly orthogonal minimal
projections in E, and {(Ek, ‖., .‖k), k ∈ N} be the dual multi-generalized 2-normed space as the above example. For
each x = (x1, . . . , xk−1, xk) and y = (y1, . . . , yk−1, yk) in Ek, if xkyk = 0, then

‖(x1, . . . , xk−1, xk), (y1, . . . , yk−1, yk)‖k = ‖(x1, . . . , xk−1), (y1, . . . , yk−1)‖k−1.

The last equality is true by the definition of ‖., .‖k and the equality |〈xk, yk〉| = tr(xky∗k) = 0. Note that if yk =
∑

i

λiei

(λi ∈ C), then y∗k =
∑

i

λiei. By virtue of this fact one can see that xky∗k = 0 too.

Definition 4.3. Let (E, ‖.‖) be a proper commutative H∗-algebra, {ei}i∈I be a maximal family of doubly orthogonal
minimal projections in E, and x be an arbitrary element in E. The least ideal of E containing x, is called x-ideal of E
and it is denoted by Ix. Now if x =

∑
i

λiei for some λi ∈ C, then clearly Ix generated by ei s’ with nonzero coefficient

which appear in the expansion of x in terms of {ei}i∈I.

Theorem 4.4. Suppose that (E, ‖.‖) is a commutative proper H∗-algebra, {(Ek, ‖., .‖k), k ∈ N} is the dual multi-
generalized 2-normed space as Example 4.2, and k ∈N. Let x = (x1, . . . , xk) and y = (y1, . . . , yk) be in Ek.
(i) If there is at least i ∈ Nk in which xiyi , 0 and Ixi or Iyi is not the whole of E, then there exists k0 ∈ Nk

and a nonzero element z = (z1, . . . , zk0 ) ∈ Ek0 with zi , xi, yi, (i = 1, . . . , k0) and ‖(x1z1, . . . , xkzk), (y1, . . . , yk)‖k =
‖(x1z1, . . . , xk0 zk0 ), (y1, . . . , yk0 )‖k0 = 0 (5).
(ii) If I∑k

i=1 xi
or I∑k

i=1 yi
are not equal whole of E, then we can select equal components for z in the preceding part.

Proof. (i) By (MG1) and (MG′3), there exists k0 ∈Nk such that ‖(x1, . . . , xk0 , . . . , xk),
(y1, . . . , yk0 , . . . , yk)‖k = ‖(x1, . . . , xk0 ), (y1, . . . , yk0 )‖k0 and xiyi , 0 (i = 1, . . . k0). Now if by assumption Ixi

⊥
∪ Iyi

⊥ ,
{0} for some i = 1, . . . k0, then it suffices to take zi any nonzero element of this set, otherwise get zi = 0. Clearly in the
first case |〈xizi, yi〉| = 0, since if zi ∈ Ixi

⊥, then zixi ∈ Ixi ∩ Ixi
⊥ = {0} and if zi ∈ Iyi

⊥ then 〈xizi, yi〉 = 〈xi, yiz∗i 〉 = 0,
the last equality holds by virtue of the fact that Iyi

⊥ is a self adjoint ideal and yiz∗i ∈ Iyi ∩ Iyi
⊥ = {0}. Take

z = (z1, . . . , zk0 ) ∈ Ek0 , by the above results z is nonzero and also fulfills condition (5). Next we are going to show the
zi , xi, yi for i = 1, . . . , k0. This is obvious if zi = 0 (note that xi and yi are nonzero for each i = 1, . . . k0). In the case
that zi is nonzero, first let zi ∈ Ixi

⊥. Then zi , xi and xiyi , 0 implies that yi does not belong to Ixi
⊥, so zi , yi. A

similar argument shows that zi , xi, yi, if zi ∈ Iyi
⊥.

(ii) It is enough to get z,is (i = 1, . . . , k0) equal to an arbitrary element of (I∑k
i=1 xi

)⊥ ∪ (I∑k
i=1 yi

)⊥. Evidently I∑k
i=1 xi

is the
ideal generated by all minimal projections ei’s that appear in the expansion xis’ (i = 1, . . . , k) with nonzero coefficients.
This fact causes that Ixi ⊆ I∑k

i=1 xi
. Thus the result follows by the preceding part.
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[3] M. Açikgöz, ε-Approximation in generalized 2-normed spaces, Matematički Vesnik 61 (2009) 159–163.
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