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Abstract. For several Banach lattices E and F, if K(E,F) denotes the space of all compact operators from
E to F, under some conditions on E and F, it is shown that for a closed subspaceM of K(E,F),M∗ has the
Schur property if and only if all point evaluationsM1(x) = {Tx : T ∈ M1} and M̃1(y∗) = {T∗y∗ : T ∈ M1} are
relatively norm compact, where x ∈ E, y∗ ∈ F∗ andM1 is the closed unit ball ofM.

1. Introduction

A Banach space X has the Schur property if every weakly null sequence in X converges in norm. The
simplest Banach space with this property is the absolutely summable sequence space `1. In [4, 9], the
authors proved that if K(H) is the Banach space of all compact operators on the Hilbert space H, and the
dualM∗ of a closed subspaceM of K(H) has the Schur property, then for all x ∈ H, the point evaluations
M1(x) = {Tx : T ∈ M1} and M̃1(x) = {T∗x : T ∈ M1} are relatively norm compact in H. This result has
been generalized for closed subspaces of K(X), where K is the reflexive Banach space, by Saksman and Tylli
([8]). Conversely, Brown ([4]), Saksman and Tylli ([8]), have proved that the relatively compactness of all
point evaluations is also sufficient for the Schur property ofM∗, whereM is the closed subspace of K(H)
or K(`p) with 1 < p < ∞. Moshtaghioun and Zafarani ([7]) studied the Schur property of the dual of closed
subspaces of Banach operator ideals between Banach spaces and improve the results of [4, 8, 9] to larger
classes of Banach spaces and operators between them.
Here we study the Schur property of the dual of a closed sublattice of compact operators between suitable
Banach lattices and improve the results of [4], [7], [8] and [9] to a class of Banach lattices and operators
between them.
It is evident that if E is a Banach lattice, then its dual E∗, endowed with the dual norm and pointwise order,
is also a Banach lattice. The norm ‖.‖ of a Banach lattice E is order continuous if for each generalized net
(xα) such that xα ↓ 0 in E, (xα) converges to 0 for the norm ‖.‖, where the notation xα ↓ 0 means that the
net (xα) is decreasing, its infimum exists and inf(xα) = 0. A subset A of E is called solid if |x| ≤ |y| for some
y ∈ A implies that x ∈ A. Every solid subspace I of E is called an ideal in E. An ideal B of E is called a band
if sup(A) ∈ B for every subset A ⊆ B which has a supremum in E. A band B in E that satisfies E = B ⊕ B⊥,
where B⊥ = {x ∈ E : |x| ∧ |y| = 0, for all y ∈ B} is referred to a projection band and hence every vector x ∈ E
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has a unique decomposition x = x1 + x2, where x1 ∈ B and x2 ∈ B⊥. In this case the projection pB : E → E
defined via the formula pB(x) := x1, is called a band projection and pB⊥ is the band projection onto B⊥. Every
band projection pB is continuous and ‖pB‖ = 1.
Throughout this article, X and Y denote the arbitrary Banach spaces. The closed unit ball of a Banach space
X is denoted by X1 and X∗ refers to the dual of the Banach space X. Also E and F denote arbitrary Banach
lattices and E+ = {x ∈ E : x ≥ 0} refers to the positive cone of the Banach lattice E. An operator T : E → F
between two Banach lattices is a bounded linear mapping. It is positive if T(x) ≥ 0 in F whenever x ≥ 0
in E. For arbitrary Banach lattices X and Y we use L(X,Y), K(X,Y) for Banach spaces of all bounded linear
and compact linear operators between Banach spaces X and Y respectively, and Kw∗ (X∗,Y) is the space of
all compact weak∗-weak continuous operators from X∗ to Y. If a, b belong to E and a ≤ b, the interval [a, b] is
the set of all x ∈ E such that a ≤ x ≤ b. A subset of a Banach lattice is called order bounded if it is contained
in an order interval. We refer the reader for undefined terminologies, to the classical references [1], [2], [5]
and [6].

2. Main Results

By [7, Theorem 2.3], if X and Y are Banach spaces such that X∗ and Y are weakly sequentially complete
(wsc) and M ⊆ L(X,Y) is a closed subspace such that M∗ has the Schur property, then all of the point
evaluations M1(x) and M̃1(y∗) are relatively compact in Y and X∗ respectively, or equivalently, all of the
evaluation operators ϕx : M → Y and ψy∗ : M → X∗ by ϕx(T) = Tx and ψy∗ (T) = T∗y∗ are compact
operators. In [7, Theorem 2.3], the authors proved that for suitable conditions on X and Y, the compactness
of evaluation operators on suitable subspaces M of Kw∗ (X∗,Y) is also a sufficient condition for the Schur
property ofM∗.
Here, for suitable Banach lattices E and F, we give some necessary and sufficient conditions for the Schur
property in the dual of a closed subspaceM of some operator spaces with respect to the compactness of all
evaluation operators onM. This improves the results of Brown, Ulger, Saksman -Tylli and Moshtaghioun
-Zafarani in the Banach lattice setting.
We recall that, a norm bounded subset A of a Banach space X is said to be a Dunford–Pettis (DP) set,
whenever every weakly compact operator from X to an arbitrary Banach space Y carries A to a norm
relatively compact subset of Y. By using [3, Corollary 2.15], E∗ has the Schur property if and only if closed
unit ball of E is a DP set. A Banach lattice E is said to be a KB-space, whenever every increasing norm
bounded sequence of E+ is norm convergent and it is called a dual Banach lattice if E = G∗ for some Banach
lattice G. A Banach lattice E is called a dual KB-space if E is a dual Banach lattice and E is a KB-space. It is
clear that each KB-space has an order continuous norm.
By [2], an element x belonging to a Riesz space E is discrete, if x > 0 and |y| ≤ x implies y = tx for some real
number t. If every order interval [0, y] in E contains a discrete element, then E is said to be a discrete Riesz
space.

Theorem 2.1. Let E and F be two Banach lattices andM be a closed subspace of L(E,F), such thatM∗ has the Schur
property. Then

(a) If E∗ and F are discrete KB- spaces, then all of the point evaluations setsM1(x) and M̃1(y∗) are relatively norm
compact.

(b) If E∗ and F are dual KB- spaces, then all of the point evaluations setsM1(x) and M̃1(y∗) are relatively norm
compact.

(c) If E∗ is discrete with order continuous norm and F is discrete KB- space, then all of the point evaluations sets
M1(x) and M̃1(y∗) are relatively norm compact.

Proof. Since M∗ has the Schur property, then closed unit ball of M is a DP set. So all point evaluations
M1(x) and M̃1(y∗) are DP sets and by [3, Corollaries 3.4, 3.10], we can deduce (a) and (c). Also by using the
Schur property ofM∗ as in the proof of [7, Theorem 2.3], we can deduce (b).



H. Ardakani et al. / Filomat 31:3 (2017), 723–728 725

We recall that a Banach lattice E has the dual positive Schur property if every positive weak∗ null sequence
in E∗ is norm null and we have the following theorem (see [10]).

Theorem 2.2. For each Banach lattice E, the following are equivalent:

(a) E has the dual positive Schur property;

(b) every positive operator T from E to a discrete Banach lattice F with order continuous norm is compact.

Corollary 2.3. Let E and F be Banach lattices such that E∗ and F are discrete with order continuous norm. If
M ⊆ L(E,F) is a Banach lattice such thatM has the dual positive Schur property, then all of the evaluation operators
ϕx and ψy∗ are compact operators, for all x ∈ E+ and y∗ ∈ (F∗)+.

Proof. Since E∗ and F are discrete with order continuous norm, by Theorem 2.2, the positive linear operators
ϕx and ψy∗ are compact operators, for all x ∈ E+ and y∗ ∈ (F∗)+.

Here we use similar techniques to those in [4] and [7] to obtain some characterizations of the Schur property
for dual of suitable closed subspaces of some compact operator ideals between Banach lattices that improves
some results of [4] and [7]. We need some notation and definitions.
By [2], generating ideal Ix generated by a discrete element x equals that vector subspace generated by x and
Ix is a projection band. A complete disjoint system {ei}i∈I of a Riesz space E is a pairwise disjoint collection
of element of E+, that is, ei ∧ e j = 0 for i , j, such that if u∧ ei = 0 holds for all i ∈ I, then u = 0. Each discrete
Riesz space has a complete disjoint system consisting of discrete elements. For example, the classical Banach
lattices c0 and `p, where 1 ≤ p < ∞ are discrete with order continuous norm and `∞ is discrete without order
continuous norm.
Now, let E and F be discrete with complete disjoint systems consisting of discrete elements {ei}i∈I and {ui}i∈I,
respectively. Then V =

∑
i∈I Iei and W =

∑
i∈I Iui are projection bands. If furthermore F is an AM-space (i.e.,

if x ∧ y = 0 in F implies ‖x ∨ y‖ = max {‖x‖, ‖y‖}) andM ⊂ L(E,F) is a Banach lattice, then for all operators
T,S ∈ M, we have

‖PWTPV + PW⊥SPV⊥‖ = max{‖PWTPV‖, ‖PW⊥SPV⊥‖},

where PV and PV⊥ are band projections onto projection bands V and V⊥, respectively.
For the proof of the main theorem we need two lemmas.

Lemma 2.4. Suppose that E and F are discrete Banach lattices with order continuous norm. If K1,K2, .....,Kn ∈

Kw∗ (E∗,F) and ε > 0, then there are finite dimensional projection bands W ⊂ F and V ⊂ E∗ such that

‖PW⊥Ki‖ ≤ ε , ‖KiPV⊥‖ ≤ ε , i = 1, 2, 3, ...,n.

Proof. Without loss of generality, we may assume that n = 1 and K = K1 ∈ Kw∗ (E∗,F).
If {z1, z2, ...., zl} is an ε

2 -covering of K(E∗1) in F, then for each x∗ ∈ E∗1, there exists i = 1, ..., l such that
‖Kx∗ − zi‖ ≤

ε
2 .

Since F is discrete with order continuous norm, then each zi has a representation zi =
∑
α(i)

tα(i)(zi)eα(i), where

(eα(i)) is a complete disjoint system in F consisting of discrete elements and numbers tα(i) are uniquely
determined and tα(i) , 0 for countably many α(i) ∈ I for each i. The convergence is unconditional and so
we can choose an integer N ≥ 0 such that ‖

∑
α(i)

tα(i)(zi)eα(i)‖ ≤
ε
2 , for all i = 1, 2, ..., l and I ⊂ {N + 1,N + 2, ....}.

Now W =
∑l

i=1
∑N

k=1 Iei(k) is a projection band and so we have F = W ⊕W⊥.
For each x∗ ∈ E∗1 and suitable 1 ≤ i ≤ l,

‖PW⊥Kx∗‖ = ‖PW⊥Kx∗ − PW⊥zi + PW⊥zi‖

≤ ‖PW⊥‖ ‖Kx∗ − zi‖ + ‖PW⊥zi‖

≤
ε
2

+ ‖
∑
i(k)

ti(k)(zi)ei(k)‖

≤
ε
2

+
ε
2

= ε.
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This shows that ‖PW⊥K‖ ≤ ε.
Since K∗ : F∗ −→ E is compact, we may assume that {y1, y2, ....yr} is an ε

2 -covering of K∗(F∗1) in E. So for all
x∗ ∈ F∗1 there exists i = 1, ..., r such that ‖K∗x∗ − yi‖ ≤

ε
2 .

Each yi is of the form yi =
∑
α(i)

cα(i)(yi)uα(i), where (uα(i)) is a complete disjoint system in E consisting of

discrete elements. So we can choose an integer M > 0 such that ‖
∑
α(i)

cα(i)(yi)uα(i)‖ ≤
ε
2 , for all i = 1, 2, ..., r and

I ⊂ {M + 1,M + 2, ....}.
Now U =

∑r
i=1
∑M

k=1 Iui(k) is a projection band and so we have E = U ⊕U⊥.
Each discrete element uα(i) ∈ E generates a homomorphism fα(i) i.e. a discrete element in E∗. In fact, for every
x ∈ E there exists cα(i)(x) such that Puα(i) x = cα(i)(x)uα(i), where Puα(i) is a band projection onto Iuα(i) . Functionals
fα(i) defined by fα(i)(x) = cα(i)(x) are homomorphisms and so they are discrete in E∗, for all i = 1, 2..., r.
Now V =

∑r
i=1
∑M

k=1 I fi(k) is a projection band and so we have E∗ = V ⊕ V⊥. Since PV⊥ = P∗U⊥ we have
‖KPV⊥‖ = ‖K∗∗PV⊥‖ = ‖PU⊥K∗‖ ≤ ε.

Lemma 2.5. Let E and F be discrete Banach lattices with order continuous norm. Let m and n be arbitrary integers,
W =

∑m
i=1 Iei and V =

∑n
j=1 I f j , where (ei)i∈I, ( f j) j∈J be normalized complete disjoint systems of discrete elements in F

and E∗, respectively and ε > 0 be given. IfM ⊆ Kw∗ (E∗,F) is a closed subspace such that all point evaluationsM1(x∗)
and M̃1(y∗) are relatively compact, then there exists a norm closed subspaceZ ofM of finite codimension such that
‖GPV‖ ≤ ε , ‖PWG‖ ≤ ε, for all G ∈ Z1.

Proof. We first construct a norm closed subspace R ofM of finite codimension such that ‖GPV‖ ≤ ε, for all
G ∈ R1. Each y∗ ∈ V is of the form y∗ =

∑n
j=1 c j(y∗) f j and choose a constant C > 0 such that

∑n
j=1 |c j(y∗)| ≤ C.

Fix 1 ≤ i ≤ m and 1 ≤ j ≤ n. By assumption the point evaluation operatorϕ j :M→ F defined byϕ j(T) = T f j
is compact. Choose an η-covering {w1,w2, ...,wr} of ϕ j(M1), where η = ε

C(l+1) and l is an integer that ‖P‖ ≤ l
for P :M→ 〈w1, ....,wr〉

⊥. Each wi is of the form wi =
∑
α(i)

tα(i)(wi)eα(i) and so we can choose an integer p such

that ‖
∑
α(i)

tα(i)(zi)eα(i)‖ ≤ η, for all i = 1, 2, ..., r and I ⊂ {p + 1, p + 2, ....}. Now each H j = 〈w1, ....,wr〉
⊥ is a closed

subspace of F of finite codimension and we can show that

sup{‖x‖ : x ∈ H j ∩ ϕ j(M1)} ≤
ε
C
.

It is easy to check that R :=
⋂n

j=1 ϕ
−1
j (H j) is norm closed and of finite codimension inM. Let G ∈ R1, then

ϕ j(G) = G f j ∈ H j ∩ ϕ j(M1)

and ‖G f j‖ ≤
ε
C for all j = 1, ...,n.

Each x∗ ∈ E∗ is of the form x∗ = y∗ + z∗, where y∗ ∈ V, z∗ ∈ V⊥ and PVx∗ = y∗,

‖GPVx∗‖ = ‖Gy∗‖ = ‖G
n∑

j=1

c j(y∗) f j‖ ≤

n∑
j=1

|c j(y∗)‖G f j‖ ≤ C
ε
C

= ε.

Thus ‖GPV‖ ≤ ε.
By a similar method to the previous case, using F = W⊕W⊥ and relative compactness of all M̃1(y∗) in E, we
construct a norm closed subspace S ofM of finite codimension such that ‖G∗PK‖ ≤ ε for all G ∈ S1, where
K =
∑m

i=1 I1i , (1i)i∈I is a complete disjoint system of discrete elements in F∗. Since PK = P∗W we have

‖PWG‖ = ‖G∗P∗W‖ = ‖G∗PK‖ ≤ ε.

Now setZ = R ∩ S.

Theorem 2.6. Let E be discrete with order continuous norm, F be an AM-space with order continuous norm and
assume thatM ⊆ Kw∗ (E∗,F) is a closed subspace. If all of the evaluation operators ϕx∗ and ψy∗ are compact operators,
thenM∗ has the Schur property.
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Proof. At first we note that every AM-space with order continuous norm is discrete (see the proof of [11,
Theorem 1.4]). We use the technique of [7, Theorem 3.1].
Let (Γi) ⊆ M∗ be a normalized weakly null sequence inM∗. Let (εn) be a sequence of positive numbers such
that

∑
nεn < ∞. Suppose that Λ1 = Γ1, and choose K1 ∈ M1 such that 〈K1,Λ1〉 > 1

3 . Inductively, assume
that Λ1, ...,Λn ∈ (Γi) and K1, ...,Kn ∈ M1 have been chosen. To obtain Λn+1 and Kn+1, by lemmas 2.4 and 2.5,
we find finite dimensional bands V and W of E∗ and F respectively, and a norm closed subspaceZ of finite
codimension inM such that

‖KiPV⊥‖ ≤ εn+1 and ‖PW⊥Ki‖ ≤ εn+1, for all i= 1,2,...,n,
‖GPV‖ ≤ εn+1 and ‖PWG‖ ≤ εn+1 , for all G∈ Z1.

By the technique given in the proof of [4, Theorem 1.1], let S′ = Z⊥ = {Γ ∈ M∗ : 〈G,Γ〉 = 0, for all G ∈ Z}
and let S be the finite dimensional space inM∗ spanned by (S′,Λ1,Λ2, ...,Λn). By [4, Lemma 1.7], we can
choose j > n such that

|〈Ki,Γ j〉| <
1

2n+1 for all i= 1,2,...,n.

Set Λn+1 = Γ j and note that

|〈Ki,Λn+1〉| <
1

2n+1 for all i= 1,2,...,n.

Let S⊥ = {K ∈ M : 〈K,Γ〉 = 0, for all Γ ∈ S}. Then M
∗

S is isometrically isomorphic to (S⊥)∗, and the coset
Λn+1 + S has norm > 1

3 . So there exists Kn+1 of norm one in S⊥ such that

〈Kn+1,Λn+1〉 >
1
3

and 〈Kn+1,Λ j〉 = 0 for all j= 1,2,...,n.

But (S′)⊥ = Z, since Z is norm closed. So Kn+1 ∈ Z. Also ‖Kn+1PV‖ < εn+1 and ‖PWKn+1‖ < εn+1. These
properties yield that:

‖PW

n∑
i=1

KiPV −

n∑
i=1

Ki‖ ≤ 3nεn+1 and ‖PW⊥Kn+1PV⊥ − Kn+1‖ ≤ 3εn+1.

Since F is an AM-space, we obtain:

‖

n+1∑
i=1

Ki‖≤‖

n∑
i=1

Ki − PW

n∑
i=1

KiPV‖ + ‖Kn+1 − PW⊥Kn+1PV⊥‖

+‖PW

n∑
i=1

KiPV + PW⊥Kn+1PV⊥‖

≤3nεn+1 + 3εn+1 + max{‖PW

n∑
i=1

KiPV‖, ‖PW⊥Kn+1PV⊥‖}

≤3(n + 1)εn+1 + max{‖
n∑

i=1

Ki‖, 1}.
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This shows that the sequence Tn =
∑n

i=1 Ki is bounded and so has a weak∗ limit point T ∈ M∗∗. For each j,
choose an integer n > j such that |〈T − Tn,Λ j〉| < 1

2 j . Therefore,

|〈T,Λ j〉|≥|〈Tn,Λ j〉| − |〈T − Tn,Λ j〉|

≥|

j∑
i=1

〈Ki,Λ j〉| −
1
2 j

≥|〈K j,Λ j〉| −

j−1∑
i=1

|〈Ki,Λ j〉| −
1
2 j

≥
1
3
−

j
2 j >

1
4
,

for sufficiently large j. Hence 〈T,Λ j〉 and so 〈T,Γ j〉 does not tend to zero. Thus the sequence (Γ j) does not
converge weakly to zero and the proof is completed.

Note that the proof of Lemma 2.4 is based on the fact that for each bounded and weak∗-weak continuous
operator K : E∗ → F, the adjoint operator K∗ maps elements of F∗ into E. So we need M ⊆ Kw∗ (E∗,F).
However, under the same assumptions on E and F, a similar result by a similar proof can be inferred for
closed subspaces of K(E,F):

Theorem 2.7. Let E be discrete with order continuous norm, F be an AM-space with order continuous norm and
assume thatM ⊂ K(E,F) is a closed subspace. If all of the evaluation operators ϕx and ψy∗ are compact operators,
thenM∗ has the Schur property.
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