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Semi-Quasitriangularity of Toeplitz Operators
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*Department of Mathematics, Changwon National University, Changwon 641-773, Korea

Abstract. In this paper we give a necessary and sufficient condition, in terms of the coefficients of ¢,

in order for the Toeplitz operator T, to be semi-quasitriangular when ¢ is a trigonometric polynomial of
degree two and has real coefficients.

1. Introduction

Let B(H) denote the algebra of bounded linear operators on a complex separable Hilbert space H. The
Hilbert space L*(T), where T denotes the unit circle in the complex plane C, has a canonical orthonormal
basis given by the trigonometric functions e,(z) = z" (n € Z), and the Hardy space H?*(T) is the closed linear

span of {e, : n=0,1,---}. If P denotes the projection operator L?(T) — H?(T), then for every ¢ € L*(T), the
operator T, on H*(T) defined by

T,9 = P(pg) forall g€ HX(T)

is called the Toeplitz operator with symbol ¢. It is familiar that the matrix representation of T, with respect to
the basis {e, : n=0,1,2,---} is a Toeplitz matrix (A;;). In this case, A;; = a;_j, where @(0) = Yoo a,¢"? is the
Fourier expansion of ¢. In this paper, we concentrate a Toeplitz operator T, with trigonometric polynomial
symbol ¢ of the form ¢(0) = YN a,e: its matrix representation is the following.

apg Aa-1 ... oo A-N
ay ap a_q a_N

ai ap a_q
@
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On the other hand, from the spectral property of Toeplitz operators with continuous symbols (cf. [7]), we
can see that if p(0) = YN a,e™ is a trigonometric polynomial then we have

0.(Ty) = p(T) and ind (Ty, — A) = —wn (p — A) foreach A € C\ 0,(T)), 2)

where 0,(-) denotes the essential spectrum, ind (-) denotes the (Fredholm) index of the Fredholm operator
and wn ¢ denotes the winding number of ¢ with respect to 0. We recall ([8, Definition 4.8]) that that an
operator T € B(H) is called quasitriangular if there exists an increasing sequence {P,} of projections of finite
rank in B(H) that converges strongly to the identity and satisfies ||(I — P,)TP,|| — 0. The quasitriangularity
can be rewritten in terms of the “spectral picture” of the operator T, denoted SP(T), which consists of the
set o.(T), the collection of holes and pseudoholes in ¢.(T), and the indices associated with these holes and
pseudoholes. By a theorem of Apostol, Foias, and Voiculescu (in brief, AFV theorem; cf. [8, Theorem 1.31]),
T is quasitriangular if and only if SP(T) contains no hole or pseudohole with a negative Fredholm index
number.

Definition 1.1. (cf. [5]) An operator T € B(H) is called semi-quasitriangular if either T or T* is quasitriangular.

If ¢ is a trigonometric polynomial then the semi-quasitriangularity of T, can be determined by a
geometrical character of the symbol ¢.

Proposition 1.2. If T, is a Toeplitz operator with trigonometric polynomial symbol ¢ then the following are equiva-
lent:

(i) T, is semi-quasitriangular.
(i) wn (@ — A)wn (@ — p) = 0 for each pair A, u € C \ o(T).

Proof. Since, evidently, SP(T,) has no pseudoholes it follows from the AFV theorem that T, is semi-
quasitriangular if and only if ind (T, — A) ind (T, — ) > 0 for each pair A, u € C\ 0.(Ty). Thus the desired
equivalence follows from the second equality in (2). O

We would remark that the semi-quasitriangularity is related to the spectral mapping theorem for the
Weyl spectrum (the Weyl spectrum of T € B(H) means the complement, in C, of the set of all complex
numbers A which T — A is Fredholm of index zero.) In fact, from [4, Theorem 5], we have that the semi-
quasitriangularity of T, is equivalent to the condition that the spectral mapping theorem holds for w(T,),
the Weyl spectrum of T,:

paw(Ty) = wp(Ty) for each polynomial p.

Thus this equivalence says that if T, is semi-quasitriangular then to find the Weyl spectrum of p(T,), it
suffices to determine the following set:

P((P(T) U {A €C\ () : wn(p-A)# 0})

On the other hand we say that “Weyl’s theorem holds” for T € B(H) when the complement in the spectrum
of the Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues of finite
multiplicity (cf. [4]). Then if ¢ is a trigonometric polynomial and if f is an analytic function defined on
some open set containing o(T,) then it follows from Proposition 1.2 and [2, Lemma 3.1; Theorem 3.7] that
Weyl’s theorem holds for f(T,) whenever T,, is semi-quasitriangular. In fact, if T, is a Toeplitz operator
with quasicontinuous symbol then T, is semi-quasitriangular if and only if Weyl’s theorem holds for f(T,)

(cf. [5]).

The following notion was introduced by W.Y. Lee [6] in an operator theory seminar at Seoul National
University:
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Definition 1.3. A trigonometric polynomial ¢ is said to be pure if holes of @(T) have all non-negative (or all
non-positive) winding numbers.

From Proposition 1.2, we can see that if p(8) = Y a,e"? and if T, is a Toeplitz operator with symbol
@ then

T, is semi-quasitriangular < ¢ is pure. 3)

In [2], the following problem was raised.

Problem 1.4. If ¢ is a trigonometric polynomial, find necessary and sufficient conditions, in terms of the coefficients
of @, in order for T, to be semi-quasitriangular.

In this paper, we give a solution to the above problem in the case that ¢ is a trigonometric polynomial
of degree two and has real coefficients:

p(0) = a_2e7 2% +a_1e70 + 3160 + 1,6*° (a1, a0,0_1,0_5 € R).

Since the semi-quasitriangularity of the Toeplitz operator T, does not depend on the translation, we may
assume that ag = 0. For brevity, in the sequel, we use the following notations: If p(0) = a_se %% + a_je" +
1€ + a,e%9 (ay,a2,a_1,a_, € R), define

Li=lai+aul, M:=lay+a|, N:=ln—a_q|, P:=la—a;

cono 1 if (@ —a®,)a3-a*)>0
BTN i@ - -a2)) <.

Then our main result can be stated as follows:

Theorem 1.5. If

p(0) = a_ze‘Zie + a_le‘ig + aleie + azem (a1,a2,a_1,a_5 € R), 4)
then T, is semi-quasitriangular if and only if
L=0orN >2P if L > 4M,

PL> WM( VNZ 1 322 —N) ifL <4M, N > 2P,

PL < M(ZP + (sgn (p)N) if L <4M, N < 2P.

This paper consists of three sections. In §2, we consider the case that |a;| = |a_3|. In §3, we give a proof
of Theorem 1.5.

2. The Case that |a,| = |a_,|

In [2], it is shown that the cases that |a;| = |a_;| are extremal among all possibilities for hyponormality
of T,. In this section we consider the semi-quasitriangularity of T, with symbol ¢ defined as in (4) when
laz| = la_al.

We begin with:
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Lemma 2.1. Let ¢(0) = (x(@), y(@)) (0 < 6 < 2a) be a continuous curve with @(0) = @(2a). Suppose @(0O) satisfies
the following properties:

(i) x(0) is strictly increasing (or strictly decreasing) in (0, o) and is symmetric with respect to the line 6 = «.
(ii) y(0) = y(a) = y(2a) = 0 and y(0) is non-constant and anti-symmetric with respect to the line 6 = a.
Then we have that @ is pure if and only if y(0) is non-negative or non-positive in (0, v).

Proof. Observe that the curve of ¢(0) is symmetric with respect to the line y = 0. On the other hand, ¢ is not
pure if and only if ¢ has at least two holes of winding numbers with different signs. But by the conditions
(i) and (ii), @ has at least two holes of winding numbers with different signs if and only if y(0) has at least
two values with different signs in (0, ). O

We then have:

Theorem 2.2. Let ¢ be defined as in (4). Then we have:
(i) Ifay = a_y, then Ty, is semi-quasitriangular.
(ii) If ay = —a_y, then T, is semi-quasitriangular if and only if
either a1 +a_1 =0 or 2a, —a_y| <o —a_q].
(iti) Ifay = —a_y, then T, is semi-quasitriangular.
Proof. Suppose that p(0) = a_2e™%% + a_1e7" + a1 + a,¢*9. In view of (3), it suffices to consider the purity

of ¢.
(i) Letap, = a_,. Then

@(0) = 4a,c0s°0 + (ay +a_1)cosO — 2a, + i(a; —a_1)sin® (0 < 6 < 2m).

If a1 = +a_; then @ represents a segment or a parabola, so that ¢(T) has no holes. If a; # +a_;, then a
straightforward calculation shows that ¢ is simple in (0,27). Thus ¢ has just one hole. But then this case
gives that ¢ has at most one hole; therefore ¢ is pure.

(ii) Let ap = —a—p. Then @(0) = (a1 + a_1)cos6 + i((al —a_1)sinB + (a; — a_z)sinZQ). If a1 = a_; then by
Lemma 2.1, ¢ is not pure. Thus we assume that a; # a_;. Now we put

#(0) = (x(6),1(6)) = (@1 +a-1)cos6, (@1 -~ a-1) (sin + Z—2sin20)).

1— 44

If a1 + a_; = 0 then evidently, ¢ is pure. If a1 + a_; # 0 then Lemma 2.1 gives that ¢ is pure if and only if
y(0) = (a1 — a_1)sinf (1 + 2Eflz_;:j)cose) is non-negative or non-positive in (0, 7). Since sinf > 0 in (0, 7r), it
a1—a_q
2(az—a_3)

follows that ¢ is pure if and only if |cos O] = > 1, and hence 2|a; —a_5| < |a; —a_1].

(iii) Let a; = —a_q. Put
0(0) = (x(6), ¥(0)) = ((a2 +0.5)c0826, (ay —a_1)sin + (a, — a_z)sin26).
If a; = +a_; then by (i) and (ii), ¢ is pure. If instead a, # +a_,, then a straightforward calculation shows that

@ is simple in (0, 7). But since x(0) = x(m), ¥(0) = y(n) = 0 and y(O) has at most one zero in (0, ), it follows
that ¢ is pure. [
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Example 2.3. (a) An application of Theorem 2.2 shows that the matrix T, is semi-quasitriangular, while T, is not:

0 -3 1 0 -2 1
1 0 -3 1 1 0 -2 1
T,=[-1 1 0 =31 ,T,=|"1 1 0 -2 1

(b) If U is the unilateral shift on €, then a U? + bU + c U* + a U*? is semi-quasitriangular for any a, b, c € R.

(c) If laa| = |a_,| and det (aa1 aaz =0then Ty, =a_ U? +a U+ U +aU? is semi-quasitriangular because

the given condition implies that if ay = —a_, then a; +a_y = 0. In fact, T, is hyponormal (cf. [2, Theorem 1.4]).

3. Proof of Theorem 1.5

To prove the main theorem we need the following:

Lemma 3.1. The curve of ¢(0) = (Lcos O + Mcos 20, Nsin 0 + Psin20) (0 < 0 < m) with L, M,P > 0and N > 0
has at most one crossing point.

Proof. Write
x(0) := Lcos 0 + Mcos20 and y(0) := Nsin 0 + Psin20
L

and suppose that, for 0 < 61 < 0 <, x(01) = x(02) and y(01) = y(62). Then we have cos 61 + cos 0, = —557,

so that
os (61 +62) cos (91 —92)_ _L
2 2 -

aMm’
Thus noting that 2% > Z, we get

(sin 61 — sin 62)(N + 2P (cos 07 + cos 62)) = +2Psin(6, — 6,),

PL . ( [L(PL = MN)

_\/Z(PL:LMN))_COS 1(\/ 8M2P ]
. PL . [L(PLFMN)

02 = cos 1(‘\/m)+ws ( SM;P]

We can now prove Theorem 1.5.

which gives

01 = cos™! (

O

Proof of Theorem 1.5. Suppose that ¢(0) = a_e™2? + a_1e70 + 16" + a,¢*. In view of (3), it suffices to
consider the purity of ¢. We write

9(0) = (x(0), y(0)) = ((a1 +0.1)c080 + (@ + a.2)c0820, (a1 — a_1)sin0 + (ay — a_z)sinze).

Note that since replacing x(0) (resp. y(0)) with —x(0) (resp. —y(6)) does not influence the purity of ¢, it is
sufficient to consider the following four cases for purity of ¢:

Case1: x(0) = Lcos 0 + Mcos20, y(0) = Nsin0 — Psin20
Case 2:  x(0) = Lcos 0 + Mcos 20, y(6) = Nsin 0 + Psin20
(0) = Lcos 0 — Mcos 26, y(6) = Nsin 0 + Psin260
(0) = Lcos 0 — Mcos 20, y(0) = Nsin 0 — Psin 20.

Case3: «x
Case4: «x
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Furthermore, since x(0) is symmetric with respect to 6 = m and y(0) is anti-symmetric with respectto 0 = 7,
considering the above cases only for 0 < 6 < nt gives the desired information. If at least one of L, M and P is
zero then the result follows from Theorem 2.2. Thus we assume that L, M and P are all non-zero. Now we
split the proof of the theorem into the four cases in (5).

(i) Case 1: ¢(0) = (x(@), y(@)) = (Lcos 0 + Mcos 20, Nsin 0 — Psin 26)

Write
0y := the local minimizer of x(0) if L < 4M,
0y, := the local maximizer of y(0),
0y, := the local minimizer of y(0) if N < 2P,
0o := the zero point of y(0) if N < 2P.

Then a straightforward calculation shows

<0,<m, cos(6y) = _ﬁ/{/

3n _ N-VN2132P2
7 <0y <, cos(0y,) =5,

_ N+ VN2+32p2
0<6,,<7% cos(0,,) = =g,

0<6p<%  cos(6y) = .

[ERSTE

Now, in view of Lemma 3.1, the curve tracing in rough of ¢(0) can be classified in terms of L > 4M (L < 4M),
N > 2P (N < 2P), 0, 0,,, 0 into several cases and three cases can be chosen for ¢ to be pure. We then have

()L >4M, N > 2P
¢ is pure < { (ii) L < 4M, N > 2P, PL > ¥ (VN2 +32P2 - N))
(i) L < 4M, N < 2P, PL < M(2P — N).

(ii) Case 2: @(0) = (x(Q), y(@)) = (Lcos@ + Mcos26, Nsinf — PsinZQ)

With the notations of Case 1, a straightforward calculation also shows

Z<0y<m, cos(6y) = —ﬁ,
1<0, <3, cos(0,)= =N+ Y4372 W,
<0, <m cos(0,,)= NI
Z<6p<m  cos(By) =—1%.

Now after classifying the curve tracing in rough of ¢(0) into several cases in the same manner as Case 1, we
can choose three cases for ¢ to be pure. We then have

(i)L >4M, N > 2P
@ is pure & { (ii) L <4M, N > 2P
(iii) L < 4M, N < 2P, PL < M(2P + N).

(iii) Case 3: p(6) = (x(6), y(6)) = (Lcos 0 — Mcos 20, Nsin 0 + Psin 29)

Replacing ¢(0) with —@(0 — 1) reduces this case to Case 1. Furthermore, since such a replacement represents
a reflection and translation, it does not influence the purity of ¢; therefore this case has the same result as
Case 1.

(iv) Case 4 (6) = (x(0), y(0)) = (Lcos 6 — Mcos 26, Nsin 6 — Psin 29)
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Replacing ¢(6) with —p(0 — ) reduces this case to Case 2, and thus this case has the same result as Case 2.
This completes the proof. m]

Remark 3.2. By generalized circulant we mean a (finite Toeplitz) matrix of the form

a e%ay ... ... €“m
m ao

ap  e®ay
aN e e M ap

for some fixed w € [0,2n). In [1], it was shown that a finite Toeplitz matrix is normal if and only if it is either
a generalized circulant or a translation and rotation of a hermitian Toeplitz matrix. But this is not the case for a
Toeplitz operator. In fact, if p(8) = YN\ a,e™ is a generalized circulant polynomial (i.e., a_ = e“ay_41 for every
1 < k < N), then a Toeplitz operator with symbol ¢ need not be even hyponormal (cf. [3]). But our Theorem 1.5
shows that a 2 x 2 real Toeplitz operator with generalized circulant polynomial symbol, i.e.,

ag ezwaz ezmal
M ayg  e€%ay €%
a M ay €e€%a %“m

o i (w=0, m; ag,a1,a; € R)
ap ap ag e“a, e“m

is semi-quasitriangular because this case implies that L = M and N = P.
Acknowledgement. The author is thankful to Prof. Woo Young Lee for valuable discussion on this topic.
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