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On Some Product-Type Operators from Area Nevanlinna Spaces
to Zygmund-Type Spaces

Haiying Li? Zhitao Guo?

“Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Mathematics and Information Science,
Henan Normal University, Xinxiang 453007, P.R.China.

Abstract. The boundedness and compactness of product-type operators and integral-type operators from
area Nevanlinna spaces to Zygmund-type spaces and little Zygmund-type spaces are investigated.

1. Introduction

Let D = {z € C: 2| < 1} be the open unit disk of the complex plane C and H(ID) the space of all analytic
functions on ID. Let 1 < p < oo and a > -1, a function f € H(ID) belongs to the area Nevanlinna space

NI = NY(D) if
Iy = [ og(t +FENPdAR) <,
a D
where a > —1, dA,(z) = (a + 1)(1 — |zI*)*dA(z) is the weighted Lebesgue measure on ID. For some details,

see [48, 53-56].

Let u be a positive continuous function on [0,1). We say that u is normal if there exist two positive
numbers a and b with 0 <a < b, and 6 € [0, 1) such that (see [7])

ur) . oumn
A=y is decreasing on [0, 1), lrl_l’)l‘ll A=

pr) .. . ()
AP is increasing on [6, 1), 1r1_r>r} a-y =0

A function f € H(ID) belongs to the Zygmund-type space Z, if

sup u(jz))lf"”(2)] < oo,

zeD

where p1 is a normal function. It is a Banach space with norm

Ifllz, = 1fO) +1f(O)] + sup u(zDlf” @)1
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The little Zygmund-type space Z,, o consists of those functions f in Z, satisfying
|z1|1311 u(zhlf”(2)l =0

and it is easy to see that Z,, is a closed subspace of Z,. When u(r) = (1 — r?), the induced spaces Z,, and
Zu0 become the classical Zygmund space and little Zygmund space respectively (see [2, 5, 9, 20, 32, 48]).
Let u € H(ID). It is well known that the multiplication operator is defined by

(Muf)(z) = u(z)f(2), f € H(D).

Let ¢ be an analytic self-map of ID. The composition operator C,, is defined by

(Cp/)2) = flp(2)), fe€H(D).

The composition operator and operators that include it into itself have been studied by many researchers
on various spaces (see, for example, [1], [2], [5]-[60]). Let D be the differentiation operator defined by

Df@) = f'@), feHD).
In [12], the author defines six product operators as follows:

(M, CyDf)(2) = u(z)f'(p(2)),
(MuDCy f)(z) = u(z)¢" () f'(9(2)),
(CoMuDf)(z) = u(p@)f (9(2),
(DM..Cy f)(2) = u' (2)f((2)) + u(2)p"(2) ' (9(2)),
(CpDM. f)(2) = u'(p(2) f(p(2)) + u(p(2)) [ (9(2)),
(DCpM.f)(2) = 1 ()¢’ (2)f(9(2)) + ulp@)e’ @) f (9(2)
for z € D and f € H(ID). He studies the boundedness and compactness of these product operators

between weighted Bergman-Nevanlinna and Bloch-type spaces. In [5], the authors defined and studied the
generalized composition operator

()@ = fo FOEEME, z €D, f € HD)

for the first time, and the boundedness and compactness of Ci on Zygmund spaces and Bloch spaces were
investigated in it. In [57], the author defines the next integral-type operator

(Cpof)2) = fo FO@(E)g(6)dE, z € D, f € H(D)

and studies the boundedness and compactness of the operator from H* to Zygmund-type spaces. When
n = 1, then the integral-type operator is the generalized composition operator Cg. The purpose of this paper
is to characterize the boundedness and compactness of product operators M, C,D, M, DC,,,C,M, D, DM,,C,,
CyDM,, DCyM,, and the integral-type operator Cj, , from area Nevanlinna spaces to Zygmund-type spaces
and little Zygmund-type spaces. In what follows, we use letter C to denote a positive constant whose value
may change its value at each occurrence.

2. Auxiliary Results

Our first lemma characterizes compactness in terms of sequential convergence. Since the proof is
standard, it is omitted here (see, Proposition 3.11 in [1]).
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Lemma 1. Suppose that @ is an analytic self-map of D, u € H(ID), 1 < p < oo, a > =1 and p is a normal function on
[0,1). Let T be M,C,D,M,DC,, C,M,D,DM,C,, C,DM,, DC,M, or C('ZW. Then the operator T : NP — Zuis
compact if and only if for each sequence { fi}xew which is bounded in N, and converges to zero uniformly on compact
subsets of ID as k — oo, we have ||T fillz, — 0 as k —oo.

Lemma 2. A closed set Kin Z, is compact if and only if it is bounded and satisfies

lim sup u(lz)|f”(z)| = 0.
l2l=1 feK

The proof of it is similar to that of [10], so we omit the details.

Lemma 3. Let n be a nonnegative integer, 1 < p < co and o > —1. Then there exists some C such that for each
feN andzeD,
Cliflly: |

) 1
0= Gy [y 2

The Lemma 3 can be found in [53]. The next Lemma 4 is the classic formula (see, e.g. [3]).

Lemma 4. If f(z) is an analytic function in complex plane and @(z) € H(ID), then for each positive integer n,
L D(2)\ki
=¥V M (P_(Z)) /
(Fop) @ =Y i ) ]|=1| (%) =

where the sum is over all different solutions in nonnegative integers ki, kp, -+ ,ky of k = ki + ko + -+ + k, and
n=ky+2k,+---+nk,.

Lemma 5. Let .
(1= lp@)P)" ]T}

(1= pE)w)

where @ is an analytic self-map of D, and a > =1, f € N, and z, w € D. Then

fo(w) = exp {c[

@@ Pacal(B+ 1)t (1 - p(2)P)] ex[ c ]

(1) -
S o) (1= lp@Py D (1-lp@R) 7

here T = “],%2 and P,_1[A, x] is the n-1-degree polynomial, i.e.

AA+1)-(A+7-1 .
7’1! H;‘lzl[c (A+ )j'( 1 )]k7 L
Prald =) Tkl -k ! o

The proof can be obtained according to Lemma 4, so we omit it here.

3. Boundedness and Compactness of Product-Type Operators from NZ to Z,

In this section, we give some characterizations of the boundedness and compactness of product-type
operators from N} to Z,.

Theorem 6. Let u € H(ID) and ¢ be an analytic self~map of D , 1 < p < oo and a > —1 and p is a normal function
on [0,1). Then the following statements are equivalent:

(i) My,CyD : Ny — Z,, is bounded;

(ii) MyCyD : N — Z,, is compact;
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(iif)
M = sup |zl (z)| < oo; (1)
zeD
M, = sup p(lzD2u’ ()¢’ (2) + u(z)p” (2)| < oo; )
Ms = sup u(lzD)lu@)ll¢’ (@) < oo; (3)
zeD
u(lzDlu(z)llp’ (2)12 c _
w1 —lp@PF [u - |(p<z>|2)“f] v ¥
p(lzD2u’ (z)@’ (z) + u(z)p” (2)| c s
- (L~ (PP oF [(1 _ |<p(z)|z)“;2] -0 ©
p(lzDlu” ()| c B
pt 1= p@F T [(1 - |¢(Z)|z)“#] " ©

Proof. (i)=(iii). Suppose that (i) holds. Now take the function f(z) = z, since M,,C,,D : N —Z u is bounded,
then we get

sup p(lzhlu” (2)| < [IM,CyDz|| < ClIM,CyDl| < oo. 7)
zeD

This gives (1). By taking the function f(z) = %, we have
2

Z
sup (2l (2)p(2) + 21 (2)¢" (2) + u(@e” (D) < IMuCpD || < ClIM,Cy Dl < co. (8)
zeD

By (7) and the boundedness of ¢, we get (2). By taking the function f(z) = %, we have

sup u(IZI)I%M”(Z)fp(Z)2 +21' @)p(2)¢’ (2) + U@’ (2)° + u@)(2)p” (2)|

zeD
3
V4
< ”Muc(ng” < C”MuC(pD” < ©o0. (9)

By (7), (8) and the boundedness of ¢, we get (3). For w € D, set

a+3
r

_ 2\ 42 _ 2 _ 242 _ 242 _ 2\ 42
¢! %)I )za+4 _3(1 %)I )M +3(1 %)I )M _a %)I )M]exp [C 1 %)I )m+4 ]
1-p@w) » (1-pRw) * 1-¢@w)»  (A-@@Ew) * (1-p@@)w) 7

Then f, € N, and moreover sup,p Il A S C. We can calculate that

fLp@) = f(p() =0

fiw) = |

and _
—p(2) ox [ c ]
1-lp@P) 72 Lad-lp@Pp)T

L (@) =C

where C; = r%‘ It follows that

00 > [IMCpDllpy 7, I ollny = IMuCypDEllz, > sup u(lwDI(M,CpD L) (@)l
weD

> u(zhlu” @) (@) + Q' (2)¢' 2) + u@)e” @) 2 (¢2)) + u@)Q @£ (@)l
_ Cu(EDlu@)lle’ @)Ple)P [ c ]
- a+2 ex a+2

1 -lp@E)PR)7 " A-lp@E)PR) "
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and then

p(zDu@)lle’ @)Ple)P c e
<C1- 7 < 0. 0
1 - lp@)P?)° x [(1 _ |(P(Z)|2)“;2] <C-lp@IF) " < (10)

Taking the limit as |p(z)| — 17 in (10), we get (4).
For w € D, set

a2

6a+3p+17 (1- p@)P) L 6a+3p+16(1- p@)P)

he(w) [Za tp+6(A-lp@P)
z 2“+p+5(1—(p(z)w)ﬂ 20(+p+5 (1—@&))% 261{+p+5 (1—%&))20‘%6
_(1-lp@P)T Jex [C(Zoc +5(1-lp@P)T  (1-lp@P)T I
(- p@w) 7 241 - @) T (1 -p@W) T
Then h, € N*, and moreover sup, . Il A S C. We can calculate that
H(p(z)) = h ((2)) = 0
and
@) [ c
W (@) =C ex
- lp@P TR LA )T
where C, = 2(2a+p+5). It follows that
00 > IMCoDllyg-z, llyg = IM.CyDlrllz, > sup u(lwDI(M Cy D) @)
> u(zhiu’ @hp(2) + QU @)@ (2) + u@e” @ (9(2) + u@)¢’ 2P (@)
_ CoulED2v () @) + u2)e” @)llp ()P p[ c ]
(1 - lpE)P) 7 *2 (1-lpEP) T
and then
w(lzDi2w @)’ (2) + u@)g” @)llp()P ps2
— 1 <Ca- p 0. 11
e [(1 s | <ca-wan® < 1)
Taking the limit as |@(z)] — 17 in (11), we get (5).
For w € D, set
- 257 2 “7*3 _ 2\ 5 _ 242
) [(1 oy (L=le@) ) L LZIP@RT (- lp@) > _0-lp@R) " ]
(1 0T (-p@w) T (- <P(Z)a)) T (1-p@w) T
a+31-p@P T da+12(1-lp@PT  (A-lp@P)T
tex [C( - p—vai 205 2046 ):I
21— p@w) 7 22+ 1-9p@w) " (1-9E)w) "
where
. 14403 + 108a%p + 30ap? + 114002 + 570ap + 2964 + 3p° + 78p> + 741p + 2538
—

4803 + 3602p + 10ap? + 34802 + 174ap + 836a + p® + 24p% + 209p + 666 '

36a2 + 18ap + 3p? + 192a + 48p + 249
12a2 + 6ap + p? + 60a + 15p + 74

r3 =

Then k, € N¥, and moreover sup, p llk|| NS C. We can calculate that

k! (9(2) = K" (9(2)) = 0
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and
-(2) c Fo+2rs—3
k(p(z)) =C —— exp — |, CGi=——"——.
‘- pep T Lo |<P(Z)|2)”] p
It follows that
0> IMCoDlly;-.z, Kol 2 IMiCoDkiliz,  sup (DlMuCyDk) (@)
> u(lzhlu” @k, (@(2)) + Qi (2)¢' (2) + u@)@” @K, (p(@)) + @)’ 2Pk, (p(E))
_ Gl @lp@) [ c ]
(1 - lp@)P) 7! (1-lp@PR) "
and then
D" @)lie)l c paz2
c1 - P 0.
Tar Pl |(p(z)|2)“;2] <C -l < 12)

Taking the limit as |@p(z)| — 17 in (12), we get (6).

(iii)=(i). Suppose that (iii) holds. Assume {fi}ren is @ bounded sequence in NP with || fellyy < K and fi
converges to 0 uniformly on compact subsets of ID as k — co. By the assumption, for any € > 0, there exists
a0 € (0,1) such that

MENTE! c ¢
=GP = [(1—|<p<z)|2>“f] °3 13
p(lzD2 ) @) + u(2)g” (2)] c ¢
(1= lp@P? eXp[u ~lp z>|2>“f] pE o
D@’ @)P c ¢
- lp@PF | |<3 (15)

a+2
(L=lp@E)P) »
whenever 6 < |p(z)| < 1. Then by (13), (14), (15) and Lemma 3, we have

IMuCyDfillz, = |(MuC<prk)(0)|+|(MuC<prk)’(0)|+Su]]]gH(|Z|)|(MuC¢ka)N(Z)|
1(0) fi (@O + [’ (0) fi (O] + [(0) £ ((0))¢” (O]
+ sup p(lzDl”@f (@) + sup p(zDlu”(2)fi (@)

lp(z)I<6 0<lp(z)I<1

+ ‘ S(u)lp(5 u(izDlu’ (2)¢’(2) + u@2)e" @) ' ()
p(z)|<

+ sup (DI (2)¢’(2) + u(z)p” (2) £ (9(2))|

0<|p(z)l<1

IA

+ sup w(l2Dlu@e’ @’ (@) + sup u(lDlu)e’ @£ (@)

lp(2)I<6 5<lp(z)l<1
1 (0) £ (O + [/ (0) £ (e(O))] + [u(0) £ ((0))p” (0)]

+M; sup |f (@) + M, sup |f (@) +Ms sup |f"(p())
lp(z)|<6 lp(z)|<0 lp(2)|<6

izl @)| [ cll fill vz ]
+ su > ex a2
s<pzi<1 1~ lp()l 1 - lp@)P)7
w(lzDi2w (2’ (2) + u(z)e” (2)| cll il
S 1= lp@P? > [(1_|@<z>|z)“;2]

IA
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N (2D lu()ll’ )PP exp[ Cllfel gz ]
s<pic1 (L= 1p(@)P)° a1 -lp@PR) "
< [u0)f (@O)I + [ (0) £ (O] + [(0) £ ((0)) " (O)]
+M; sup | f/(w)| + Ma sup |f"(w)] + Mz sup |f” (w)| + €.

|w|<6 |w|<6 |w|<6

Since fi converges to 0 uniformly on compact subsets of ID as k — oo, Cauchy’s estimation gives that f, , f/”
and f;”" also do as k — oo, and both {w € D : |w| < 6} and {p(0)} are compact subsets of D. Hence for any
€ > 0, there exists an N > 0 such that, whenever k > N, we have

i @O)l <€, If/(@O) <e and sup|f’(w)<e

lw|<6
where i = 1,2,3. It follows that lim;_,c [|M,;Cy, D fil| z, = 0. By Lemma 1, we see that the product operator

M,CyD : N - Z,, is compact.
(if)=(). This implication is obvious. The proof of the theorem is completed. [J

Theorem 7. Let u € H(ID) and ¢ be an analytic self-map of D , 1 < p < oo and a > —1 and p is a normal function
on [0,1). Then the following statements are equivalent:

(i) M,,Cy,D : N — Zy is bounded;

(ii) M,CpD : Nb — Z0 is compact;

(iii)
lim (=Dl @) = 0 (16)
lim u(D2u’ (') + u@)e” 2) = 0; (17)
lim a(E D@l GF = 0; (18)
HDlu )l )P ¢ 1
et (1= p@)P) eXp[u—|<p<z)|2)“?2]_0' )
K2 @) @) + u@)p” @) c
=0; 20
L AN ] 20
(@) ¢ .
TR & [ ]‘0‘ @

O
Proof. (ii)=(i). This implication is obvious.
(i)=(iii). Suppose that M, C,D : NE — Zup is bounded. Taking functions f(z) = z, f(z) = % and f(z) = %3
respectively, we get

lim (@) = 0;

Jim p(lzDlu” (2)p(z) + 2u' (2)¢" (2) + u(z)p” (2) = 0;

Jim M(IZI)I%u"(z)(P(Z)2 + 21 (@)p(2)9’ (2) + u@’ (2)* + u@)p)" ()| = 0.

Thus (16), (17) and (18) hold. Since M,,C,,D : NP — Z, isbounded, by Theorem 6, we conclude that (4), (5)
and (6) hold. By (6), for any € > 0, there exists a t € (0,1) , such that

pED @) ¢ _.
L-le@P 7 @ - lp@p) 7+

(22)
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whenever t < |p(z)| < 1. Moreover, by (16), we infer that there exists an r € (0, 1) such that forr < |z] < 1,

R @ < e = Frexp [ -]

from which, if r < |z| < 1 and |p(z)| < t, then we have

H(lzl)lu”(z)l c [J(|Z|)|u”(z)|
R TET e R e T

From (22) and (24), we see that wheneverr < |z| < 1,

<e. (23)

p(lzDlu” (2)] ox [ c ] e
L
which implies that (21) holds. Employing (4) and (18), with similar argument, we obtain (19). Employing
(5) and (17), with similar argument, we obtain (20).
(iii)=(ii). Suppose (iii) holds. Let f € N, by Lemma 3, we have
p(zDI( MuCyDf)” (2)]
< p(2Dl” @) f (@) + p(2DIu’ ()¢’ (2) + u@)e” @) f (@@ + p2)lu@)e’ @) £ (@)
plD @ | cllflle |+ B @' (2) + D" @] | cllflly ]
B T (1= lp@)P)? 1~ lp@P) 7
u(zDlu()lle’ ()P cllfllny
A lpPr [ @R g

Taking the supremum in this inequality over all f € N} such that ||f|| at <1, applying (19), (20) and (21) we
obtain

Lim sup u(z)(M,Cy,Df)"(2)| =
=17 £l <1

The result follows from Lemma 2. [

Similar to the proof of Theorem 6, we can get the following five theorems for the other product operators.

Theorem 8. Let u € H(ID) and ¢ be an analytic self-map of D , 1 < p < oo and a > =1 and p is a normal function
on [0,1). Then the following statements are equivalent:
(i) MyDC, : N} — Z,, is bounded;
(i) MyDC, : N = Z,, is compact;
(iii)
sup (2Dl )¢’ (2) + 2 (2)" (2) + u(z)e" (2)| < eo;
ze

sup u(|z)|2u’ (2)¢’ (2) + 3u(2)¢’ (2)¢” (2)] < o0;

z€D
sup u(lzDlu@)llp’ (2)P < oo;
o M@ (@) + 20 (@) (2) + u@e @) [ c ] — 0
1" 1-lp@)P P 1-lp@p) 71
(DR ()¢’ (2) + Bu(2)@’ (2)¢” (2)] c
1 =0;
- (1= lp@)P)? [(1 - |¢(z)|2)“22] 0

u(zDlu)lle’ )P c
B e o ]
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Theorem 9. Let u € H(ID) and ¢ be an analytic self-map of D , 1 < p < oo and a > =1 and p is a normal function
on [0,1). Then the following statements are equivalent:
(i) CoM,D : N — Z, is bounded;
(ii) CoMyD : N — Z,, is compact;
(iii)

sup p(lzDlu” (@)@’ (2) + u' (9(2)p” (2)] < oo;

z€D

sup p(|z)2u’ (9(2))¢’ (2)* + u(p(2)g” (@)| < oo;

zeD

sup p(lzDlu(e@)ll¢’ @) < oo;

zeD
i DGO CR O T e )
o ek la e ™
i HEDRCGOW P gl [ ]
i A= Ip@P? Lo pen?
p(EDlup @l P c .
|q,(zl)|r317 (1-lp@)P)3 ex [( =0.

1-lp@E)P) T

Theorem 10. Let u € H(ID) and ¢ be an analytic self-map of D , 1 < p < oo and a > =1 and p is a normal function
on [0,1). Then the following statements are equivalent:

(i) DM,Cy : N — Z,, is bounded;

(ii) DM,,Cy : N = Z,. is compact;

(iii)

sup u(jz))lu””’ (z)] < oo;
zelD

su]g p(zD)1Bu” (2)¢’ (2) + 31’ (2)p" (2) + u(z)e” (2)| < o0;

suﬂ}j) w(lzDl’ 2)¢’ (2)* + u@@)g’ @)¢” (2)| < oo;

sup u(ZDlu@)llp’ )P < oo;

zeD
. ”nr —C = U
lim (i @exp [(1 v |=0
u(l2DBu” @)’ () + 30 " (@) + u@)e” (2)] |——=|=0
im ex =0
lp@E)—~1- 1-lp@)P 1-lp@P) T

B () @ + ) ) 2) N

e (= lpGP? . [(1—|qo<z>|2>“;2]‘0’
K@l @F ‘

N e el

Theorem 11. Let u € H(ID) and ¢ be an analytic self-map of D , 1 < p < oo and o > =1 and  is a normal function
on [0,1). Then the following statements are equivalent:

(i) Co,DM,, : NP — Z,u 1s bounded;

(i) C,DM,, : NP — Z, is compact;
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(iii)
sup u(lz)lu” ()¢’ @) + u” (p(2))p" (2)] < oo;

zeD

sup H(DBu” (p(2)¢’ (2)* + 21/ (p(2))" ()] < oo;
sup (DB ()¢’ (2)* + u(p(2)” ()] < oo;

sup wlzDlu(e@)llg’ @)F < oo;

lim ) H(|Z|)|u”/((P(Z))(P/(Z)2 + MN((P(Z))QDH(ZN exp [;&2] = 0,'
lp)I-1 (L=lp@E)P) »

u(2DBu” (p(2)¢’ (2)* + 2u (p(2))p” (2)] c

@1 1-lp@)? o [(1 - |<p(z)|2)“52]
(23w (p(2)¢’ (2)* + u(p(2)” (2)| c _

P (1 - lp2)P)? P [(1 —lp@PR) ] -
(2D lu(p@)lle’ (2)P c B

oo A-l@PP [u - lp@P)* |-

Theorem 12. Let u € H(ID) and ¢ be an analytic self-map of D , 1 < p < oo and a > =1 and p is a normal function
on [0, 1). Then the following statements are equivalent:

(i) DCoM,, : N} — Z,, is bounded;

(ii) DCyM,, : N — Z,, is compact;

(iii)

sup u(zhlu” (@)@’ (2)° + 3u” (P@)¢” ()¢’ (2) + 1 (P(2)9"" (2)] < oo;

//I(Z)l < OO/'

sup u(z))3u” (p(2))¢’ (2)° + 61" (P(2))@” (2)¢’ (2) + u(p(2))¢

zeD

sup u(lzDlu’ (p) ¢’ (2)° + u(@)e” (2)¢’ (2)| < oo;

zelD
sup w(lzDu(p@)llp’ )PP < oo;

lim p(lzDlu” ()¢’ (2)° + 3u” (p(2)p" (2)¢' (2) + 1 (@(2))p" (2)] exp [;] =0

lp(z)|—1- 1- I(;O(Z)IZ)%2
lim u(lz)Bu” (p(2))¢’ (2)* + 6u” ((2))¢” (2)¢’ (z) + u(p(2))@” (2)| exp[ C s ] =0.
@)1 1 - lp(2)l? 1-lp@P) 7

Dl (9@ (2 + u(p(@)e" (@)¢' () c

| .

o= (1= lp@)P)? o [(1 - |qo(z)|2)“;2]
w2 lu(e@ i’ P c _

oo A-lp@PP [(1 - |(p<z>|2>“f] -

=0

4. The Boundedness and Compactness of the Operator C; g from NZ to Z,

In this section, we give some characterizations of the boundedness and compactness of the operator
Cg,g from N? to Zu
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Theorem 13. Let g € H(ID) and ¢ be an analytic self-map of ID , 1 < p < co and o > =1 and i is a normal function
on [0,1). Then CF, , : Ni — Z, is bounded if and only if

sup M@’ @)
ze]]ID) 1 - o))+

C
exp m| < (23)
[(1 —lp@)P) " ]

and

(TN S PN o
) v

2 - le@Pr “Pla T

Proof. Suppose that C’(ZW NP —Z, is bounded, i.e.l, there exists a constant C such that ||C(’;,g fll z, <Cl £l AP
forall f € N,. Now taking f(z) = £ and f(z) =

- and obviously each of them belongs to N, and using
the boundedness of the function ¢(z), we get

sup u(lz)lg’(z)| < oo (25)
zeD

and
sup (1z)lg@)lle’ (2)] < oo. (26)
zeD

For w € D, set

at2 at2

(1 - lpz)P) ] Z }_exp {C[ 1-lp(z)P ] v }

Bl LA 27
(1 - p(z)w)f*! (1-pR)w)? 7

£(w) = R@) exp {c[

where )
P,1[27,(1 - T
R = - PARUA=@DT__a+2
Pual(B+ 17, (1= lp(2)P)7] p
For a fixed parameter A, P,[A, (1 — |p(z)*)°] is a bounded real-value function for all z € D and the constant
term of P,[A,x] is (cA)"*L, then P,[A, (1 — lp(2)*)*] = (cA)"*L. Moreover, for a fixed parameter x € (0,1),

P,[A, x] is a monotonously increasing function for A € (0, +00). So by the properties of the function P,[A, x],
there exist 6; > 0 and € IN such that

R@)Pu[(B+ D7, (1 - o)) - Pal27, (1 - lp(2)P)7]
= R@P4[(B+ D7, (1 = lp@)P)] = Pul27, (1 = lp@))] = 61. (28)
Then f, € N? for all z € D, and sup,p llf:l VS C. Moreover, using Lemma 4 and Lemma 5, we get
Mpz) =0
and by (28)

e exp| | : :
(1~ [p@P) D %@W“¢+”LU—W®HI—mDLG—Wc»n

oilp(z)I™! ox [ c ]
(1= lp@P)DeD P (1-lp@P)+ T

" @)
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It follows that

w0 > G-z, Il 2 1) 0fllz, = sup u(@DI(Cfo)" @)

= sup (@)l (@@) (@)g(@) + £ (@(@)g ()]

weD

> ulDl " @@ (2)9z) + £ (0)g (2]
u(Dg@llp’ @llpEI o1 [ c ]
(1 = lp(z)2)m+ D+ 1-lp@PR) 5
and then

(2Dlg@)lle’ @lipE)"!
(1 - @)y
For any fixed v € (0,1),
#lDlg@le" @I [ c ]
lp(z)|>r (1- |(P(Z)|2)n+1 (1- |§0(Z)|2)T

1 p(zDlg@)le’ @)lp) c
= |;<z>|lir ri (1= lp@)P)? ) [(1 ~lp@)P) T

1 - lp@PR)F

| <eo.

By (26),

p(IzDlg@llg’ () ox [ c ]
lp(z)l<r (1- |(P(Z)|2)n+1 (1- |§0(Z)|2)a7+2

sup u(lzDlg(z)lle’ (z)lexp[

= 2 1
(1_r)n+ lpz)l<r

Therefore, (30) and (31) yield (23).
Next, set

_rz)p ]<OO'

h.(w) = Q(z) exp { [%]T} exp {c[%]ﬁ },

where s

Pu[27,(1 = |p(2)I7)] a+2

Q@) = =2
Pul(y + D7, (1 = lp(2)1)7] 14

Then similar to (28), there exist 6, > 0 and y € IN such that

Q@)Pual(y + 11, (1 = @)1 = Pyaa[27, (1 = p2)P)7]| = 2.
Then h, € N, for all z € D, and sup,p Il A< C. Moreover, using Lemma 5, we get

W (p(2) =0

and by (33)
" p(2)I" exp [1 o ]
@ = —go o ]Q( Pual(y + 1), (1 = lp@P)] - Pt 27, (1 - lp(@)P)']
Salp(E)P ¢
T~ lp@PyeD P [(1 P |

c
exp[—+] < QICh, £z, (1 - lpE@P) ™ < .

692

(29)

(30)

(81)

(32)

(33)
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It follows that

n

o > Ch Mz, Wiellyg > 1C) ghellz, > sup p@DI(Cl )" (@)l
weD

= sup (@) (@@)g’ (@)g(@) + 1" (p(w))g ()|

weD

> u(l)HV(@@)e (2)g) + 1 (pE)g @)
u(IzDlg’ @)llp )"0z o [ c ]
(1 = lp(z)P)m+D 1 -lp@E)PR)
and then
w(lz)lg @)l )" c ] .
h, - 00,
R R [(l_@(z)'z)af <CIIC Jullz, (1 - lp(z)P)"*< (34)

Combining (34) with (25), similar to the former proof, we get (24).
For the converse, suppose that (23) and (24) hold. For any f € N, by Lemma 3, we have

HEDICh @1 = u2Df " V@) @9 + fP(@E)g ()

D" D @@ @9 + p(l f (p(2)g' @)

u(izDlg@)llg’ ) clifllng MENC clifllng
(=GR = [<1 - lp@P) T I+ (= lp@Py = [(1 - lp@P)F |

Moreover, |(CF, , £)(0)] =0and

IA

90) ex[ cllflln ]<OO
A= lp@Pr “PLq Sipop 1 -

(Cp 0 /) O = 1f " (9(0)g(0)] <

So we have
ICG, 4 fllz, = I(C o HO) +1(CG . ) (O)] + Su]g p(IzDI(CG,  f) (@) < .

Therefore Cf; , : N} — Z, is bounded. The proof of the theorem is completed. []

Theorem 14. Let g € H(ID) and ¢ be an analytic self-map of D, 1 < p < oo and a > =1 and p is a normal function
on [0,1). Then C, ,: Ni; — Z, is compact if and only if Cl, , - Niy — Z,, is bounded,

w(zDlg@)lle’ )| c
= 5
|§0(Zl)f31_ (1- |(P(Z)|2)n+1 exp [(1 ~ |(p(z)|2)n7+2 ] 0 (35)
and
p(lzDlg’ ()l 36)

im ex [ ¢ ]— 0
@1 (1— @R ¥ 1-lp@P) 5 o

Proof. Suppose that Cj, ; : NI — Z, is compact, then Cog: N} — Z, isbounded. Let {z}ten be a sequence
in ID such that [¢(z¢)| = 17 as k — oo. Set

Then {f;} is a bounded sequence in N} by Theorem 13, and converges to 0 uniformly on compact subsets of
ID as k — co. Then limy_, ||C$,g Sl z,=0. On the other hand, similar to the proof of Theorem 13, we have
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1(lzilg(zllg’ (i)l o™ ox [ c

n _ 2\(n+1)t
e =| = iz, - Ry 37)

1= lp@)lP) »

Since |p(zx)l = 1~ as k — oo, we get

- #(Izk|)|g(2k)”(P’(Zk)||(P(Zk)|n+1 [ c ]
- m ex

ullzeDlg(zi)llg’ (zx)! ox [ c ]
( k—oa (1 = lp(zp) )+t 1- |(P(Zk)|2)%2

o1 (1= [p(zp)R)r ! 1-lp@E)R) 7

< HmICp,fillz, (1 - o)D" = 0.
From which we get (35).
Next, set
_ (1= lp@E)Py 15 1-lp@)P 1%
hk(w) = Q(Zk) exp {C[W] } - Q(Zk) +1- exp {C[m] }

Then {/} is a bounded sequence in N, by Theorem 13, and converges to 0 uniformly on compact subsets
of D as k — co. Then we have limi, [|C, /illz, = 0. On the other hand, similar to the proof of Theorem
13, we have

w(zilg’ llpzel” ox [ c
A= lpt@)f)" (1= lp@)P) 7
Since |p(zx)] = 17 as k — oo, we get

. H(leDlg,(zk)l o [ c ] - lim H(lzkl)lg'(zk)H(P(Zk)W ox [ Cc ]
lp)l—1- (1 = |p(ze) )" (1- |(P(Zk)|2)%2 koo (1= lp(zi)lP)" (1- |g0(zk)|2)%2

| = aicy iz a - oy (38)

< lim Gy hillz, (1 - lp(0)P)"™ = 0.
From which we get (36) .
Conversely, suppose that Cog: N = Z i is bounded and (35) and (36) hold. Assume that {f;}xen is a

bounded sequence in N} such that f; converges to 0 uniformly on compact subsets of ID as k — co. By the
assumption, for any € > 0, there exists a 6 € (0, 1) such that

zDlg@)llp’ (z c €
e a3 >
and
zDlg' (z c €
Sl .
whenever 6 < |¢(z)| < 1. By the boundedness of Cf, , : N — Z, and the proof of Theorem 13,
Cz = sup p(Nlg@lle’ @) < o (41)
and
Cs = sup u(lzDlg’ (2)] < 0. (42)

zeD

Then by Lemma 3, (41), (42), (43) and (44) , we have that
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IA

sup p(D(Cpef) I < sup u(DI " p@)g @9 + sup plDI (@) @)

IN

sup p(DIf" (@@)g' @9()] + sup u(2Dlf " (@E)g @)l
lp(2)|<06 lp(2)|<6

+ sup (D" e@)e (2)9(2)]

0<p(z)I<1

+ sup ‘u(|Z|)|fk(n)((P(Z))!7,(Z)|

0<p(z)I<1

Cy sup [f" (@@ +Cs sup 1f (@)
lp(z)I<6 lp(z)I<6

.\ KDyl @1 [ cllfellng ]
s<pi<1 (1= lp@)P)H! 1-lp@P) T
HENACIIN [ cllfellny ]
s<pi<1 (L= lp@)P)" 1 - lp@PR) T
C, sup Ifk("ﬂ)(a))l + Cysup Ifk”)(a))l +e€.

w<o w<o

IA

+

IA

Then
IC2 ,fillz, < Casup £ (@)l + Cs sup [ ()] + € + [ £ (@O)Ig(O)!. (43)

W<0 <o
Since fi converges to 0 uniformly on compact subsets of ID as k — oo, Cauchy’s estimation gives that fk(")
and f("+1) also do as k — oo, and both {z € D : |z| < 6} and {0} are compact subsets of ID. Hence, letting

k— 00 in (45), we get limy_,o ||C$/gfk||zy = 0. By Lemma 1, we see that C('ZW cNE — Z, is compact. The
proof is completed. [

From Theorem 13 and Theorem 14, we can obtain the following corollary.

Corollary 15. Let g € H(ID) and ¢ be an analytic self-map of ID , 1 < p < coand a > —1 and p is a normal function
on [0,1). Then the following statements are equivalent:

(D) Coy NP — Z, is bounded;

(i) Cy, , : Nig = Zy is compact;

(iii)
sup u(Dlg(E)lp () < oo and sup (iDlg'2)] < oo (44)
zeD
(Dl @)l @) c )
w1 (= lp@P)T T [(1 @R -0 (45)
and

u(lzDlg’ ()|
w1 lp@P)y T [(1 - I(P(Z)Iz)”] '

(46)

Proof. 1t is easy to see that (iii) = (ii) , and (i) = (i) is obvious.
(i) = (iii). Suppose that Co: N —Z u is bounded , then (25) and (26) implies (46). In (29), let |p(z)] — 17,
we get

p(zDlg(2)lle’ (2)] c L wDlg@)lle’ @)l )M c
POt (1— lp@Ry [(1_@(2”2)“52] R R T I [(1_|¢(Z)|z)“;2]
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i.e., we get (47). Similar to this with (34), we can get (48). The proof is completed. [

Theorem 16. Let g € H(ID) and ¢ be an analytic self-map of D, 1 < p < oo and a > =1 and p is a normal function
on [0, 1). Then the following statements are equivalent:
(i) C} g = Nig = Zyo is bounded;

(ii) Cly , : NIy > Z,0 is compact;

(iif)
Izllijgl, p(zDlg@)lle’ (2) = 0 and Izllijgy p(zhlg’' ) =0 (47)
. u(zDlg@)lle’ ()l c
1 =0 48
s (1= lp@P) exP[(l—I(p(z)IZ)“f] “8)
and

u(lzDlg’ ()| [ c ]
im ex —|=0. (49)
-1- (1 = |p(z)[?)" P (1- |(p(Z)|2)72
Proof. (ii) = (i). This implication is obvious.
(i) = (iii). Suppose that C,; : NP — Zup is bounded. By utilizing functions f(z) = ‘Z—': and f(z) = %, we
obtain (49).
Since C§,; : N — Z u is bounded, by Corollary 15, we conclude that (47) and (48) hold. Thus for any € > 0,
there exists a t € (0,1) , such that
(lzh)lg (zz)l exp[ ¢ ] e (50)
A=lp@P" L - jp@E)Pp) 5
whenever t < |¢p(z)| < 1. Moreover, from limy - p(|z])lg’(z)] = 0, we infer that there exists an r € (0, 1) such
that forr < |z] < 1,

Bl @) < (1 = )" exp| —— | Q)
(1-£)
from which, if r < |z| < 1 and |p(z)| < t, then we have
u(lzDlg’ ()| c p(lzDlg’ (2)] c
- lp@Py [(1 _ |<p(z)|2)“52] = - & | [<e
From (53) and (54), we see that whenever r < |z| < 1,
p(zDlg’ )l c
(I =Tp@Fy = [<1 - |(p<z>|2>"f] o
which implies that (51) holds. Employing (47) and lim;—1- u(|z)lg(z)lle’ (z)| = 0, with similar argument, we
obtain (50).
(iii) = (ii). Suppose (49) and (50) and (51) hold. Let f € N, by Lemma 3, we have
p(ZDICh o )@ < w2l p@)¢’ @9 + )l (@) @)
u(lzDlg@)lle’ (2)I cllfllp 1(zDlg’ (2)] cllfllne
- lp@Rr &P [<1 @R |+ T=ipmr o [(1 TR T |

Taking the supremum in this inequality over all f € N such that ||f|| n < 1, applying (50) and (51) we
obtain

(52)

a+2

-7

lim sup p(lzDI(C,f)" (2)l = 0.

|z|—>1- <
Ifllp <1

The result follows from Lemma 2. [
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