

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Some Product-Type Operators from Area Nevanlinna Spaces to Zygmund-Type Spaces

Haiying Lia, Zhitao Guoa

^aHenan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, P.R.China.

Abstract. The boundedness and compactness of product-type operators and integral-type operators from area Nevanlinna spaces to Zygmund-type spaces and little Zygmund-type spaces are investigated.

1. Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk of the complex plane \mathbb{C} and $H(\mathbb{D})$ the space of all analytic functions on \mathbb{D} . Let $1 \le p < \infty$ and $\alpha > -1$, a function $f \in H(\mathbb{D})$ belongs to the area Nevanlinna space $\mathcal{N}_{\alpha}^{p} = \mathcal{N}_{\alpha}^{p}(\mathbb{D})$ if

$$||f||_{\mathcal{N}_{\alpha}^{p}}^{p}=\int_{\mathbb{D}}[\log(1+|f(z)|)]^{p}dA_{\alpha}(z)<\infty,$$

where $\alpha > -1$, $dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha}dA(z)$ is the weighted Lebesgue measure on \mathbb{D} . For some details, see [48, 53–56].

Let μ be a positive continuous function on [0,1). We say that μ is normal if there exist two positive numbers a and b with 0 < a < b, and $\delta \in [0,1)$ such that (see [7])

$$\frac{\mu(r)}{(1-r)^a}$$
 is decreasing on $[\delta, 1)$, $\lim_{r\to 1} \frac{\mu(r)}{(1-r)^a} = 0$;

$$\frac{\mu(r)}{(1-r)^b} \text{ is increasing on } [\delta, 1), \lim_{r \to 1} \frac{\mu(r)}{(1-r)^b} = \infty.$$

A function $f \in H(\mathbb{D})$ belongs to the Zygmund-type space \mathcal{Z}_{μ} if

$$\sup_{z\in\mathbb{D}}\mu(|z|)|f''(z)|<\infty,$$

where μ is a normal function. It is a Banach space with norm

$$||f||_{\mathcal{Z}_{\mu}} = |f(0)| + |f'(0)| + \sup_{z \in \mathbb{D}} \mu(|z|)|f''(z)|.$$

2010 Mathematics Subject Classification. Primary 42E35; Secondary 47B38, 47B33, 30H30

Keywords. Product-type Operators, integral-type operators, Area Nevanlinna Spaces, Zygmund-type Spaces

Received: 23 December 2014; Accepted: 08 February 2015

Communicated by Dragan S. Djordjević

Corresponding author: Haiying Li

Research supported by the NNSF of China (Nos.11201127;11271112) and IRTSTHN (14IRTSTHN023).

Email addresses: haiyingli2012@yahoo.com (Haiying Li), guotao60698@163.com (Zhitao Guo)

The little Zygmund-type space $\mathcal{Z}_{\mu,0}$ consists of those functions f in \mathcal{Z}_{μ} satisfying

$$\lim_{|z| \to 1^{-}} \mu(|z|) |f''(z)| = 0$$

and it is easy to see that $\mathcal{Z}_{\mu,0}$ is a closed subspace of \mathcal{Z}_{μ} . When $\mu(r) = (1 - r^2)$, the induced spaces \mathcal{Z}_{μ} and $\mathcal{Z}_{\mu,0}$ become the classical Zygmund space and little Zygmund space respectively (see [2, 5, 9, 20, 32, 48]). Let $u \in H(\mathbb{D})$. It is well known that the multiplication operator is defined by

$$(M_u f)(z) = u(z)f(z), f \in H(\mathbb{D}).$$

Let φ be an analytic self-map of \mathbb{D} . The composition operator C_{φ} is defined by

$$(C_{\varphi}f)(z) = f(\varphi(z)), f \in H(\mathbb{D}).$$

The composition operator and operators that include it into itself have been studied by many researchers on various spaces (see, for example, [1], [2], [5]-[60]). Let *D* be the differentiation operator defined by

$$Df(z) = f'(z), f \in H(\mathbb{D}).$$

In [12], the author defines six product operators as follows:

$$(M_{u}C_{\varphi}Df)(z) = u(z)f'(\varphi(z)),$$

$$(M_{u}DC_{\varphi}f)(z) = u(z)\varphi'(z)f'(\varphi(z)),$$

$$(C_{\varphi}M_{u}Df)(z) = u(\varphi(z))f'(\varphi(z)),$$

$$(DM_{u}C_{\varphi}f)(z) = u'(z)f(\varphi(z)) + u(z)\varphi'(z)f'(\varphi(z)),$$

$$(C_{\varphi}DM_{u}f)(z) = u'(\varphi(z))f(\varphi(z)) + u(\varphi(z))f'(\varphi(z)),$$

$$(DC_{\varphi}M_{u}f)(z) = u'(\varphi(z))\varphi'(z)f(\varphi(z)) + u(\varphi(z))\varphi'(z)f'(\varphi(z))$$

for $z \in \mathbb{D}$ and $f \in H(\mathbb{D})$. He studies the boundedness and compactness of these product operators between weighted Bergman-Nevanlinna and Bloch-type spaces. In [5], the authors defined and studied the generalized composition operator

$$(C_{\varphi}^g f)(z) = \int_0^z f'(\varphi(\xi))g(\xi)d\xi, \ z \in \mathbb{D}, \ f \in H(\mathbb{D})$$

for the first time, and the boundedness and compactness of C_{φ}^g on Zygmund spaces and Bloch spaces were investigated in it. In [57], the author defines the next integral-type operator

$$(C_{\varphi,g}^n f)(z) = \int_0^z f^{(n)}(\varphi(\xi))g(\xi)d\xi, \ z \in \mathbb{D}, \ f \in H(\mathbb{D})$$

and studies the boundedness and compactness of the operator from H^{∞} to Zygmund-type spaces. When n=1, then the integral-type operator is the generalized composition operator C_{φ}^g . The purpose of this paper is to characterize the boundedness and compactness of product operators $M_u C_{\varphi} D, M_u D C_{\varphi}, C_{\varphi} M_u D, D M_u C_{\varphi}, C_{\varphi} D M_u, D C_{\varphi} M_u$ and the integral-type operator $C_{\varphi,g}^n$ from area Nevanlinna spaces to Zygmund-type spaces and little Zygmund-type spaces. In what follows, we use letter C to denote a positive constant whose value may change its value at each occurrence.

2. Auxiliary Results

Our first lemma characterizes compactness in terms of sequential convergence. Since the proof is standard, it is omitted here (see, Proposition 3.11 in [1]).

Lemma 1. Suppose that φ is an analytic self-map of \mathbb{D} , $u \in H(\mathbb{D})$, $1 \le p < \infty$, $\alpha > -1$ and μ is a normal function on [0,1). Let T be $M_u C_{\varphi} D$, $M_u D C_{\varphi}$, $C_{\varphi} M_u D$, $D M_u C_{\varphi}$, $C_{\varphi} D M_u$, $D C_{\varphi} M_u$ or $C_{\varphi,g}^n$. Then the operator $T: \mathcal{N}_{\alpha}^p \to \mathcal{Z}_{\mu}$ is compact if and only if for each sequence $\{f_k\}_{k \in \mathbb{N}}$ which is bounded in \mathcal{N}_{α}^p and converges to zero uniformly on compact subsets of \mathbb{D} as $k \to \infty$, we have $\|Tf_k\|_{\mathcal{Z}_u} \to 0$ as $k \to \infty$.

Lemma 2. A closed set K in $\mathcal{Z}_{\mu,0}$ is compact if and only if it is bounded and satisfies

$$\lim_{|z| \to 1^{-}} \sup_{f \in K} \mu(|z|)|f''(z)| = 0.$$

The proof of it is similar to that of [10], so we omit the details.

Lemma 3. Let n be a nonnegative integer, $1 \le p < \infty$ and $\alpha > -1$. Then there exists some C such that for each $f \in \mathcal{N}_{\alpha}^{p}$ and $z \in \mathbb{D}$,

$$|f^{(n)}(z)| \le \frac{1}{(1-|z|^2)^n} \exp\left[\frac{C||f||_{\mathcal{N}^p_\alpha}}{(1-|z|^2)^{\frac{\alpha+2}{p}}}\right].$$

The Lemma 3 can be found in [53]. The next Lemma 4 is the classic formula (see, e.g. [3]).

Lemma 4. *If* f(z) *is an analytic function in complex plane and* $\varphi(z) \in H(\mathbb{D})$ *, then for each positive integer n,*

$$(f \circ \varphi)^{(n)}(z) = \sum \frac{n!}{k_1! k_2! \cdots k_n!} f^{(k)}(\varphi(z)) \prod_{j=1}^n \left(\frac{\varphi^{(j)}(z)}{j!} \right)^{k_j}, z \in \mathbb{D},$$

where the sum is over all different solutions in nonnegative integers k_1, k_2, \dots, k_n of $k = k_1 + k_2 + \dots + k_n$ and $n = k_1 + 2k_2 + \dots + nk_n$.

Lemma 5. Let

$$f_z(\omega) = \exp\left\{c\left[\frac{(1-|\varphi(z)|^2)^{\beta}}{(1-\overline{\varphi(z)}\omega)^{\beta+1}}\right]^{\frac{\alpha+2}{p}}\right\},\,$$

where φ is an analytic self-map of \mathbb{D} , and $\alpha > -1$, $\beta \in \mathbb{N}$, and $z, \omega \in \mathbb{D}$. Then

$$f_z^{(n)}(\varphi(z)) = \frac{\overline{\varphi(z)}^n P_{n-1}[(\beta+1)\tau, (1-|\varphi(z)|^2)^\tau]}{(1-|\varphi(z)|^2)^{n(\tau+1)}} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right],$$

here $\tau = \frac{\alpha+2}{p}$ and $P_{n-1}[\lambda, x]$ is the n-1-degree polynomial, i.e.

$$P_{n-1}[\lambda, x] = \sum \frac{n! \prod_{j=1}^{n} \left[\frac{c\lambda(\lambda+1)\cdots(\lambda+j-1)}{j!}\right]^{k_j}}{k_1! k_2! \cdots k_n!} x^{n-k}.$$

The proof can be obtained according to Lemma 4, so we omit it here.

3. Boundedness and Compactness of Product-Type Operators from \mathcal{N}^p_α to \mathcal{Z}_μ

In this section, we give some characterizations of the boundedness and compactness of product-type operators from \mathcal{N}^p_α to \mathcal{Z}_μ .

Theorem 6. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0,1). Then the following statements are equivalent:

(i) $M_u C_{\varphi} D : \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu}$ is bounded;

(ii) $M_u C_{\varphi} D : \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu}$ is compact;

(iii)

$$M_1 = \sup_{z \in \mathbb{D}} \mu(|z|)|u''(z)| < \infty; \tag{1}$$

$$M_2 = \sup_{z \in \mathbb{D}} \mu(|z|)|2u'(z)\varphi'(z) + u(z)\varphi''(z)| < \infty;$$
 (2)

$$M_3 = \sup_{z \in \mathbb{D}} \mu(|z|) |u(z)| |\varphi'(z)|^2 < \infty;$$
(3)

$$\lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|)|\mu(z)||\varphi'(z)|^{2}}{(1 - |\varphi(z)|^{2})^{3}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0;$$
(4)

$$\lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|)|2u'(z)\varphi'(z) + u(z)\varphi''(z)|}{(1 - |\varphi(z)|^{2})^{2}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0;$$
(5)

$$\lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|)|u''(z)|}{1 - |\varphi(z)|^{2}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0.$$
(6)

Proof. (i) \Rightarrow (iii). Suppose that (i) holds. Now take the function f(z) = z, since $M_u C_{\varphi} D : \mathcal{N}_{\alpha}^p \to \mathcal{Z}_{\mu}$ is bounded, then we get

$$\sup_{z \in \mathbb{D}} \mu(|z|)|u''(z)| \le ||M_u C_{\varphi} Dz|| \le C||M_u C_{\varphi} D|| < \infty. \tag{7}$$

This gives (1). By taking the function $f(z) = \frac{z^2}{2}$, we have

$$\sup_{z \in \mathbb{D}} \mu(|z|) |u''(z)\varphi(z) + 2u'(z)\varphi'(z) + u(z)\varphi''(z)| \le ||M_u C_{\varphi} D \frac{z^2}{2}|| \le C||M_u C_{\varphi} D|| < \infty. \tag{8}$$

By (7) and the boundedness of φ , we get (2). By taking the function $f(z) = \frac{z^3}{6}$, we have

$$\sup_{z \in \mathbb{D}} \mu(|z|) \left| \frac{1}{2} u''(z) \varphi(z)^2 + 2u'(z) \varphi(z) \varphi'(z) + u(z) \varphi'(z)^2 + u(z) \varphi(z) \varphi''(z) \right| \\
\leq \|M_u C_{\varphi} D \frac{z^3}{6} \| \leq C \|M_u C_{\varphi} D \| < \infty. \tag{9}$$

By (7), (8) and the boundedness of φ , we get (3). For $\omega \in \mathbb{D}$, set

$$f_{z}(\omega) = \left[\frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+4}{p}}} - 3 \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+3}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+5}{p}}} + 3 \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+4}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+6}{p}}} - \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+5}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+5}{p}}} \right] \exp\left[c \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+4}{p}}}\right].$$

Then $f_z \in \mathcal{N}^p_\alpha$, and moreover $\sup_{z \in \mathbb{D}} ||f_z||_{\mathcal{N}^p_\alpha} \leq C$. We can calculate that

$$f_z'(\varphi(z))=f_z''(\varphi(z))=0$$

and

$$f_z'''(\varphi(z)) = C_1 \frac{-\overline{\varphi(z)}^3}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p} + 3}} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right]$$

where $C_1 = \frac{6}{p^3}$. It follows that

$$\begin{split} & \infty > \|M_{u}C_{\varphi}D\|_{\mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}}\|f_{z}\|_{\mathcal{N}_{\alpha}^{p}} \geq \|M_{u}C_{\varphi}Df_{z}\|_{\mathcal{Z}_{\mu}} \geq \sup_{\omega \in \mathbb{D}} \mu(|\omega|)|(M_{u}C_{\varphi}Df_{z})''(\omega)| \\ & \geq \mu(|z|)|u''(z)f_{z}'(\varphi(z)) + (2u'(z)\varphi'(z) + u(z)\varphi''(z))f_{z}''(\varphi(z)) + u(z)\varphi'(z)^{2}f_{z}'''(\varphi(z))| \\ & = \frac{C_{1}\mu(|z|)|u(z)||\varphi'(z)|^{2}|\varphi(z)|^{3}}{(1 - |\omega(z)|^{2})^{\frac{\alpha+2}{p}+3}} \exp\left[\frac{c}{(1 - |\omega(z)|^{2})^{\frac{\alpha+2}{p}}}\right] \end{split}$$

and then

$$\frac{\mu(|z|)|u(z)||\varphi'(z)|^2|\varphi(z)|^3}{(1-|\varphi(z)|^2)^3} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] \le C(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}} < \infty. \tag{10}$$

Taking the limit as $|\varphi(z)| \to 1^-$ in (10), we get (4). For $\omega \in \mathbb{D}$, set

$$h_{z}(\omega) = \left[\frac{2\alpha + p + 6}{2\alpha + p + 5} \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+4}{p}}} - \frac{6\alpha + 3p + 17}{2\alpha + p + 5} \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+3}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+5}{p}}} + \frac{6\alpha + 3p + 16}{2\alpha + p + 5} \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+4}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+6}{p}}} - \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+5}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+6}{p}}} \right] \exp \left[c \left(\frac{2\alpha + 5}{2\alpha + 4} \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+4}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+4}{p}}} - \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+5}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+5}{p}}} \right) \right].$$

Then $h_z \in \mathcal{N}^p_{\alpha}$, and moreover $\sup_{z \in \mathbb{D}} ||h_z||_{\mathcal{N}^p_{\alpha}} \leq C$. We can calculate that

$$h_z'(\varphi(z)) = h_z'''(\varphi(z)) = 0$$

and

$$h_z''(\varphi(z)) = C_2 \frac{\overline{\varphi(z)}^2}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}+2}} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right]$$

where $C_2 = \frac{2}{p^2(2\alpha+p+5)}$. It follows that

$$> ||M_{u}C_{\varphi}D||_{\mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}}||h_{z}||_{\mathcal{N}_{\alpha}^{p}} \ge ||M_{u}C_{\varphi}Dh_{z}||_{\mathcal{Z}_{\mu}} \ge \sup_{\omega \in \mathbb{D}} \mu(|\omega|)|(M_{u}C_{\varphi}Dh_{z})''(\omega)|$$

$$\ge \mu(|z|)|u''(z)h'_{z}(\varphi(z)) + (2u'(z)\varphi'(z) + u(z)\varphi''(z))h''_{z}(\varphi(z)) + u(z)\varphi'(z)^{2}h'''_{z}(\varphi(z))|$$

$$= \frac{C_{2}\mu(|z|)|2u'(z)\varphi'(z) + u(z)\varphi''(z)||\varphi(z)|^{2}}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right].$$

and then

$$\frac{\mu(|z|)|2u'(z)\varphi'(z) + u(z)\varphi''(z)||\varphi(z)|^2}{(1 - |\varphi(z)|^2)^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] \le C(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}} < \infty. \tag{11}$$

Taking the limit as $|\varphi(z)| \to 1^-$ in (11), we get (5). For $\omega \in \mathbb{D}$, set

$$k_{z}(\omega) = \left[(1 - r_{2} - r_{3}) \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+4}{p}}} + r_{2} \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+3}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+5}{p}}} + r_{3} \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+4}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+6}{p}}} - \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+5}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+7}{p}}} \right] \cdot \exp \left[c \left(-\frac{\alpha + 3}{\alpha + 2} \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+4}{p}}} + \frac{4\alpha + 12}{2\alpha + 5} \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+3}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+6}{p}}} - \frac{(1 - |\varphi(z)|^{2})^{\frac{\alpha+4}{p}}}{(1 - \overline{\varphi(z)}\omega)^{\frac{2\alpha+6}{p}}} \right) \right],$$

where

$$r_2 = -\frac{144\alpha^3 + 108\alpha^2p + 30\alpha p^2 + 1140\alpha^2 + 570\alpha p + 2964\alpha + 3p^3 + 78p^2 + 741p + 2538}{48\alpha^3 + 36\alpha^2p + 10\alpha p^2 + 348\alpha^2 + 174\alpha p + 836\alpha + p^3 + 24p^2 + 209p + 666},$$

$$r_3 = \frac{36\alpha^2 + 18\alpha p + 3p^2 + 192\alpha + 48p + 249}{12\alpha^2 + 6\alpha p + p^2 + 60\alpha + 15p + 74}.$$

Then $k_z \in \mathcal{N}_{\alpha}^p$, and moreover $\sup_{z \in \mathbb{D}} ||k_z||_{\mathcal{N}_{\alpha}^p} \leq C$. We can calculate that

$$k_z''(\varphi(z)) = k_z'''(\varphi(z)) = 0$$

and

$$k_z'(\varphi(z)) = C_3 \frac{-\overline{\varphi(z)}}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}+1}} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right], \ C_3 = -\frac{r_2+2r_3-3}{p}.$$

It follows that

$$\begin{split} & \infty > \|M_{u}C_{\varphi}D\|_{\mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}} \|k_{z}\|_{\mathcal{N}_{\alpha}^{p}} \geq \|M_{u}C_{\varphi}Dk_{z}\|_{\mathcal{Z}_{\mu}} \geq \sup_{\omega \in \mathbb{D}} \mu(|\omega|) \|(M_{u}C_{\varphi}Dk_{z})''(\omega)\| \\ & \geq \mu(|z|) \|u''(z)k'_{z}(\varphi(z)) + (2u'(z)\varphi'(z) + u(z)\varphi''(z))k''_{z}(\varphi(z)) + u(z)\varphi'(z)^{2}k'''_{z}(\varphi(z))\| \\ & = \frac{C_{3}\mu(|z|) \|u''(z)\|\varphi(z)\|}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}+1}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] \end{split}$$

and then

$$\frac{\mu(|z|)|u''(z)||\varphi(z)|}{1-|\varphi(z)|^2} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] \le C(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}} < \infty. \tag{12}$$

Taking the limit as $|\varphi(z)| \to 1^-$ in (12), we get (6).

(iii) \Rightarrow (ii). Suppose that (iii) holds. Assume $\{f_k\}_{k\in\mathbb{N}}$ is a bounded sequence in \mathcal{N}^p_α with $\|f_k\|_{\mathcal{N}^p_\alpha} \leq K$ and f_k converges to 0 uniformly on compact subsets of \mathbb{D} as $k \to \infty$. By the assumption, for any $\epsilon > 0$, there exists a $\delta \in (0,1)$ such that

$$\frac{\mu(|z|)|u''(z)|}{1-|\varphi(z)|^2}\exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] < \frac{\epsilon}{3}$$

$$\tag{13}$$

$$\frac{\mu(|z|)|2u'(z)\varphi'(z) + u(z)\varphi''(z)|}{(1 - |\varphi(z)|^2)^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] < \frac{\epsilon}{3}$$
(14)

$$\frac{\mu(|z|)|u(z)||\varphi'(z)|^2}{(1-|\varphi(z)|^2)^3} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] < \frac{\epsilon}{3}$$
(15)

whenever $\delta < |\varphi(z)| < 1$. Then by (13), (14), (15) and Lemma 3, we have

$$\begin{split} \|M_{u}C_{\varphi}Df_{k}\|_{\mathcal{Z}_{\mu}} &= \|(M_{u}C_{\varphi}Df_{k})(0)\| + \|(M_{u}C_{\varphi}Df_{k})'(0)\| + \sup_{z \in \mathbb{D}} \mu(|z|)\|(M_{u}C_{\varphi}Df_{k})''(z)\| \\ &\leq \|u(0)f_{k}'(\varphi(0))\| + \|u'(0)f_{k}'(\varphi(0))\| + \|u(0)f_{k}''(\varphi(0))\varphi'(0)\| \\ &+ \sup_{|\varphi(z)| \leq \delta} \mu(|z|)\|u''(z)f_{k}'(\varphi(z))\| + \sup_{\delta < |\varphi(z)| < 1} \mu(|z|)\|u''(z)f_{k}'(\varphi(z))\| \\ &+ \sup_{|\varphi(z)| \leq \delta} \mu(|z|)\|(2u'(z)\varphi'(z) + u(z)\varphi''(z))f_{k}''(\varphi(z))\| \\ &+ \sup_{\delta < |\varphi(z)| < 1} \mu(|z|)\|(2u'(z)\varphi'(z)^{2}f_{k}'''(\varphi(z))\| + \sup_{\delta < |\varphi(z)| < 1} \mu(|z|)\|u(z)\varphi'(z)^{2}f_{k}'''(\varphi(z))\| \\ &\leq \|u(0)f_{k}'(\varphi(0))\| + \|u'(0)f_{k}'(\varphi(0))\| + \|u(0)f_{k}''(\varphi(0))\varphi'(0)\| \\ &+ M_{1} \sup_{|\varphi(z)| \leq \delta} |f_{k}''(\varphi(z))| + M_{2} \sup_{|\varphi(z)| \leq \delta} |f_{k}'''(\varphi(z))| + M_{3} \sup_{|\varphi(z)| \leq \delta} |f_{k}'''(\varphi(z))| \\ &+ \sup_{\delta < |\varphi(z)| < 1} \frac{\mu(|z|)|u''(z)|}{1 - |\varphi(z)|^{2}} \exp\left[\frac{c\|f_{k}\|_{\mathcal{N}_{\alpha}^{p}}}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] \\ &+ \sup_{\delta < |\varphi(z)| < 1} \frac{\mu(|z|)|2u'(z)\varphi'(z) + u(z)\varphi''(z)|}{(1 - |\varphi(z)|^{2})^{2}} \exp\left[\frac{c\|f_{k}\|_{\mathcal{N}_{\alpha}^{p}}}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] \end{split}$$

$$\begin{split} & + \sup_{\delta < |\varphi(z)| < 1} \frac{\mu(|z|)|u(z)||\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^3} \exp\left[\frac{c||f_k||_{\mathcal{N}^p_\alpha}}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] \\ \leq & |u(0)f_k'(\varphi(0))| + |u'(0)f_k'(\varphi(0))| + |u(0)f_k''(\varphi(0))\varphi'(0)| \\ & + M_1 \sup_{|\omega| \le \delta} |f_k'(\omega)| + M_2 \sup_{|\omega| \le \delta} |f_k'''(\omega)| + M_3 \sup_{|\omega| \le \delta} |f_k'''(\omega)| + \epsilon. \end{split}$$

Since f_k converges to 0 uniformly on compact subsets of $\mathbb D$ as $k\to\infty$, Cauchy's estimation gives that f_k' , f_k'' and f_k''' also do as $k\to\infty$, and both $\{\omega\in\mathbb D: |\omega|\le\delta\}$ and $\{\varphi(0)\}$ are compact subsets of $\mathbb D$. Hence for any $\epsilon > 0$, there exists an N > 0 such that, whenever k > N, we have

$$|f_k'(\varphi(0))|<\epsilon \ , \ |f_k''(\varphi(0))|<\epsilon \ \text{ and } \sup_{|\omega|\leq \delta}|f_k^{(i)}(\omega)|<\epsilon$$

where i=1,2,3. It follows that $\lim_{k\to\infty} \|M_u C_{\varphi} Df_k\|_{\mathcal{Z}_{\mu}} = 0$. By Lemma 1, we see that the product operator $M_u C_{\varphi} D : \mathcal{N}_{\alpha}^p \to \mathcal{Z}_{\mu}$ is compact. (ii) \Rightarrow (i). This implication is obvious. The proof of the theorem is completed. \square

Theorem 7. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0,1). Then the following statements are equivalent:

(i)
$$M_u C_{\varphi} D: \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu,0}$$
 is bounded;
(ii) $M_u C_{\varphi} D: \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu,0}$ is compact;
(iii)

$$\lim_{|z| \to 1^{-}} \mu(|z|) |u''(z)| = 0; \tag{16}$$

$$\lim_{|z| \to 1^{-\epsilon}} \mu(|z|) |2u'(z)\varphi'(z) + u(z)\varphi''(z)| = 0; \tag{17}$$

$$\lim_{|z| \to 1^{-}} \mu(|z|) |u(z)| |\varphi'(z)|^{2} = 0; \tag{18}$$

$$\lim_{|z| \to 1^{-}} \frac{\mu(|z|)|u(z)||\varphi'(z)|^{2}}{(1 - |\varphi(z)|^{2})^{3}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0; \tag{19}$$

$$\lim_{|z| \to 1^{-}} \frac{\mu(|z|)|2u'(z)\varphi'(z) + u(z)\varphi''(z)|}{(1 - |\varphi(z)|^{2})^{2}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0; \tag{20}$$

$$\lim_{|z| \to 1^{-}} \frac{\mu(|z|)|u''(z)|}{1 - |\varphi(z)|^{2}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{a+2}{p}}}\right] = 0.$$
(21)

Proof. (ii) \Rightarrow (i). This implication is obvious.

(i) \Rightarrow (iii). Suppose that $M_u C_{\varphi} D: \mathcal{N}_{\alpha}^p \to \mathcal{Z}_{\mu,0}$ is bounded. Taking functions f(z) = z, $f(z) = \frac{z^2}{2}$ and $f(z) = \frac{z^3}{6}$ respectively, we get

$$\lim_{|z| \to 1^{-}} \mu(|z|) |u''(z)| = 0;$$

$$\lim_{|z| \to 1^{-}} \mu(|z|) |u''(z)\varphi(z) + 2u'(z)\varphi'(z) + u(z)\varphi''(z)| = 0;$$

$$\lim_{|z| \to 1^{-}} \mu(|z|) |\frac{1}{2}u''(z)\varphi(z)^{2} + 2u'(z)\varphi(z)\varphi'(z) + u(z)\varphi'(z)^{2} + u(z)\varphi(z)\varphi''(z)| = 0.$$

Thus (16), (17) and (18) hold. Since $M_u C_{\varphi} D : \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu}$ is bounded, by Theorem 6, we conclude that (4), (5) and (6) hold. By (6), for any $\epsilon > 0$, there exists a $t \in (0,1)$, such that

$$\frac{\mu(|z|)|u''(z)|}{1-|\varphi(z)|^2}\exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] < \varepsilon \tag{22}$$

whenever $t < |\varphi(z)| < 1$. Moreover, by (16), we infer that there exists an $r \in (0,1)$ such that for r < |z| < 1,

$$\mu(|z|)|u''(z)| < \epsilon(1-t^2) \exp\left[\frac{-c}{(1-t^2)^{\frac{\alpha+2}{p}}}\right]$$

from which, if r < |z| < 1 and $|\varphi(z)| \le t$, then we have

$$\frac{\mu(|z|)|u''(z)|}{1 - |\varphi(z)|^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] \le \frac{\mu(|z|)|u''(z)|}{1 - t^2} \exp\left[\frac{c}{(1 - t^2)^{\frac{\alpha+2}{p}}}\right] < \epsilon. \tag{23}$$

From (22) and (24), we see that whenever r < |z| < 1,

$$\frac{\mu(|z|)|u''(z)|}{1-|\varphi(z)|^2}\exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right]<\epsilon$$

which implies that (21) holds. Employing (4) and (18), with similar argument, we obtain (19). Employing (5) and (17), with similar argument, we obtain (20).

(iii) \Rightarrow (ii). Suppose (iii) holds. Let $f \in \mathcal{N}_{\alpha}^{p}$, by Lemma 3, we have

$$\begin{split} &\mu(|z|)|(M_{u}C_{\varphi}Df)''(z)|\\ &\leq \mu(|z|)|u''(z)f'(\varphi(z))| + \mu(|z|)|(2u'(z)\varphi'(z) + u(z)\varphi''(z))f''(\varphi(z))| + \mu(|z|)|u(z)\varphi'(z)^{2}f'''(\varphi(z))|\\ &\leq \frac{\mu(|z|)|u''(z)|}{1 - |\varphi(z)|^{2}} \exp\bigg[\frac{c||f||_{\mathcal{N}^{p}_{\alpha}}}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\bigg] + \frac{\mu(|z|)|2u'(z)\varphi'(z) + u(z)\varphi''(z)|}{(1 - |\varphi(z)|^{2})^{2}} \exp\bigg[\frac{c||f||_{\mathcal{N}^{p}_{\alpha}}}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\bigg] \\ &+ \frac{\mu(|z|)|u(z)||\varphi'(z)|^{2}}{(1 - |\varphi(z)|^{2})^{3}} \exp\bigg[\frac{c||f||_{\mathcal{N}^{p}_{\alpha}}}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\bigg]. \end{split}$$

Taking the supremum in this inequality over all $f \in \mathcal{N}^p_\alpha$ such that $||f||_{\mathcal{N}^p_\alpha} \le 1$, applying (19), (20) and (21) we obtain

$$\lim_{|z|\to 1^-} \sup_{\|f\|_{\mathcal{N}_{\nu}^{p}} \le 1} \mu(|z|) |(M_u C_{\varphi} Df)^{\prime\prime}(z)| = 0.$$

The result follows from Lemma 2. \Box

Similar to the proof of Theorem 6, we can get the following five theorems for the other product operators.

Theorem 8. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0, 1). Then the following statements are equivalent:

(i)
$$M_uDC_{\varphi}: \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu}$$
 is bounded;
(ii) $M_uDC_{\varphi}: \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu}$ is compact;

$$\begin{split} \sup_{z \in \mathbb{D}} \mu(|z|) |u''(z)\varphi'(z) + 2u'(z)\varphi''(z) + u(z)\varphi'''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|) |2u'(z)\varphi'(z) + 3u(z)\varphi'(z)\varphi''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|) |u(z)| |\varphi'(z)|^3 &< \infty; \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|) |u''(z)\varphi'(z) + 2u'(z)\varphi''(z) + u(z)\varphi'''(z)|}{1 - |\varphi(z)|^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0; \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|) |u(z)| |\varphi'(z)|^3}{(1 - |\varphi(z)|^2)^3} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0; \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|) |u(z)| |\varphi'(z)|^3}{(1 - |\varphi(z)|^2)^3} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0. \end{split}$$

Theorem 9. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0, 1). Then the following statements are equivalent:

(i) $C_{\varphi}M_{u}D: \mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}$ is bounded; (ii) $C_{\varphi}M_{u}D: \mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}$ is compact;

$$\begin{split} \sup_{z \in \mathbb{D}} \mu(|z|) |u''(\varphi(z))\varphi'(z)^2 + u'(\varphi(z))\varphi''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|) |2u'(\varphi(z))\varphi'(z)^2 + u(\varphi(z))\varphi''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|) |u(\varphi(z))| |\varphi'(z)|^2 &< \infty; \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|) |u''(\varphi(z))\varphi'(z)^2 + u'(\varphi(z))\varphi''(z)|}{1 - |\varphi(z)|^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0; \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|) |2u'(\varphi(z))\varphi'(z)^2 + u(\varphi(z))\varphi''(z)|}{(1 - |\varphi(z)|^2)^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0; \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|) |u(\varphi(z))||\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^3} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0. \end{split}$$

Theorem 10. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0, 1). Then the following statements are equivalent:

(i) $DM_uC_{\varphi}: \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu}$ is bounded; (ii) $DM_uC_{\varphi}: \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu}$ is compact;

$$\begin{split} \sup_{z \in \mathbb{D}} \mu(|z|)|u'''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|)|3u''(z)\varphi'(z) + 3u'(z)\varphi''(z) + u(z)\varphi'''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|)|u'(z)\varphi'(z)^2 + u(z)\varphi'(z)\varphi''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|)|u(z)||\varphi'(z)|^3 &< \infty; \\ \lim_{|\varphi(z)| \to 1^-} \mu(|z|)|u'''(z)| \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0; \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|)|3u''(z)\varphi'(z) + 3u'(z)\varphi''(z) + u(z)\varphi'''(z)|}{1 - |\varphi(z)|^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0; \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|)|u'(z)\varphi'(z)^2 + u(z)\varphi'(z)\varphi''(z)|}{(1 - |\varphi(z)|^2)^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0; \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|)|u(z)||\varphi'(z)|^3}{(1 - |\varphi(z)|^2)^3} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0. \end{split}$$

Theorem 11. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0, 1). Then the following statements are equivalent:

(i) $C_{\varphi}DM_{u}: \mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}$ is bounded;

(ii) $C_{\varphi}DM_{u}: \mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}$ is compact;

(iii)

$$\begin{split} \sup_{z \in \mathbb{D}} \mu(|z|) |u'''(\varphi(z))\varphi'(z)^2 + u''(\varphi(z))\varphi''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|) |3u''(\varphi(z))\varphi'(z)^2 + 2u'(\varphi(z))\varphi''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|) |3u'(\varphi(z))\varphi'(z)^2 + u(\varphi(z))\varphi''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|) |u(\varphi(z))| |\varphi'(z)|^2 &< \infty; \\ \lim_{|\varphi(z)| \to 1^{-}} \mu(|z|) |u'''(\varphi(z))\varphi'(z)^2 + u''(\varphi(z))\varphi''(z)| \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] = 0; \\ \lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|) |3u''(\varphi(z))\varphi'(z)^2 + 2u'(\varphi(z))\varphi''(z)|}{1 - |\varphi(z)|^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] = 0; \\ \lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|) |3u'(\varphi(z))\varphi'(z)^2 + u(\varphi(z))\varphi''(z)|}{(1 - |\varphi(z)|^2)^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] = 0; \\ \lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|) |u(\varphi(z))| |\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^3} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] = 0. \end{split}$$

Theorem 12. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0, 1). Then the following statements are equivalent:

(i) $DC_{\varphi}M_{u}: \mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}$ is bounded; (ii) $DC_{\varphi}M_{u}: \mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}$ is compact;

$$\begin{split} \sup_{z \in \mathbb{D}} \mu(|z|)|u'''(\varphi(z))\varphi'(z)^3 + 3u''(\varphi(z))\varphi''(z)\varphi'(z) + u'(\varphi(z))\varphi'''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|)|3u''(\varphi(z))\varphi'(z)^3 + 6u''(\varphi(z))\varphi''(z)\varphi'(z) + u(\varphi(z))\varphi'''(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|)|u'(\varphi(z))\varphi'(z)^3 + u(\varphi(z))\varphi''(z)\varphi'(z)| &< \infty; \\ \sup_{z \in \mathbb{D}} \mu(|z|)|u(\varphi(z))||\varphi'(z)|^3 &< \infty; \\ \lim_{|\varphi(z)| \to 1^-} \mu(|z|)|u'''(\varphi(z))\varphi'(z)^3 + 3u''(\varphi(z))\varphi''(z)\varphi'(z) + u'(\varphi(z))\varphi'''(z)| \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0; \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|)|3u''(\varphi(z))\varphi'(z)^3 + 6u''(\varphi(z))\varphi''(z)\varphi'(z) + u(\varphi(z))\varphi'''(z)|}{1 - |\varphi(z)|^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0. \\ \lim_{|\varphi(z)| \to 1^-} \frac{\mu(|z|)|u(\varphi(z))||\varphi'(z)|^3}{(1 - |\varphi(z)|^2)^3} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] &= 0. \end{split}$$

4. The Boundedness and Compactness of the Operator $C_{\varphi,q}^n$ from \mathcal{N}_{α}^p to \mathcal{Z}_{μ}

In this section, we give some characterizations of the boundedness and compactness of the operator $C_{\varphi,q}^n$ from \mathcal{N}_{α}^p to \mathcal{Z}_{μ} .

Theorem 13. Let $g \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0,1). Then $C^n_{\varphi,g}: \mathcal{N}^p_\alpha \to \mathcal{Z}_\mu$ is bounded if and only if

$$\sup_{z \in \mathbb{D}} \frac{\mu(|z|)|g(z)||\varphi'(z)|}{(1 - |\varphi(z)|^2)^{n+1}} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] < \infty$$
(23)

and

$$\sup_{z \in \mathbb{D}} \frac{\mu(|z|)|g'(z)|}{(1-|\varphi(z)|^2)^n} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] < \infty.$$

$$\tag{24}$$

Proof. Suppose that $C^n_{\varphi,g}: \mathcal{N}^p_\alpha \to \mathcal{Z}_\mu$ is bounded, i.e., there exists a constant C such that $\|C^n_{\varphi,g}f\|_{\mathcal{Z}_\mu} \le C\|f\|_{\mathcal{N}^p_\alpha}$ for all $f \in \mathcal{N}^p_\alpha$. Now taking $f(z) = \frac{z^n}{n!}$ and $f(z) = \frac{z^{n+1}}{(n+1)!}$, and obviously each of them belongs to \mathcal{N}^p_α , and using the boundedness of the function $\varphi(z)$, we get

$$\sup_{z \in \mathbb{D}} \mu(|z|)|g'(z)| < \infty \tag{25}$$

and

$$\sup_{z \in \mathbb{D}} \mu(|z|)|g(z)||\varphi'(z)| < \infty. \tag{26}$$

For $\omega \in \mathbb{D}$, set

$$f_{z}(\omega) = R(z) \exp\left\{c \left[\frac{(1 - |\varphi(z)|^{2})^{\beta}}{(1 - \overline{\varphi(z)}\omega)^{\beta+1}}\right]^{\frac{\alpha+2}{p}}\right\} - \exp\left\{c \left[\frac{1 - |\varphi(z)|^{2}}{(1 - \overline{\varphi(z)}\omega)^{2}}\right]^{\frac{\alpha+2}{p}}\right\},\tag{27}$$

where

$$R(z) = \frac{P_{n-1}[2\tau, (1-|\varphi(z)|^2)^{\tau}]}{P_{n-1}[(\beta+1)\tau, (1-|\varphi(z)|^2)^{\tau}]}, \ \tau = \frac{\alpha+2}{p}.$$

For a fixed parameter λ , $P_n[\lambda, (1-|\varphi(z)|^2)^{\tau}]$ is a bounded real-value function for all $z \in \mathbb{D}$ and the constant term of $P_n[\lambda, x]$ is $(c\lambda)^{n+1}$, then $P_n[\lambda, (1-|\varphi(z)|^2)^{\tau}] \geq (c\lambda)^{n+1}$. Moreover, for a fixed parameter $x \in (0,1)$, $P_n[\lambda, x]$ is a monotonously increasing function for $\lambda \in (0, +\infty)$. So by the properties of the function $P_n[\lambda, x]$, there exist $\delta_1 > 0$ and $\beta \in \mathbb{N}$ such that

$$\left| R(z) P_n[(\beta+1)\tau, (1-|\varphi(z)|^2)^{\tau}] - P_n[2\tau, (1-|\varphi(z)|^2)^{\tau}] \right|
= R(z) P_n[(\beta+1)\tau, (1-|\varphi(z)|^2)^{\tau}] - P_n[2\tau, (1-|\varphi(z)|^2)^{\tau}] \ge \delta_1.$$
(28)

Then $f_z \in \mathcal{N}^p_\alpha$ for all $z \in \mathbb{D}$, and $\sup_{z \in \mathbb{D}} ||f_z||_{\mathcal{N}^p_\alpha} \le C$. Moreover, using Lemma 4 and Lemma 5, we get

$$f_z^{(n)}(\varphi(z))=0$$

and by (28)

$$|f_{z}^{(n+1)}(\varphi(z))| = \frac{|\varphi(z)|^{n+1} \exp\left[\frac{c}{(1-|\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right]}{(1-|\varphi(z)|^{2})^{(n+1)(\tau+1)}} |R(z)P_{n}[(\beta+1)\tau, (1-|\varphi(z)|^{2})^{\tau}] - P_{n}[2\tau, (1-|\varphi(z)|^{2})^{\tau}]|$$

$$\geq \frac{\delta_{1}|\varphi(z)|^{n+1}}{(1-|\varphi(z)|^{2})^{(n+1)(\tau+1)}} \exp\left[\frac{c}{(1-|\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right].$$

It follows that

$$\begin{split} & \otimes \quad > \quad \|C_{\varphi,g}^{n}\|_{\mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}} \|f_{z}\|_{\mathcal{N}_{\alpha}^{p}} \geq \|C_{\varphi,g}^{n}f_{z}\|_{\mathcal{Z}_{\mu}} \geq \sup_{\omega \in \mathbb{D}} \mu(|\omega|) \|(C_{\varphi,g}^{n}f_{z})''(\omega)\| \\ & = \sup_{\omega \in \mathbb{D}} \mu(|\omega|) \|f_{z}^{(n+1)}(\varphi(\omega))\varphi'(\omega)g(\omega) + f_{z}^{(n)}(\varphi(\omega))g'(\omega)\| \\ & \geq \mu(|z|) \|f_{z}^{(n+1)}(\varphi(z))\varphi'(z)g(z) + f_{z}^{(n)}(\varphi(z))g'(z)\| \\ & \geq \frac{\mu(|z|) \|g(z)\|\varphi'(z)\|\varphi(z)\|^{n+1}\delta_{1}}{(1 - |\varphi(z)|^{2})^{(n+1)(\tau+1)}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] \end{split}$$

and then

$$\frac{\mu(|z|)|g(z)||\varphi'(z)||\varphi(z)|^{n+1}}{(1-|\varphi(z)|^2)^{n+1}}\exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{n+2}{p}}}\right] \leq C||C_{\varphi,g}^n f_z||_{\mathcal{Z}_\mu} (1-|\varphi(z)|^2)^{(n+1)\tau} < \infty. \tag{29}$$

For any fixed $r \in (0,1)$,

$$\sup_{|\varphi(z)| > r} \frac{\mu(|z|)|g(z)||\varphi'(z)|}{(1 - |\varphi(z)|^2)^{n+1}} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] \\
\leq \sup_{|\varphi(z)| > r} \frac{1}{r^{n+1}} \frac{\mu(|z|)|g(z)||\varphi'(z)||\varphi(z)|^2}{(1 - |\varphi(z)|^2)^2} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] < \infty.$$
(30)

By (26),

$$\sup_{|\varphi(z)| \le r} \frac{\mu(|z|)|g(z)||\varphi'(z)|}{(1 - |\varphi(z)|^2)^{n+1}} \exp\left[\frac{c}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] \\
\le \frac{1}{(1 - r^2)^{n+1}} \sup_{|\varphi(z)| \le r} \mu(|z|)|g(z)||\varphi'(z)| \exp\left[\frac{c}{(1 - r^2)^{\frac{\alpha+2}{p}}}\right] < \infty.$$
(31)

Therefore, (30) and (31) yield (23).

Next, set

$$h_{z}(\omega) = Q(z) \exp\left\{c \left[\frac{(1 - |\varphi(z)|^{2})^{\gamma}}{(1 - \overline{\varphi(z)}\omega)^{\gamma+1}}\right]^{\frac{\alpha+2}{p}}\right\} - \exp\left\{c \left[\frac{1 - |\varphi(z)|^{2}}{(1 - \overline{\varphi(z)}\omega)^{2}}\right]^{\frac{\alpha+2}{p}}\right\},\tag{32}$$

where

$$Q(z) = \frac{P_n[2\tau, (1-|\varphi(z)|^2)^\tau]}{P_n[(\gamma+1)\tau, (1-|\varphi(z)|^2)^\tau]}, \, \tau = \frac{\alpha+2}{p}.$$

Then similar to (28), there exist $\delta_2 > 0$ and $\gamma \in \mathbb{N}$ such that

$$\left| Q(z) P_{n-1} [(\gamma + 1)\tau, (1 - |\varphi(z)|^2)^{\tau}] - P_{n-1} [2\tau, (1 - |\varphi(z)|^2)^{\tau}] \right| \ge \delta_2.$$
(33)

Then $h_z \in \mathcal{N}^p_\alpha$ for all $z \in \mathbb{D}$, and $\sup_{z \in \mathbb{D}} ||h_z||_{\mathcal{N}^p_\alpha} \le C$. Moreover, using Lemma 5, we get

$$h_z^{(n+1)}(\varphi(z)) = 0$$

and by (33)

$$\begin{aligned} |h_{z}^{(n)}(\varphi(z))| &= \frac{|\varphi(z)|^{n} \exp\left[\frac{c}{(1-|\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right]}{(1-|\varphi(z)|^{2})^{n(\tau+1)}} |Q(z)P_{n-1}[(\gamma+1)\tau, (1-|\varphi(z)|^{2})^{\tau}] - P_{n-1}[2\tau, (1-|\varphi(z)|^{2})^{\tau}] |\\ &\geq \frac{\delta_{2}|\varphi(z)|^{n}}{(1-|\varphi(z)|^{2})^{n(\tau+1)}} \exp\left[\frac{c}{(1-|\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right]. \end{aligned}$$

It follows that

$$> \|C_{\varphi,g}^{n}\|_{\mathcal{N}_{\alpha}^{p} \to \mathcal{Z}_{\mu}} \|h_{z}\|_{\mathcal{N}_{\alpha}^{p}} \ge \|C_{\varphi,g}^{n}h_{z}\|_{\mathcal{Z}_{\mu}} \ge \sup_{\omega \in \mathbb{D}} \mu(|\omega|) \|(C_{\varphi,g}^{n}h_{z})''(\omega)\|$$

$$= \sup_{\omega \in \mathbb{D}} \mu(|\omega|) |h_{z}^{(n+1)}(\varphi(\omega))\varphi'(\omega)g(\omega) + h_{z}^{(n)}(\varphi(\omega))g'(\omega)\|$$

$$\ge \mu(|z|) |h_{z}^{(n+1)}(\varphi(z))\varphi'(z)g(z) + h_{z}^{(n)}(\varphi(z))g'(z)\|$$

$$\ge \frac{\mu(|z|) |g'(z)| |\varphi(z)|^{n} \delta_{2}}{(1 - |\varphi(z)|^{2})^{n(\tau+1)}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{n+2}{p}}}\right]$$

and then

$$\frac{\mu(|z|)|g'(z)||\varphi(z)|^n}{(1-|\varphi(z)|^2)^n} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] \le C||C_{\varphi,g}^n h_z||_{\mathcal{Z}_\mu} (1-|\varphi(z)|^2)^{n\tau} < \infty. \tag{34}$$

Combining (34) with (25), similar to the former proof, we get (24).

For the converse, suppose that (23) and (24) hold. For any $f \in \mathcal{N}_{\alpha}^{p}$, by Lemma 3, we have

$$\begin{split} \mu(|z|)|(C_{\varphi,g}^{n}f)''(z)| &= \mu(|z|)|f^{(n+1)}(\varphi(z))\varphi'(z)g(z) + f^{(n)}(\varphi(z))g'(z)| \\ &\leq \mu(|z|)|f^{(n+1)}(\varphi(z))\varphi'(z)g(z)| + \mu(|z|)|f^{(n)}(\varphi(z))g'(z)| \\ &\leq \frac{\mu(|z|)|g(z)||\varphi'(z)|}{(1-|\varphi(z)|^{2})^{n+1}} \exp\bigg[\frac{c||f||_{\mathcal{N}_{\alpha}^{p}}}{(1-|\varphi(z)|^{2})^{\frac{n+2}{p}}}\bigg] + \frac{\mu(|z|)|g'(z)|}{(1-|\varphi(z)|^{2})^{n}} \exp\bigg[\frac{c||f||_{\mathcal{N}_{\alpha}^{p}}}{(1-|\varphi(z)|^{2})^{\frac{n+2}{p}}}\bigg]. \end{split}$$

Moreover, $|(C_{\varphi,q}^n f)(0)| = 0$ and

$$|(C_{\varphi,g}^n f)'(0)| = |f^{(n)}(\varphi(0))g(0)| \le \frac{|g(0)|}{(1 - |\varphi(0)|^2)^n} \exp\left[\frac{c||f||_{\mathcal{N}_{\alpha}^p}}{(1 - |\varphi(0)|^2)^{\frac{\alpha+2}{p}}}\right] < \infty.$$

So we have

$$||C^n_{\varphi,g}f||_{\mathcal{Z}_{\mu}} = |(C^n_{\varphi,g}f)(0)| + |(C^n_{\varphi,g}f)'(0)| + \sup_{z \in \mathbb{D}} \mu(|z|)|(C^n_{\varphi,g}f)''(z)| < \infty.$$

Therefore $C_{\varphi,q}^n: \mathcal{N}_{\alpha}^p \to \mathcal{Z}_{\mu}$ is bounded. The proof of the theorem is completed. \square

Theorem 14. Let $g \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0,1). Then $C^n_{\varphi,g}: \mathcal{N}^p_\alpha \to \mathcal{Z}_\mu$ is compact if and only if $C^n_{\varphi,g}: \mathcal{N}^p_\alpha \to \mathcal{Z}_\mu$ is bounded,

$$\lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|)|g(z)||\varphi'(z)|}{(1 - |\varphi(z)|^{2})^{n+1}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{a+2}{p}}}\right] = 0$$
(35)

and

$$\lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|)|g'(z)|}{(1 - |\varphi(z)|^{2})^{n}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0.$$
(36)

Proof. Suppose that $C^n_{\varphi,g}: \mathcal{N}^p_\alpha \to \mathcal{Z}_\mu$ is compact, then $C^n_{\varphi,g}: \mathcal{N}^p_\alpha \to \mathcal{Z}_\mu$ is bounded. Let $\{z_k\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{D} such that $|\varphi(z_k)| \to 1^-$ as $k \to \infty$. Set

$$f_k(\omega) = R(z_k) \left(\exp\left\{ c \left[\frac{(1 - |\varphi(z_k)|^2)^{\beta}}{(1 - \overline{\varphi(z_k)}\omega)^{\beta+1}} \right]^{\frac{\alpha+2}{p}} \right\} - 1 \right) + 1 - \exp\left\{ c \left[\frac{1 - |\varphi(z_k)|^2}{(1 - \overline{\varphi(z_k)}\omega)^2} \right]^{\frac{\alpha+2}{p}} \right\}.$$

Then $\{f_k\}$ is a bounded sequence in \mathcal{N}^p_α by Theorem 13, and converges to 0 uniformly on compact subsets of \mathbb{D} as $k \to \infty$. Then $\lim_{k \to \infty} \|C^n_{\varphi,g} f_k\|_{\mathcal{Z}_\mu} = 0$. On the other hand, similar to the proof of Theorem 13, we have

$$\frac{\mu(|z_k|)|g(z_k)||\varphi'(z_k)||\varphi(z_k)|^{n+1}}{(1-|\varphi(z_k)|^2)^{n+1}}\exp\left[\frac{c}{(1-|\varphi(z_k)|^2)^{\frac{\alpha+2}{p}}}\right] \leq C||C_{\varphi,g}^n f_k||_{\mathcal{Z}_{\mu}} (1-|\varphi(z_k)|^2)^{(n+1)\tau}. \tag{37}$$

Since $|\varphi(z_k)| \to 1^-$ as $k \to \infty$, we get

$$\lim_{|\varphi(z_k)| \to 1^{-}} \frac{\mu(|z_k|)|g(z_k)||\varphi'(z_k)|}{(1 - |\varphi(z_k)|^2)^{n+1}} \exp\left[\frac{c}{(1 - |\varphi(z_k)|^2)^{\frac{\alpha+2}{p}}}\right] = \lim_{k \to \infty} \frac{\mu(|z_k|)|g(z_k)||\varphi'(z_k)||\varphi(z_k)||^{n+1}}{(1 - |\varphi(z_k)|^2)^{n+1}} \exp\left[\frac{c}{(1 - |\varphi(z_k)|^2)^{\frac{\alpha+2}{p}}}\right] \le \lim_{k \to \infty} \|C_{\varphi,g}^n f_k\|_{\mathcal{Z}_{\mu}} (1 - |\varphi(z_k)|^2)^{(n+1)\tau} = 0.$$

From which we get (35).

Next, set

$$h_k(\omega) = Q(z_k) \exp \left\{ c \left[\frac{(1 - |\varphi(z_k)|^2)^{\gamma}}{(1 - \overline{\varphi(z_k)}\omega)^{\gamma+1}} \right]^{\frac{\alpha+2}{p}} \right\} - Q(z_k) + 1 - \exp \left\{ c \left[\frac{1 - |\varphi(z_k)|^2}{(1 - \overline{\varphi(z_k)}\omega)^2} \right]^{\frac{\alpha+2}{p}} \right\}.$$

Then $\{h_k\}$ is a bounded sequence in \mathcal{N}^p_α by Theorem 13, and converges to 0 uniformly on compact subsets of \mathbb{D} as $k \to \infty$. Then we have $\lim_{k\to\infty} \|C^n_{\varphi,g}h_k\|_{\mathcal{Z}_\mu} = 0$. On the other hand, similar to the proof of Theorem 13, we have

$$\frac{\mu(|z_k|)|g'(z_k)||\varphi(z_k)|^n}{(1-|\varphi(z_k)|^2)^n} \exp\left[\frac{c}{(1-|\varphi(z_k)|^2)^{\frac{\alpha+2}{p}}}\right] \leq C||C_{\varphi,g}^n h_k||_{\mathcal{Z}_\mu} (1-|\varphi(z_k)|^2)^{n\tau}. \tag{38}$$

Since $|\varphi(z_k)| \to 1^-$ as $k \to \infty$, we get

$$\lim_{|\varphi(z_k)| \to 1^{-}} \frac{\mu(|z_k|)|g'(z_k)|}{(1 - |\varphi(z_k)|^2)^n} \exp\left[\frac{c}{(1 - |\varphi(z_k)|^2)^{\frac{\alpha+2}{p}}}\right] = \lim_{k \to \infty} \frac{\mu(|z_k|)|g'(z_k)||\varphi(z_k)|^n}{(1 - |\varphi(z_k)|^2)^n} \exp\left[\frac{c}{(1 - |\varphi(z_k)|^2)^{\frac{\alpha+2}{p}}}\right] \le \lim_{k \to \infty} ||C_{\varphi,g}^n h_k||_{\mathcal{Z}_{\mu}} (1 - |\varphi(z_k)|^2)^{n\tau} = 0.$$

From which we get (36).

Conversely, suppose that $C^n_{\varphi,g}: \mathcal{N}^p_\alpha \to \mathcal{Z}_\mu$ is bounded and (35) and (36) hold. Assume that $\{f_k\}_{k\in\mathbb{N}}$ is a bounded sequence in \mathcal{N}^p_α such that f_k converges to 0 uniformly on compact subsets of \mathbb{D} as $k \to \infty$. By the assumption, for any $\epsilon > 0$, there exists a $\delta \in (0,1)$ such that

$$\frac{\mu(|z|)|g(z)||\varphi'(z)|}{(1-|\varphi(z)|^2)^{n+1}} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] < \frac{\epsilon}{2}$$
(39)

and

$$\frac{\mu(|z|)|g'(z)|}{(1-|\varphi(z)|^2)^n} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] < \frac{\epsilon}{2}$$
(40)

whenever $\delta < |\varphi(z)| < 1$. By the boundedness of $C^n_{\varphi,g}: \mathcal{N}^p_\alpha \to \mathcal{Z}_\mu$ and the proof of Theorem 13,

$$C_2 = \sup_{z \in \mathbb{D}} \mu(|z|)|g(z)||\varphi'(z)| < \infty \tag{41}$$

and

$$C_3 = \sup_{z \in \mathbb{D}} \mu(|z|)|g'(z)| < \infty. \tag{42}$$

Then by Lemma 3, (41), (42), (43) and (44), we have that

$$\begin{split} \sup_{z \in \mathbb{D}} \mu(|z|) | (C_{\varphi,g}^n f_k)''(z)| & \leq \sup_{z \in \mathbb{D}} \mu(|z|) | f_k^{(n+1)}(\varphi(z)) \varphi'(z) g(z)| + \sup_{z \in \mathbb{D}} \mu(|z|) | f_k^{(n)}(\varphi(z)) g'(z)| \\ & \leq \sup_{|\varphi(z)| \leq \delta} \mu(|z|) | f_k^{(n+1)}(\varphi(z)) \varphi'(z) g(z)| + \sup_{|\varphi(z)| \leq \delta} \mu(|z|) | f_k^{(n)}(\varphi(z)) g'(z)| \\ & + \sup_{\delta < \varphi(z) | < 1} \mu(|z|) | f_k^{(n)}(\varphi(z)) \varphi'(z) g(z)| \\ & + \sup_{\delta < \varphi(z) | < 1} \mu(|z|) | f_k^{(n)}(\varphi(z)) | + C_3 \sup_{|\varphi(z)| \leq \delta} | f_k^{(n)}(\varphi(z)) | \\ & \leq C_2 \sup_{|\varphi(z)| \leq \delta} | f_k^{(n+1)}(\varphi(z)) | + C_3 \sup_{|\varphi(z)| \leq \delta} | f_k^{(n)}(\varphi(z)) | \\ & + \sup_{\delta < \varphi(z) | < 1} \frac{\mu(|z|) |g(z)| |\varphi'(z)|}{(1 - |\varphi(z)|^2)^{n+1}} \exp\left[\frac{c ||f_k||_{\mathcal{N}_n^p}}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}} \right] \\ & + \sup_{\delta < \varphi(z) | < 1} \frac{\mu(|z|) |g'(z)|}{(1 - |\varphi(z)|^2)^n} \exp\left[\frac{c ||f_k||_{\mathcal{N}_n^p}}{(1 - |\varphi(z)|^2)^{\frac{\alpha+2}{p}}} \right] \\ & \leq C_2 \sup_{|\varphi(z)| < 1} |f_k^{(n+1)}(\omega)| + C_3 \sup_{\omega \leq \delta} |f_k^{(n)}(\omega)| + \epsilon. \end{split}$$

Then

$$||C_{\varphi,g}^{n}f_{k}||_{\mathcal{Z}_{\mu}} \leq C_{2} \sup_{\omega \leq \delta} |f_{k}^{(n+1)}(\omega)| + C_{3} \sup_{\omega \leq \delta} |f_{k}^{(n)}(\omega)| + \epsilon + |f_{k}^{(n)}(\varphi(0))||g(0)|. \tag{43}$$

Since f_k converges to 0 uniformly on compact subsets of \mathbb{D} as $k \to \infty$, Cauchy's estimation gives that $f_k^{(n)}$ and $f_k^{(n+1)}$ also do as $k\to\infty$, and both $\{z\in\mathbb{D}:|z|\le\delta\}$ and $\{0\}$ are compact subsets of \mathbb{D} . Hence, letting $k \to \infty$ in (45), we get $\lim_{k \to \infty} \|C_{\varphi,g}^n f_k\|_{\mathcal{Z}_\mu} = 0$. By Lemma 1, we see that $C_{\varphi,g}^n : \mathcal{N}_\alpha^p \to \mathcal{Z}_\mu$ is compact. The proof is completed. \square

From Theorem 13 and Theorem 14, we can obtain the following corollary.

Corollary 15. Let $q \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0, 1). Then the following statements are equivalent:

(i)
$$C^n_{\varphi,g}: \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu}$$
 is bounded;
(ii) $C^n_{\varphi,g}: \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu}$ is compact;
(iii)

$$\sup_{z \in \mathbb{D}} \mu(|z|)|g(z)||\varphi'(z)| < \infty \text{ and } \sup_{z \in \mathbb{D}} \mu(|z|)|g'(z)| < \infty$$
 (44)

$$\lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|)|g(z)||\varphi'(z)|}{(1 - |\varphi(z)|^{2})^{n+1}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0$$
(45)

and

$$\lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|)|g'(z)|}{(1 - |\varphi(z)|^{2})^{n}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0.$$
(46)

Proof. It is easy to see that $(iii) \Rightarrow (ii)$, and $(ii) \Rightarrow (i)$ is obvious.

(i) \Rightarrow (iii). Suppose that $C_{\varphi,q}^n: \mathcal{N}_{\alpha}^p \to \mathcal{Z}_{\mu}$ is bounded, then (25) and (26) implies (46). In (29), let $|\varphi(z)| \to 1^-$, we get

$$\lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|)|g(z)||\varphi'(z)|}{(1-|\varphi(z)|^{2})^{n+1}} \exp\left[\frac{c}{(1-|\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = \lim_{|\varphi(z)| \to 1^{-}} \frac{\mu(|z|)|g(z)||\varphi'(z)||\varphi(z)|^{n+1}}{(1-|\varphi(z)|^{2})^{n+1}} \exp\left[\frac{c}{(1-|\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0.$$

i.e., we get (47). Similar to this with (34), we can get (48). The proof is completed. \Box

Theorem 16. Let $g \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , $1 \le p < \infty$ and $\alpha > -1$ and μ is a normal function on [0, 1). Then the following statements are equivalent:

(i) $C^n_{\varphi,g}: \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu,0}$ is bounded; (ii) $C^n_{\varphi,g}: \mathcal{N}^p_{\alpha} \to \mathcal{Z}_{\mu,0}$ is compact;

$$\lim_{|z| \to 1^{-}} \mu(|z|)|g(z)||\varphi'(z)| = 0 \text{ and } \lim_{|z| \to 1^{-}} \mu(|z|)|g'(z)| = 0$$

$$\tag{47}$$

$$\lim_{|z| \to 1^{-}} \frac{\mu(|z|)|g(z)||\varphi'(z)|}{(1 - |\varphi(z)|^{2})^{n+1}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0 \tag{48}$$

and

$$\lim_{|z| \to 1^{-}} \frac{\mu(|z|)|g'(z)|}{(1 - |\varphi(z)|^{2})^{n}} \exp\left[\frac{c}{(1 - |\varphi(z)|^{2})^{\frac{\alpha+2}{p}}}\right] = 0.$$
(49)

Proof. (*ii*) \Rightarrow (*i*). This implication is obvious.

(i) \Rightarrow (iii). Suppose that $C_{\varphi,g}: \mathcal{N}^p_\alpha \to \mathcal{Z}_{\mu,0}$ is bounded. By utilizing functions $f(z) = \frac{z^n}{n!}$ and $f(z) = \frac{z^{n+1}}{(n+1)!}$, we

Since $C_{\varphi,g}^n: \mathcal{N}_{\alpha}^p \to \mathcal{Z}_{\mu}$ is bounded, by Corollary 15, we conclude that (47) and (48) hold. Thus for any $\epsilon > 0$, there exists a $t \in (0,1)$, such that

$$\frac{\mu(|z|)|g'(z)|}{(1-|\varphi(z)|^2)^n} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] < \epsilon \tag{50}$$

whenever $t < |\varphi(z)| < 1$. Moreover, from $\lim_{|z| \to 1^-} \mu(|z|)|g'(z)| = 0$, we infer that there exists an $r \in (0,1)$ such that for r < |z| < 1,

$$\mu(|z|)|g'(z)| < \epsilon (1 - t^2)^n \exp\left[\frac{-c}{(1 - t^2)^{\frac{\alpha + 2}{p}}}\right]$$
(51)

from which, if r < |z| < 1 and $|\varphi(z)| \le t$, then we have

$$\frac{\mu(|z|)|g'(z)|}{(1-|\varphi(z)|^2)^n} \exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right] \le \frac{\mu(|z|)|g'(z)|}{(1-t^2)^n} \exp\left[\frac{c}{(1-t^2)^{\frac{\alpha+2}{p}}}\right] < \epsilon.$$
 (52)

From (53) and (54), we see that whenever r < |z| < 1,

$$\frac{\mu(|z|)|g'(z)|}{(1-|\varphi(z)|^2)^n}\exp\left[\frac{c}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\right]<\epsilon$$

which implies that (51) holds. Employing (47) and $\lim_{|z|\to 1^-} \mu(|z|)|g(z)||\varphi'(z)| = 0$, with similar argument, we obtain (50).

 $(iii) \Rightarrow (ii)$. Suppose (49) and (50) and (51) hold. Let $f \in \mathcal{N}_{\alpha}^{p}$, by Lemma 3, we have

$$\begin{split} \mu(|z|)|(C^n_{\varphi,g}f)''(z)| & \leq & \mu(|z|)|f^{(n+1)}(\varphi(z))\varphi'(z)g(z)| + \mu(|z|)|f^{(n)}(\varphi(z))g'(z)| \\ & \leq & \frac{\mu(|z|)|g(z)||\varphi'(z)|}{(1-|\varphi(z)|^2)^{n+1}} \exp\bigg[\frac{c||f||_{\mathcal{N}^p_\alpha}}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\bigg] + \frac{\mu(|z|)|g'(z)|}{(1-|\varphi(z)|^2)^n} \exp\bigg[\frac{c||f||_{\mathcal{N}^p_\alpha}}{(1-|\varphi(z)|^2)^{\frac{\alpha+2}{p}}}\bigg]. \end{split}$$

Taking the supremum in this inequality over all $f \in \mathcal{N}_{\alpha}^{p}$ such that $||f||_{\mathcal{N}_{\alpha}^{p}} \leq 1$, applying (50) and (51) we obtain

$$\lim_{|z|\to 1^-} \sup_{\|f\|_{N^p_\alpha} \le 1} \mu(|z|) |(C^n_{\varphi,g}f)''(z)| = 0.$$

The result follows from Lemma 2. \Box

References

- [1] C. C. Cowen, B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Roton, 1995.
- [2] K. Esmaeili, M. Lindström, Weighted composition operators between Zygmund type spaces and their essential norms, Integr. Equ. Oper. Theory, 75(2013), no. 4, 473–490.
- [3] W. Johnson, The curious history of Faàdi Bruno's formula, Amer. Math. Monthly, 109(3) (2002), 217–234.
- [4] S. G. Krantz, S. Stević, On the iterated logarithmic Bloch space on the unit ball, Nonlinear Anal. 71 (2009), no. 5-6, 1772–1795.
- [5] S. Li, S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), no. 2, 1282–1295.
- [6] S. Li, S. Stević, Products of Volterra type operator and composition operator from H^{∞} and Bloch spaces to Zygmund spaces, J. Math. Anal. Appl. 345 (2008), no. 1, 40–52.
- [7] S. Li, S. Stević, On an integral-type operator from ω -Bloch spaces to μ -Zygmund spaces, Appl. Math. Comput. 215 (2010), no. 12, 4385–4391.
- [8] S. Li, S. Stević, On an integral-type operator from iterated logarithmic Bloch spaces into Bloch-type spaces, Appl. Math. Comput. 215 (2009), no. 8, 3106–3115.
- [9] S. Li, S. Stević, Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces, Appl. Math. Comput. 217 (2010), no. 7, 3144–3154.
- [10] K. Madigan, A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2679–2687
- [11] B. Sehba, S. Stević, On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces, Appl. Math. Comput. 233 (2014), 565–581.
- [12] A. K. Sharma, Products of composition multiplication and differentiation between Bergman and Bloch type spaces, Turk. J. Math. 35 (2011), 275–291.
- [13] A. Shields, D. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc., 162 (1971), 287–302.
- [14] S. Stević, On an integral-type operator from logarithmic Bloch-type and mixed-norm spaces to Bloch-type spaces, Nonlinear Anal. 71 (2009), no. 12, 6323–6342.
- [15] S. Stević, Composition operators from the weighted Bergman space to the n th weighted spaces on the unit disc, Discrete Dyn. Nat. Soc. 2009, Art. ID 742019, 11 pp.
- [16] S. Stević, Products of composition and differentiation operators on the weighted Bergman space, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 4, 623–635.
- [17] S. Stević, Norm estimates of weighted composition operators between Bloch-type spaces, Ars Combin. 93 (2009), 161–164.
- [18] S. Stević, On new Bloch-type spaces, Appl. Math. Comput. 215 (2009), no. 2, 841–849.
- [19] S. Stević, Norm of weighted composition operators from -Bloch spaces to weighted-type spaces, Appl. Math. Comput. 215 (2009), no. 2, 818–820.
- [20] S. Stević, On an integral-type operator from Zygmund-type spaces to mixed-norm spaces on the unit ball, Abstr. Appl. Anal. 2010, Art. ID 198608, 7 pp.
- [21] S. Stević, Composition operators from the weighted Bergman space to the n th weighted-type space on the upper half-plane, Appl. Math. Comput. 217 (2010), no. 7, 3379–3384.
- [22] S. Stević, S. Ueki. On an integral-type operator between weighted-type spaces and Bloch-type spaces on the unit ball, Appl. Math. Comput. 217 (2010), no. 7, 3127–3136.
- [23] S. Stević, Norms of multiplication operators on Hardy spaces and weighted composition operators from Hardy spaces to weighted-type spaces on bounded symmetric domains, Appl. Math. Comput. 217 (2010), no. 6, 2870–2876.
- [24] S. Stević, Norm of an integral-type operator from Dirichlet to Bloch space on the unit disk, Util. Math. 83 (2010), 301–303.
- [25] S. Stević, Weighted composition operators from Bergman-Privalov-type spaces to weighted-type spaces on the unit ball, Appl. Math. Comput. 217 (2010), no. 5, 1939–1943.
- [26] S. Stević, Essential norm of differences of weighted composition operators between weighted-type spaces on the unit ball, Appl. Math. Comput. 217 (2010), no. 5, 1811–1824.
- [27] S. Stević, Extended Cesàro operators between mixed-norm spaces and Bloch-type spaces in the unit ball, Houston J. Math. 36 (2010), no. 3, 843–858.
- [28] S. Stević, Weighted differentiation composition operators from the mixed-norm space to the *n*th weighted-type space on the unit disk, Abstr. Appl. Anal. 2010, Art. ID 246287, 15 pp.
- [29] S. Stević, Weighted differentiation composition operators from H^{∞} and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. Math. Comput. 216 (2010), no. 12, 3634–3641.
- [30] S. Stević, Integral-type operators between α -Bloch spaces and Besov spaces on the unit ball, Appl. Math. Comput. 216 (2010), no. 12, 3541–3549.
- [31] S. Stević, Composition followed by differentiation from H^{∞} and the Bloch space to n th weighted-type spaces on the unit disk, Appl. Math. Comput. 216 (2010), no. 12, 3450–3458.
- [32] S. Stević, Composition operators from the Hardy space to Zygmund-type spaces on the upper half-plane and the unit disc, J. Comput. Anal. Appl. 12 (2010), no. 1-B, 305-312.
- [33] S. Stević, Weighted composition operators from the logarithmic weighted-type space to the weighted Bergman space in C^n , Appl. Math. Comput. 216 (2010), no. 3, 924–928.
- [34] S. Stević, Norms of some operators on bounded symmetric domains, Appl. Math. Comput. 216 (2010), no. 1, 187–191.
- [35] S. Stević, Composition operators from the Hardy space to the *n*th weighted-type space on the unit disk and the half-plane, Appl. Math. Comput. 215 (2010), no. 11, 3950–3955.

- [36] S. Stević, S. Ueki, Weighted composition operators from the weighted Bergman space to the weighted Hardy space on the unit ball, Appl. Math. Comput. 215 (2010), no. 10, 3526–3533.
- [37] S. Stević, On an integral-type operator from logarithmic Bloch-type spaces to mixed-norm spaces on the unit ball, Appl. Math. Comput. 215 (2010), no. 11, 3817–3823.
- [38] S. Stević, Characterizations of composition followed by differentiation between Bloch-type spaces, Appl. Math. Comput. 218 (2011), no. 8, 4312–4316.
- [39] S. Stević, A. K. Sharma, Integral-type operators from Bloch-type spaces to Q_K spaces, Abstr. Appl. Anal. 2011, Art. ID 698038, 16 pp.
- [40] S. Stević, On some integral-type operators between a general space and Bloch-type spaces, Appl. Math. Comput. 218 (2011), no. 6, 2600–2618.
- [41] S. Stević, A. K. Sharma, S. D. Sharma, Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the upper half-plane, Abstr. Appl. Anal. 2011, Art. ID 989625, 10 pp.
- [42] S. Stević, A. K. Sharma. Composition operators from the space of Cauchy transforms to Bloch and the little Bloch-type spaces on the unit disk, Appl. Math. Comput. 217 (2011), no. 24, 10187–10194.
- [43] S. Stević, A. K. Sharma, A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput. 217 (2011), no. 20, 8115–8125.
- [44] S. Stević, A. K. Sharma, Weighted composition operators between growth spaces of the upper half-plane, Util. Math. 84 (2011), 265–272.
- [45] S. Stević, A. K. Sharma. Essential norm of composition operators between weighted Hardy spaces, Appl. Math. Comput. 217 (2011), no. 13, 6192–6197.
- [46] S. Stević, On a product-type operator from Bloch spaces to weighted-type spaces on the unit ball, Appl. Math. Comput. 217 (2011), no. 12, 5930–5935.
- [47] S. Stević, A. K. Sharma. Weighted composition operators between Hardy and growth spaces on the upper half-plane, Appl. Math. Comput. 217 (2011), no. 10, 4928–4934.
- [48] S. Stević, A. K. Sharma, Composition operators from weighted Bergman-Privalov spaces to Zygmund type spaces on the unit disk, Ann. Polon. Math. 105 (2012), no. 1, 77–86.
- [49] S. Stević, Weighted radial operator from the mixed-norm space to the *n*th weighted-type space on the unit ball, Appl. Math. Comput. 218 (2012), no. 18, 9241–9247.
- [50] S. Stević, A. K. Sharma, Generalized composition operators on weighted Hardy spaces, Appl. Math. Comput. 218 (2012), no. 17, 8347–8352.
- [51] S. Stević, A. K. Sharma, Integral-type operators between weighted Bergman spaces on the unit disk, J. Comput. Anal. Appl. 14 (2012), no. 7, 1339–1344.
- [52] S. Stević, Boundedness and compactness of an integral-type operator from Bloch-type spaces with normal weights to F(p,q,s) space, Appl. Math. Comput. 218 (2012), no. 9, 5414–5421.
- [53] W. Yang, W. Yan, Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces, Bull. Korean Math. Soc. 48(6)(2011), 1195–1205.
- [54] W. Yang, X. Zhu, Generalized weighted composition operators from area Nevanlinna spaces to Bloch-Type spaces, Taiwanese Journal of Mathematics, Vol. 16, No. 3, pp. 869–883, June 2012.
- [55] X. Zhu, Generalized composition operators from generalized weighted Bergman spaces to Bloch type spaces, J. Korean Math. Soc. 46 (2009), no. 6, 1219–1232.
- [56] X. Zhu, Weighted composition operators from area Nevalinna spaces into Bloch spaces, Appl. Math. Comput. 215 (2010), 4340–4346.
- [57] X. Zhu, An integral-type operator from H^{∞} to Zygmund-Type Spaces, Bull. Malays. Math. Sci. Soc.(2) 35(3)(2012), 679–686.
- [58] X. Zhu, Composition operators from Zygmund spaces to Bloch spaces in the unit ball, Bull. Malays. Math. Sci. Soc.(2) 35 (2012), no. 4, 961–968.
- [59] X. Zhu, Generalized weighted composition operators from Bloch spaces into Bers-type spaces, Filomat 26 (2012), no. 6, 1163–1169.
- [60] X. Zhu, Weighted composition operators from weighted Hardy spaces to weighted-type spaces, Demonstratio Math. 46 (2013), no. 2, 335–344.