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Abstract. In this paper, we introduce the concepts of multi-generalized 2-normed space and dual multi-
generalized 2-normed space and we then investigate some results related to them. We also prove that, if
(E, I, .Il) is a generalized 2-normed space, {|l., .llc}xen is a sequence of generalized 2-norms on E* (k € N) such
that for each x, y € E, |lx, ylli = |Ix, y|| and for each k € IN axioms (MG1), (MG2) and (MG4)( (DG4)) of (dual)
multi-generalized 2-normed space are true, then {(EX, 1., lIk), k € N} is a (dual) multi-generalized 2-normed
space. Finally we deal with an application of a dual multi-generalized 2-normed space defined on a proper
commutative H*-algebra.

1. Introduction and Preliminaries

The notion of (dual) multi-normed spaces which are somewhat similar to the operator sequence spaces,
was initiated by H. G. Dales and M. E. Polyakov in [5]. That provides a suitable supply for the study of
multi-normed spaces together with many examples. Some results of (dual) multi-normed spaces are stable
under generalized 2-normed spaces [12]. In this paper we use these properties to discover new ones for
(dual) multi-generalized 2-normed spaces. In [12], Z. Lewandowska introduced a generalization of Gihler
2-normed space [7, 18], under the name of generalized 2-normed space. After that she published some
papers on this issue (e.g. [9-11]). In the following lines, we present some definitions and examples which
will be utilized in the sequel.

Definition 1.1. (see [12]) Let X and Y be linear spaces over the field K (C or R). A function ||., .|| : X X Y — [0, o0)
is called a generalized 2-norm on X X Y if it satisfies the following conditions,

@) llox, yll = llx, ayll = lalllx, yll foralla e Kand x e X,y € Y;

(i) IIx, y1 + vl < lx, yall + [lx, yol| for all x € X, y1, y2 € Y;

(1) lloer + x2, yll < llew, yll + llx2, yll for all x1,x, € X,y € Y.

The pair (X X Y, |., .|l) is called a generalized 2-normed space. If X =Y, then the generalized 2-normed space will be
denoted by (X, |., .I).

Example 1.2. (see [11]) Let X be a real linear space having two seminorms ||.|l; and ||.|l. Then (X |I.,.Il) is a
generalized 2-normed space with the generalized 2-norm defined by ||x, yl| = ||x|l1||yll> where x, y € X.
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A sequence {x,}, in a generalized 2-normed space (X, ||., .|) is said to be a 2-Cauchy sequence if lim |[lx, —

1,11m—00
Xm, ul| = 0forallu € X. Inaddition, {x,}, is called 2-convergent if there exists x € X such that ’}g{}o [, — x, ul| =
0 for all u € X. A generalized 2-normed space is called generalized 2-Banach space if every 2-Cauchy
sequence is 2-convergent. Since Lewandowska up to now there are many mathematicians worked on
generalized 2-normed spaces and developed it in several directions, see [1, 3, 16, 17]) and references cited
therein.
The notion of (dual) multi-normed space first was introduced in [5]. This concept has some connections
with operator spaces and Banach lattices.
Let (E, ||.|l) be a complex normed space. We denote by EF (k € IN), the linear space E& ... ® E. The linear
operations on EF are defined coordinatewise. The zero element of either E or E* is denoted by 0. Following
notations and terminologies of [5], we denote by INj the set {1,...,k} and by ¢, the group of permutations
on k symbols. For g € ¢i, x = (x1,...,x¢) € EFand a = (a1,...,ax) € C* define Ay(x) = (X5, - -, Xo() and
Ma(x) = (a1x1, ..., a5x;). Letn € N, we set xI" = (xq, ..., x¢,x1,..., Xk, ..., X1, ..., %) € E"™, where x["l consists
of n copies of each block (xy, ..., xg).
Take k € IN and let S be a subset of Ni. For (x4, ...,x:) € EX, we set Qs(x1, ..., xx) = (11, -- -, Yyx), where y; = x;
(i¢S)andy; =0 (i €S). Thus Qs is the projection onto the complement of S.

Definition 1.3. (see [5]) Let (E, ||.||) be a complex (respectively, real) normed space, and take n € IN. A multi-norm
of level n on {EK ke N} isa sequence {||.llk} = {ll.ll,, k € IN,} such that ||.|| is a norm on Ekfor each k € IN,, such
that ||x|ly = ||x[| for each x € E (so that ||.||1 is the initial norm), and such that the following axioms (MN1)-(MN4) are
satisfied for each k € N, with k > 2:

(MN1) for each o € ¢y and x € EX 1Al = llxlle;

(MN?2) for each a1, . .., ay € C (respectively, each a, ..., ar € R) and x € EX,

IMa ()l < (max]ai])llxll;
i€Ng

(MNB3) for each x1,...,xx-1 € E, [I(x1, ..., xk—1, O)llk = ll(x1, - .., xk—)llk=1;
(MN4) for each x, ..., xk—1 € E, I(x1, - - ., X1, X))l = NI(x1, - -+, X-1)llk-1-
In this case, {(EX, ||.|l), k € N,,} is a multi-normed space of level n. A multi-norm on {EX, k € N} is a sequence

{11l = {ll-ll, k € N}

such that {||.llk, k € IN,} is a multi-norm of level n for each n € IN. In this case, {(E",||.ll,),n € IN} is a multi-
normed space. Moreover, if axiom (MN4) replaced by the following axiom, then it is called a dual multi-norm and
{(E", |Il.), n € IN} is called a dual multi-normed space.

(DM4) for each xq, ..., X1 € E, [1(x1, ..., X1, Xe—0)llk = (x1, - -+, 22-1) k=1

Example 1.4. (see [5]) Let (E, ||.I|) be a normed space. For each k € IN, put
O N(x, ..., x)ll} = IIQHQIXIIinI,
k

k
(i) e, -, 2R = ) Il
i=1

where x1,...,xy are in E. Then {(E, ||.||]1),k € IN} is a multi-normed space and {(EF, ||.||]%),k € IN} is a dual multi-
normed space.

Suppose that {(E, ||.llx), k € N} is a (dual) multi-normed space. The following property is almost immediate
consequence of the axioms.

k
max|l] < lx,.., x)lle < Yol < kmaxixill (e, ..., 3 € E).
1€N e} 1€Ny

It follows from the above assertion that, if (E, ||.|l;) is a Banach space, then (EX, |Illk) is a Banach space for
each k = 2,3, ..., in this case, {(E, ||.ll), k € N} is called a (dual) multi-Banach space.
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By now, many authors have already contributed to the theoretical development of the theory of multi-
normed spaces (e.g. see [6,13-15]). In the present work we demonstrate the concept of (dual) multi-normed
space in the framework of generalized 2-normed spaces. We also provide many examples together with
an application of a dual multi-generalized 2-normed space defined on a proper commutative H*-algebra
[2,4,8,19]. We will describe H*-algebras in more details in the section 4. This paper is organized as follows:
In section 2, we introduce the concept of (dual) multi-geneneralized 2-normed spaces and describe some
results concerned with these new ones. In section 3, we show that if (E, ||, .]|) is a generalized 2-normed
space, {|l., .llk}ken is a sequence of generalized 2-norms on EX (k € N) such that for each x, y € E llx, ylli = lIx, yll
and for each k € IN axioms (MG1), (MG2) and (MG4)( (DG4)) of (dual) multi-generalized 2-normed space
are true, then {(EX, ||., .Ilk), k € IN} is a (dual) multi-generalized 2-normed space. In section 4, we give an
application of a dual multi-generalized 2-normed space. Throughout this paper, we mean by T and by § the
unit ball and the closed unit ball of C respectively, more precisely T = {@# € C, |a| = 1} and 5 = {a € C, |a < 1}.

2. (Dual) Multi-Generalized 2-Normed Space

In this section we introduce a (dual) multi-generalized 2-normed space and investigate some properties
of it. For this, we need the following definition.

Definition 2.1. Let (E, ||., .||) be a generalized 2-normed space (over the field K). A special generalized 2-norm on
{EX, k € IN} is a sequence {||., .|l}xen such that for each k € N, ||., .|lx is a generalized 2-norm on EX, ||x, ylli = |Ix, yl|
for each x,y € E and the following axioms (MG1)-(MG3) are satisfied for each k € N with k > 2:

(MG1) for each o € ¢y and x,y € EX, |As(x), AWk = lIx, yllk;

(MG2) for each avy, ..., o € Kand x, y € E¥, My (x), yll = llx, Ma(y)ll < (maxa;Dllx, yll;

(MGS3) for each x1, ..., Xk-1,Y1,--., Yx—1 € E,
1Cx, - vy Xk-1,0), (Y1, - -0 Y1, Olle = 1Cx1, -+ o, Xk-1), (Y1, - -0 Y1) l—1-

Now consider two following more axioms.
(MGH4) for each x1, ..., xk-1,Y1,---, Yi—1 € E,

Cer, + v vy X1, Xk-1), (Y1) -+ Vi1, V=Dl = 1, - oo, X)), (Y1, - -0 eIt
(DG4) for each x1, ..., Xk-1,Y1,.- ., Yk-1 € E,
Cer ooy Xkm1, Xk-1), (V1) -+ Yiets V=D = 1Ge, -2, 2%%21), (Y, - -0 Yket)lli-1

A special generalized 2-norm is said to be a (dual) multi-generalized 2-norm if it is equipped with the axiom (MG4)
((DG4)). In this case, {(E, |I., .lt), k € N} is called a (dual) multi-generalized 2-normed space.

We give the definition in the case where the index set is IN. If the index set is Ny (k € IN), then special, multi-
and dual multi-generalized 2-normed spaces are of level k.

Remark 2.2. It is readily verified from the axioms (MG2) and (MG3), that

“(xl/ M /xk/ O)/ (]/1/ crcy yk/ ]/k+1)||k+1 = ”(xl/ e /xk)/ (]/1/ MR ]/k)“k/
where x1, ..., X, Y1, -, Yikr1 € E. Indeed, we have

NCxt, ..ok, 0), (Y1, Y Vi DIk = 1M, 1001, -+, X6, 0), (Y1, - -+ Vi Vi)l k1
= |(x1,..., %, 0), Mu,.. 1,001, - - - Yir Yer)lles1
= @, ..o x%,0), (1, - - Vi Ol
= N, x0), (Y1, - Yo llk-
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Example 2.3. Let (E,||., .|[) be a non-zero generalized 2-normed space. For each k € IN, set
(Z) ”(xl/ .o /xk)/ (ylr Ry ]/k)”;l( = max{”xll ylllr ey ||xkl yk”}/

k
(i) s, (- I = )l will,

1
where (x1, ..., %), (Y1, - .., yk) € EX. Then, {(EX, |I., II}), k € N} is a multi-generalized 2-normed space and {(E*, ||., .|I?),
k € IN} is a dual multi-generalized 2-normed space.

Example 2.4. Let (E, ||.|[) be an H*-algebra (for the definition see section 4). Define a generalized 2-norm on EF
k

(k € IN) by setting ||(x1,..., %), (W1, -, ylle = lexiyill, then {(EX |-, .llk), k € N} is a dual multi-generalized
i=1
2-normed space.

Example 2.5. (see [5]) Let {(E%,||., %), k € N}, be a family of (dual) multi-generalized 2-normed spaces. For each
ke Nandxy,..., %, y1,---, Yk € E, define

“(xl/ “e ,Xk), (ylr ey yk)”k = Sup”(xlr v rxk)r (yll LR yk)”?

Then {(EX, |I., Il), k € N} is a (dual) multi-generalized 2-normed space, too.

Inspired by the examples of [5] we give some examples show that axioms (MG1)-(MG4) ( -(DG4)) are
independent of each other.

Example 2.6. Let (E, ||., .||) be a non-zero generalized 2-normed space. Set ||x, yll1 = ||x, yl| (x, y € E).

(I) For each k € N — {1}, set ||(x1,...,xx), (1, -, yo)llk = max{llxl,y1||,Hx2§—y2” M}, where (x1,...,Xy),
(y1,---,yx) € EX. Then it is immediately checked that ||., || is a generalized 2-norm on E* and that {., |l}xen
satisfies (MG2),(MG3) and (MG4). However, take x,y € E with ||x,yl| = 1. Then ||(2x,3x), 2y, 4y)ll. = 6, but
13x, 2x), (4y, 2y)|l2 = 12. Thus ||., .|l does not satisfy axiom (MG1).

(1) Set |I(x1,x2), (Y1, y2)ll2 = max{llx1, yall, 2llx2, y2ll}, where (x1,x2), (Y1, y2) € E%. Then it is immediately checked
that ||., .|l is a generalized 2-norm on E? and that ||., .||2 satisfies (MG2),(MG3) and (DG4). However, we claim
that ||., ||l does not satisfy axiom (MG1). For this, similar previous part take x,y € E with ||x,yll = 1. Then
l1(2x, 3x), (2y, 4y)lla = 24, but ||(3x, 2x), (4y, 2y)lla = 12, and so ||., ||, does not satisfy axiom (MG1).

Jeeoy

Example 2.7. (II) Let E = R and k € IN. Define ||(x1,...,%), (V1, ..., ylle = max{l(x; — xj)(yi — yj)l, i,j €
IN(U{0}, x0, yo = O}, wherex1, ..., Xk, Y1, .., Y € E. We observe that {(E5 1., o), k € N}isa sequence of generalized
2-normed spaces, and (MG1), (MG3) and (MGA4) are true. However we claim that (MG2) does not hold, because
obviously ||Ma(x), yllk # llx, Ma(W)llk (x, y € EX, a € R¥) and moreover, 4 = ||(1,-1), (=1, DIl £ I(1,1), (=1, )], = 1
giving the claim.

(IV) Let (E, |l., .Il) be a non-zero complex generalized 2-normed space. For eachk € N, x1,...,xx,y1,...,yx € E,
define ||(x1, ..., xx), (Y1, ..., yollk = max{llnix;, ejyill, i,j € N, n;, &; € T}. Clearly, ||., .|l is a generalized 2-norm
on EF and axioms (MG1),(MG3) and (MG4) hold. Also [|[Ma(x), ylle, llx, Ma(y)llk < (TEH%XWA)HX/ Yllg for each

1€Nk

a=(a,...,a) € Ckand X,y € E* but evidently [|My(x), Ylle # 11X, Ma(y)|lx-
(V) Let (E, |l., -Il) be a non-zero generalized 2-normed space. For each k € N, x1,..., X, 1, ..., Yk € E, define

k
G, - xk), (Y, - Yol = Sup{l;lel&i(“;’?jxj/ yill, m, ...,k €S}
j=

Clearly, ||., .|| is a generalized 2-norm on EF and (MG1), (MG3) and (DG4) hold. For (DG4), we have
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1Cer, - v vy Xk, Xkm1), (Y1) -+ Yret, V=Dl
= Sup{gll\ilixﬂmﬂ + o Qo1 X1 + NeXe—1, Yill, M1, -+ k=1, 1k € 5}
1€lNg—1

Nk-1 + Nk c

2 Sl

k-1 + Tk
= sup{max|jmx; +---+ Te-1 7 T
€Ny 2

= 1o, 2x%-1), (W1, -0 ket

(Zxk—l)/ yi”/ My«

Further for nonzero o = (a1, ..., ax) € ck,

k
1
mllMa(X1,..-,xk),(yl,-..,yk)llk = maxal SUP{I;EH%?“ZQ]'T]]'xjryi||1T]11--'rT]kGS}
€N i€Ng j=1

k
= sup{gr;&fllzlﬂjxj, vill, 3 €8, j € Ny}
=

= NCer - x0), (Wi, - vl

where 17;. = (j € Ng). This equality gives us the second part of (MG2). Similarly one can quickly checked

1
1 o
max|a;] njej
i€Ng
that

1Cx1, ... x0), Moy, - yille < gg}glailll(xb o X0, (W - Yl

but trivially |Ma(x1, - .., %), W1, - - - Yille # 1Ge1, -« ., xk), Ma(y1, - - -, yio)llk and so (MG2) does not hold in general.
(VI) Suppose that E = C and ||z1,2|| = 2|z122| (21,22 € E). Then (E,||.,.ll) is a generalized 2-normed space.
Assume that ||(zq,22), (w1, w2)|l, = 2|lz1wy + zows|, where (zq,22), (w1, ws) € E%. It is a generalized 2-norm on
E? such that satisfies in the axioms (MG1),(MG3), (DG4) and for each (a1, a2) € C?, |IMa(z1,22), (w1, wy)ll, =
1(z1, z2), Ma(w1, wo)llo.  However the second part of axiom (MG2) does not hold. For instance, we have 4 =

(L, 2), (1, =Dz £ (1, 1), (1, =Dll2 = 2 V2.

Example 2.8. (VII)LetE = C, ||x, yll = [xyland [|(x1,x2), (y1, y2)ll = $(x1y1l+|x2y2l), wherex, y, x1, %2, y1, y2 € E.
It is not hard to see that (E,||.,.|l) and (E%,|\., .|l2) are generalized 2-normed spaces and (MG1), (MG2), (MG4) are
true but (MGS3) is not.

(VIIT) Suppose that E = R? and ||(x1, y1), (X2, y2)ll = |x1y2 — yaxal, then (E,||., .l)) is a generalized 2-normed space
(see [18]). Define

1((x1, y1), (x2, y2)), ((z1, w1), (22, w2))ll2 = 2 max{||(x1, y1), (z1, w)ll, I(x2, y2), (z2, W)}

We observe that (E2,||., .|l2) is a generalized 2-normed space and axioms (MG1), (MG2) are true. The calculation
[1(Cx1, y1), (x1, ¥1)), ((z1, w1), (z1, w))ll2 = 2MI(x1, y1), (z1, w)Il = 112(x1, y1), (z1, w1)|| shows that (DG4) is also valid.
On the other hand (MG3) does not hold, since ||((1,1), (0,0)), ((-1,1),(0,0))|l> = 4 but ||(1,1), (=1, 1)|| = 2.

Example 2.9. (IX) Let E = C, |lx, yll = |xyl and ||(x1,x2), (y1, y2)ll2 = [x1yal + [xayal, where x,y,x1,%2, y1,y2 € E.
It is immediately verified that (E, ||., .|[) and (2, I., -II2) are generalized 2-normed spaces and (MG1), (MG2), (MG3)
are true but (MG4) is not.

k

(X)Let E=R. Fork e N, and x1,...,xx,Y1,...,Yx € E, define [|(x1,...,x¢), (W1, .-, y)llk = (le,-y,-|2)%. Then
i=1

{Il., lle, k € IN} is a special generalized 2-norm on {EF, k € IN}, but both of axioms (MG4) and (DG4) are not true.

The four presented examples in the above are just in level 2. In the following lemma we assume (E, |., .||)
is a generalized 2-normed space and {(E5 11, 1), k € N} is a special generalized 2-normed space with
llx, ylli = llx, yl| for all x, y € E. The proof is trivial and so is omitted (see [5, pp. 44-47 ]).
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Lemma 2.10. Let jk € N,x1,...,Xj15,Y1,..., Yjsk € Eand ..., 0, &1, ..., & € T. Then
@ Nuxr, o mexi), (E1yas - -0 Exyille = 1, - xi), (Y, - - - Yillk

@) NG, x), Wy - Yl S NG, - X X)W - -0 Yo Yier) kst -

@) 1, s X, X1, e, Xjak), Y1s -+ Vi Yirts oo Yielliok < NGty oo, %), (Y, - yp)Il+
NCe1, -0 Xjak), (Yjwrs -« oo Yjri)lk-

k
i L Yill < < L, Vil < ir Yill-
(i) maxtl, yill < [1Gev, - 26, (Y, Ylle < ; i, yill < kmaxdi, yil
The last part of the above lemma guides us to the the following result.

Corollary 2.11. Suppose that {||., .|l}ken is a family of (dual) multi-generalized 2-norms on {EK, k € N}, and (E, ||., .Ih)
is a generalized 2-Banach space. Then for each k € IN, (E5 1., o) is a generalized 2-Banach space, too.
In this case, {(EX, |I., .|lc), k € N} is called a (dual) multi-generalized 2-Banach space.

Lemma 2.12. Let {(E, |, .llk), k € N} be a multi-generalized 2-normed space and x1, . .., X—2,
X, X", y1,.. ., Yk=2, Y,y bein E. Then

”(X/ x,/ x”)/ (Y/ y,/ ]/")Hk < “(X/ x,/ XN), ()// y,/ y,)”k + ||(X/ x,/ x”)/ (Y/ y”/ y”)”k/
where X = x1,...,Xk—2, Y = Y1, ..., Yk—2-
Proof. Applying Lemma 2.10 and axiom (MG1), we deduce that

X, ", x™), (v, vl X, "), (Y, y )1 + lIx”, |l
X, ", x), Gy, )l + 117, X, ), (v, Y, )l
X, x), Gy, )l + 1K X, x7), (Y, v, vk,

Therefore we get the desired result. [J

INIA

The following lemma is a version of [5, Lemma 2.16] in the framework of multi-generalized 2-normed
spaces.

Lemma 2.13. Let {(EX, |I., .llk), k € N} be a multi-generalized 2-normed space, x = (x1,...,xx) and y = (Y1, ..., Yx)
be in EX, x11, Xisa, Yir1, Yks2 bein Eand a,b,p,q € [0,1] witha+ b =1,p+q = 1. Then

“(xr aXpey1 + DXy, AXpy1 + bxk+2)/ (y, PYk+1 t+ GYk+2, PYk+1 + ‘ﬂ/k+2)”k+2
<X, (Y Vs, Yie)llks2 + 11X, (U, Vs, Yis2)llks2,
where X = (X1, ..., Xk42)-

Proof. Wehave (x, axys1+bXps2, axkr1+bXk12) = a*(X, Xir1, Xke1) Hab(X, Xir1, Xks2) Hab(X, Xir2, Xks1) HD? (X, Xis2, Xir2)-
Similar relation holds when x, xy.1, Xx4+2, 4, b substitute with y, yi.1, Yks2, P, g, respectively. Applying Lem-
mata 2.10 and 2.12 and also axiom (MG1), it follows that

10, aXs1 + bXr2, AXk1 + DXki2), (Y, PYkst + qYke2, PYre1 + GYks2)llkr2

< (@ + DY, ka1, Xis2), (Y, PYker + GYkr2, PYiar + GYks2)llis2

= 11X, P*(Y, Yk, Yier) + PACY, Yierts Yiw2) + PAY, Yiwzs Yier) + G, Yoz, Yir2) a2

< PUX (Y, o1, Vs )llks2 + 2090% (Y, Vit Yier)llis2

+2pq|1X, (Y, Yisz, Yis2llks2 + 40X, (Y, Yirzs Yir2) kw2

= (0" + 20X, (U, Yeer, YirD ez + (@ + 20DN0X, (Y, Yir2, Yies2)llks2

< (@ + 92X ) Yirr, Yir)lles2 + 1X (s Vs, Yes2)llks2)

=IX, (Y, Yi+1, Yis )2 + 11X (W, Yir2, Y22

Note that the the second inequality in the above relation holds by Lemma 2.12. So the proof is complete. [J
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By slightly modification in the proof of [5, Lemmata 2.19, 2.22], and using Lemma 2.10, one gets the
following proposition.

Proposition 2.14. Let {(EX, ||, .Ilk), k € IN} be a dual multi-generalized 2-normed space and k' and n be arbitrary
fixed elements in IN. Then for each x1,..., Xirwn, Y1, ---, Yr+1 € E, we have

@) N1, -y X, X1 + X2 + oo+ Xerwn), W1, -, Yo Yies) e+
SN, oo X Xwts oo Xirwn), Y1, -+ Yios Yiewds - 0 Yios)lliesn
@) NG, vy Xe—2, Xo—1 + Xk), (Y1, -+ Yo—2, Y1 + Vi)l
< N(ea, - Xp—2, Xpr—1, X ), (@Y1, - - G2V -2, Yor—1, Y-l ke
1, s Xe—2, X1, Xk), By, - - - B2V -2, Yir, Yl

where a;, Bi = 0and a; + B; = 1, for each i € Ny _».
(i1i) sup{l[(E1x1 + Eoxp + oo+ Ep i), (myr + -+ e, 1, Sy - e € T

< ”(xl/' . -/xk')/ (]/1/- . '/yl)”k’ + “(xl/- . -/xk')/ (y2/- . '/yZ)”k’ +...+ ||(x1/ .. .,Xk/), (yk'/' . -/yk')”k"

k
() lerx, ..., o), (Y, ..., Pk = Zlailllx, yll, where ay,...,ap € Cand x,y € E.
i=1

3. Main Result

We are now in a position to state the main result of this note which is a version of [5, Proposition 2.7] in
the framework of (dual) multi-generalized 2-normed spaces. We bring this result in two cases multi- and
dual multi-generalized 2-normed spaces separately, because of avoiding long proof.

Theorem 3.1. Let (E, ||.,.Il) be a generalized 2-normed space. Let {||., |lilken be a sequence such that ||., .|| is a
generalized 2-norm on Ekfor eachk € Nand ||x, ylli = llx, yll for all x, y € E. Also axioms (MG1), (MG2) and (MG4)
are satisfied for each k € IN. Then {||., .|lx}xen is a multi-generalized 2-norm on {EK, k € INJ.

Proof. By Definition 2.1, it is enough to show that axiom (MG3) holds. For, letk € IN, x = (x1,...,x) and
y=i,..., ¥ bein EF such that ||x, Yl =1. Set a = [|(x1, ..., %, 0), (Y1, ..., Yk, O)lle+1, so that @ < 1. Indeed,
by axioms (MG2) and (MG4), we have

a IMa,.. 1,001, - - X X6), M1, 1,001, - - 0 Yo Yillest

”(xl/ sy xk/ xk)l (]/1/ sy }/k/ ]/k)”k+1
ICer, - oo k), (Y1, - il
= 1.
Let 1 be any arbitrary fixed element in IN, take x"+2], yl"+2l ¢ E(+2k by (MG1), (MG4), [|x"+2, y 2| oy =
llx, yllk =1 (1). For1 <i < n + 2,let B;be the subset {(i—1)k+1, ..., ik} of N(,.2)x, and let Qp, be a projection onto

the complement of B;. We thus find that ||Qg, (x"*), Qg (" *ll(s2yk = 1Q8,8, ("), Q.0 (Y2 ns2k
(2), by (MG2). Applying again axioms (MG1) and (MG4) we deduce that (2) is equal to a. Further,

n+2 n+2
ZQB,.(x[””]) = (n+1)x"*? and ZQBj(y["+2]) = (n + 1)y and it follows from (1) that
i=1 =1
(n+1)* (n + 1)+, 20 o
= 6n+ D2, (1 + 1y o

n+2

<Y IQs ), Qg () oy

i,j=1
= (n+2)>a

IA
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Therefore o > &

2 +2)2 Letting n tends to infinity, we obtain that « = 1 and our goal is achieved. O

Theorem 3.2. Let (E, ||., .||) be a generalized 2-normed space, {||., .|lk}kew be a sequence such that ||., .||, be a generalized
2-norm on EF foreach k € IN and ||x, yll = ||x, yl| for each x, y € E. Also (MG1),(MG2) and (DG4) are satisfied for
each k € N. Then {||., .|lx}xen is a dual multi-generalized 2-norm on {EF, k € IN}.

Proof. Letk € N, and x = (x1,..., %),y = (y1,---, Yx) be in E*. For convenience, by p we denote the real
number ||(x1,...,xk), (Y1, ..., yk)llk and by a the real number ||(x1, ..., %, 0), (1, ..., Y, O)llk+1. If p = 0, then

0<a = |1, .., x%0), (Y1, Yo Ol
IMq,... 1,001, - -0 Xk, X6), M, 1,001, - - 0 Yo Vi)l

< “(xl/- . '/xerk)r (]/1/- s Yks yk)||k+1 (MGZ)
= G-, 2x0), (Y1, - -, Yl (DG4)
< 2, xk0), (Y- vl (MG2)

28 =0.

It forces that @« = 0 too. Now assume that § is nonzero and 7 is an arbitrary fixed element of IN, then
x2'1, 412" are in E?F and so by axioms (MG1) and (DG4), |[x1?'], y12'1]|any = 2"8 (3). Fori=1,...,2", let B; be
the subset {(i — 1)k + 1, ..., ik} of Ny, and let Qp, be a projection onto the complement of B;. From (MG2),
it yields that [|Qp, (x"), Qg (¥ Dll2nk = 1Qs,us,(x*7), Qp,us, (¥ D¢ @)k (4).

Using (MG1), (MG2) and (DG4) we deduce that the equahty (4) is less than or equal to 2"a. Further,
on

ZQ (2 = 2" = 1)x?'T and ZQB (') = (2" — 1)y1*" and it follows from (3) that

i=1 j=1

(2" = 2],y oy

@' -1? = 275
12" - D, 2" = 1)y | gy
= 25
2 2
1" Qs (2, Y Qb (2 Mo
P =1
= 57
o
Z 1Qs, (x*'1), QB,-(]/[Zn])H(zn)k
BT
< 2
< M2 "a
< g
B (2")20(
5
1)°B

Therefore o >

(2n)2 . Since this is true for any #, so letting n — oo, then a > .

For the reverse direction assume that x = (x1,...,%,0) and y = (y1, ..., ¥k, 0). Then |[x2"], y2'||pu¢s1) = 2"
Fori=1,...,2" letC; = {i(k+1)—k,...,i(k+1)} and let Qc, be a projection onto the complement of C;. Next,
put

X1 =1, Xk, X1,-+-,%,0,...,0),

Y1=(yl,...,yk,...,yl,...,yk, ,...,0),

where the number of repetitions of each item x; and y;, i = 1,...,k is 2" — 2 and also zero has repeated
(2" = 2) + 2(k + 1) times in each of X; and Y73.
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Xo=(xX1,--, Xk, ,X1,-+-,%,0,...,0),

Yz = (y1,...,yk,...,yl,...,yk,O,...,O),

where the number of repetitions of each item x; and y;, i = 1,...,k is 2" — 2 and also zero has repeated 2k
times in each of X, and Y>.

Finally, sety = (1,...,1,0,...,0), where 1 has repeated (2" — 2)k times and zero has repeated 2k times. Then

1Qc, 1), Qc, ¥ sty = 1Qc,ue, ), Qo W Nllares)
= |IX1, Yillrk+1)
1X2, Yallzk
= My, My, y P
< 2"8. (by(MG2))
2 2
It is easily verified that ZQQ (2 = 2" = 1)x?'T and ZQCj(y[ZH]) = (2" - 1)yl 1t follows that
i-1 =1

12" = 1)1, 2" = 1)y s ey

om_ 1 2 _
( ) i
2’1 21’1
IIZ‘QC,.(X[2 b, Z‘QC,-(y[2 DIl gesny
i=1 j=1
- 2"
27!
3 11Qc (2, Qc, (2 Doy
ij=1
<
2"
n\2nn
. @2B
2"y
Hence, a < %‘B Letting n — oo, we conclude that @ < . Therefore & = § and so we get our desired
result. [J

4. Application

In this section we give an application of multi-generalized 2-normed spaces. For this purpose, it is
convenient to make a few observation about H*-algebras (see [2]).

Definition 4.1. An H*-algebra, introduced by W. Ambrose [2] in the associative case, is a Banach algebra A, satisfying
the following conditions:

(i) A is itself a Hilbert space under an inner product (., .);

(ii) For each a in A there is an element a* in A, the so-called adjoint of a, such that we have both {(ab,c) = (b,a"c)
and (ab,c) = (a,cb*) for all b,c € A. Recall that Ag = {a € A, aA = {0}} = {a € A: Aa = {0}} is called the
annihilator ideal of A. A proper H*-algebra is an H*-algebra with zero annihilator ideal. Ambrose proved that an
Hr-algebra is proper if and only if every element has a unique adjoint. The trace-class ©(A) of A is defined by the set
T(A) = {ab, a,b € A}. The trace functional tr on T(A) is defined by tr(ab) = (a, b*) = (b,a*) = tr(ba) for eacha,b € A,
in particular tr(aa*) = (a,a) = |lal/?, for all a € A. A nonzero element e € A is called a projection, if it is self-adjoint
and idempotent. In addition, if eAe = Ce, then it is called a minimal projection. For example each simple H*-algebra
(an H*-algebra without nontrivial closed two-sided ideals) contains minimal projections. Two idempotents e and e’
are doubly orthogonal if (e,e’) = 0 and ee’ = e’e = 0. Suppose that e is a minimal projection in a commutative, proper
Hr-algebra A, then Ae = eAe = Ce. Recall that if {e;}ics is a maximal family of doubly orthogonal minimal projections
in a proper H*-algebra A, then A is the direct sum of the minimal left ideals Ae; or the minimal right ideals e;A [2,
Theorem 4.1 |. If M is a subset of an H*-algebra A, then we mean by M* the orthogonal complement of M.
For more details on H*-algebras, see [4, 19] and references cited therein.
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Example 4.2. Let (E, |I.|[) be an H*-algebra. We know that EF (k € IN) is an H*-algebra where the linear operations are
k

considered componentwise and moreover {(x1,...,xx), (Y1,-.., Yk)) = Z(x,-, yi), (X1, x0)" = (x,...,x}). Define
i=1
a generalized 2-norm on EX by setting

k

1, o x), W1, vl = Zl(x,-, yi)l. Then {(E5 11, o), k € NY is a dual multi-generalized 2-normed space.
i=1

Furthermore we can improve the axiom (MG3) as follow:

(MG'3) Let (E, |I.Il) be a proper commutative H*-algebra, {e;}ic1 be a maximal family of doubly orthogonal minimal

projections in E, and {(E5II., o), k € N} be the dual multi-generalized 2-normed space as the above example. For

each x = (x1,..., X1, X)) and y = (Y1, ..., Yk=1, Yk) in EX, if ey = 0, then

NGt - - X1, x0), (W, - - - Yiet, Yille = (1, -+ o, 1), (W - - Vi)l li—1-
The last equality is true by the definition of |, .l and the equality |(xx, yx)| = tr(xxy;) = 0. Note that if yy = Z)\iei

(A; € C), then y; = inei. By virtue of this fact one can see that xy; = 0 too.
i

Definition 4.3. Let (E,||.||) be a proper commutative H*-algebra, {e;}ie; be a maximal family of doubly orthogonal
minimal projections in E, and x be an arbitrary element in E. The least ideal of E containing x, is called x-ideal of E

and it is denoted by I,. Now if x = ZA,-ei for some A; € C, then clearly I, generated by e; s” with nonzero coefficient
i
which appear in the expansion of x in terms of {e;}icr.

Theorem 4.4. Suppose that (E,||.|[) is a commutative proper H*-algebra, {(E5 L., o), k € N} is the dual multi-
generalized 2-normed space as Example 4.2, and k € N. Let x = (x1,...,xx) and y = (y1, ..., yx) be in Ek.

(i) If there is at least i € Ny in which x;y; # 0 and I, or I, is not the whole of E, then there exists ko € INi
and a nonzero element z = (z1,...,2x,) € ERo with z; # x;, vi, (i =1,...,ko) and ||(x1z1, - .., Xkzi), W1, - - -, Yolle =
l(x1z1, - -, Xk 2k ), (Y1, - - -5 Yio)llky = 0 (5)-

(i) If Iyr . orIg+  arenot equal whole of E, then we can select equal components for z in the preceding part.

Proof. (i) By (MG1) and (MG’3), there exists ko € INy such that ||(x1, ..., Xk, - - -, Xk),

W1, Yior e Yl = 101, - xk0), Yy - -+, Yk, and xiy; # 0 (i = 1,.. . . ko). Now if by assumption I, UI%l *
{0} for some i =1, ... ko, then it suffices to take z; any nonzero element of this set, otherwise get z; = 0. Clearly in the
first case [(xizi, yi)| = 0, since if z; € L™, then zix; € I, N I, = = {0} and if z; € I,,;* then (x;z;, yi) = (xi, yiz}) = 0,
the last equality holds by virtue of the fact that 1,* is a self adjoint ideal and yiz; € I, N 1,~ = {0}. Take
z=(z1,...,2k) € EX, by the above results z is nonzero and also fulfills condition (5). Next we are going to show the
zi £ X, yifori=1,...,ko. This is obvious if z; = 0 (note that x; and y; are nonzero for eachi =1, ...koy). In the case
that z; is nonzero, first let z; € I,*. Then z; # x; and x;y; # 0 implies that y; does not belong to I,*, so z; # yi. A
similar argument shows that z; # x;,y;, if z; € Iyi*.

(i) It is enough to get zis (i = 1,..., ko) equal to an arbitrary element of (IZL x,»)l U (IZL yl_)i. Evidently IZL N 18 the
ideal generated by all minimal projections e;’s that appear in the expansion x;s” (i = 1, ..., k) with nonzero coefficients.
This fact causes that I, € Iy« .. Thus the result follows by the preceding part. [
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