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Abstract. Approximate problems that scalarize and approximate a given multiobjective optimization
problem (MOP) became an important and interesting area of research, given that, in general, are simpler
and have weaker existence requirements than the original problem. Recently, necessary conditions for
approximation of several types of efficiency for MOPs have been obtained through the use of an alternative
theorem. In this paper, we use these results in order to extend them to sufficient conditions for approximate
quasi (weak, proper) efficiency. For this, we use two scalarization techniques of Tchebycheff type. All the
provided results are established without convexity assumptions.

1. Introduction

Multiobjective optimization is an interesting research field with many applications, concerning economy,
engineering and medicine. During the last years, a lot of studies have been reported about multiobjective
optimization in many papers and books. From the large amount of publications, we refer to [1, 5, 6, 24],
where the most theoretical aspects of multiobjective optimization are treated.

During the recent years, much attention was paid to approximate efficient solutions of a multiobjective
optimization problem. The reasons of interest in approximate efficiency in an MOP are the following
actualities: First, the mathematical models are simplified versions of the practical problems, and therefore
are not a complete copy of the main problem. Second, numerical algorithms (as heuristic and interactive
algorithms) may provide approximate solutions. Moreover, the efficient set of an MOP might be empty in a
non-compact instance, while approximate efficient set might be nonempty under very weaker requirements.
The concept of approximate solution was introduced by Kutateladze [20]. Thereafter, White [30] studied
six concepts of an approximate solution for MOPs, and Loridan [23] investigated some properties of one of
these concepts. Thereafter, many researchers considered some properties of and the relationships between
these notions [14, 15, 32]. Moreover, extensions of approximate efficient solutions of an MOP can be seen
in [3, 8, 9, 13, 15]. Furthermore, some necessary and sufficient conditions for ε-(weak) efficiency can be
found in [4, 7, 9, 11, 12, 19, 26]. Also, applications of approximate efficiency in radiotherapy treatment
planning considered in [27, 28]. Shao and Ehrgott [27, 28] showed that approximate efficient solutions can
be obtained very faster than efficient solutions of a given MOP.

Regarding the above discussion, investigating the notion of approximate efficiency in MOPs is typically
interesting both in theoretical and practical points of view. However, like efficient solutions, there are
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Email address: ghaznavi@shahroodut.ac.ir (Mehrdad Ghaznavi)



M. Ghaznavi / Filomat 31:3 (2017), 671–680 672

also ε−efficient solutions with undesired properties, and the trade-off among criteria might be unbounded.
Therefore, we need to filter out the bad ε−efficient and keep the so called ε−properly efficient solutions.

Li and Wang [21] introduced the concept of ε−proper efficiency, an extension of Geoffrion proper ef-
ficiency [10], and via scalarization derived necessary conditions for ε−properly efficient solutions of a
nonconvex MOP. Thereafter, using the weighted sum method, Liu [22] obtained a necessary and suffi-
cient condition for ε−properly efficient solutions of a convex MOP. More recently, Ghaznavi-ghosoni1)and
Khorram [11], Ghaznavi-ghosoni et al. [12], Rastegar and Khorram [26] and Khaledian et al. [19] de-
rived necessary and sufficient conditions for ε−proper efficient solutions of a general (with no convexity
assumption) multiobjective optimization problem, via scalarization.

Recently, Beldiman et al. [2] considered approximate quasi (weak, proper) efficiency in multiobjective
optimization and derived necessary conditions for these kinds of approximate solutions by using an alterna-
tive theorem. Their concepts, generalize definitions of (weak, proper) efficiency as well as ε−(weak, proper)
efficiency. Also, Panaitescu and Dogaru [25] derived two necessary conditions for ε−quasi proper efficient
points as well as two sufficient conditions for ε−quasi efficient solutions of a general MOP. Moreover, Ying
[31] introduced the notion of ε-quasi weakly saddle points, and obtained necessary and sufficient for the
existence of ε-quasi weakly saddle points.

Motivated by the (ε, ε)−quasi (weak, proper) efficiency defined in [2], in this paper, we derive some op-
timality conditions for these concepts, via scalarization. More precisely, utilizing the augmented weighted
Tchebycheff method [29], and the modified weighted Tchebycheff method [17, 18], we complete and extend
the results obtained in [2], and get necessary and sufficient conditions for (ε, ε)−quasi (weakly, properly)
efficient points of an MOP. Since approximate quasi (weak, proper) efficiency extends the notion of approx-
imate (weak, proper) efficiency, the obtained results extend some theorems in [7, 11, 12, 21]. It is worth
mentioning that the obtained results are general and we do not assume no convexity assumption.

The outline of the paper is as follows: In Section 2, we provide some preliminaries, Section 3 contains
the main results of the paper, and Section 4 is devoted to the conclusions.

2. Preliminaries

Consider the following multiobjective optimization problem (MOP):

min f (x)
s.t. x ∈ X,

(1)

where X ⊆ Rn is a nonempty set, and f (x) = ( f1(x), f2(x), ..., fm(x))T : X → Rm is a vector-valued function.
The image of X under f , called the set of attainable (or image) outcomes, is denoted by Y := f (X) ⊂ Rm.
With regard to vector inequalities, the following convention will be applied: for y1,y2

∈ Rm, y1 5 y2 if and
only if y1

i ≤ y2
i , for all i = 1, ...,m and y1 6 y2 if and only if y1 5 y2 and y1 , y2. Moreover, y1 < y2 if and

only if y1
i < y2

i , for each i = 1, ...,m. The Pareto cone is defined as Rm
= = {y ∈ Rm : y = 0}.

We recall, the set of efficient (Pareto optimal) and weakly efficient (weakly Pareto optimal) points of MOP
(1) are defined, respectively, as:

XE = {x̂ ∈ X : @x ∈ X s.t. f (x) 6 f (x̂)},

XWE = {x̂ ∈ X : @x ∈ X s.t. f (x) < f (x̂)}.

Definition 2.1. [5] Consider MOP (1).

(i) The point yI = (yI
1, . . . , y

I
m), in which yI

i := minx∈X fi(x), i = 1, · · · ,m, is called the ideal point.

(ii) The point yU := yI
− α, in which α ∈ Rm

> , is said an utopia point.

1)Previous name of the author
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Definition 2.2. [2] Let ε ∈ Rm
= . A feasible solution x̂ ∈ X is called:

(i) ε−quasi weakly efficient (ε-quasi weakly Pareto optimal) solution of MOP (1), if there is no other x ∈ X such
that f (x) < f (x̂) − ε||x − x̂||,

(ii) ε−quasi efficient (ε-quasi Pareto optimal) solution of MOP (1), if there is no other x ∈ X such that f (x) 6
f (x̂) − ε||x − x̂||,

(iii) ε−quasi properly efficient solution of MOP (1), if it is ε−quasi efficient and there exists M > 0 such that for
any i ∈ {1, 2, . . . ,m} and x ∈ X gratifying fi(x) < fi(x̂) − εi||x − x̂||, there exists an index j ∈ {1, 2, . . . ,m} with
f j(x̂) < f j(x) + ε j||x − x̂|| such that

fi(x̂) − fi(x) − εi||x − x̂||
f j(x) − f j(x̂) + ε j||x − x̂||

≤M.

Following Beldiman et al. [2], (ε, ε)-quasi (weakly, properly) efficient solutions of MOP (1) are defined as
follows:

Definition 2.3. [2] Consider MOP (1). Let (ε, ε) ∈ Rm
= ×R

m
= . A feasible solution x̂ ∈ X is called:

(i) (ε, ε)−quasi weakly efficient, if there is no other x ∈ X such that f (x) < f (x̂) − ε||x − x̂|| − ε,

(ii) (ε, ε)−quasi efficient, if there is no other x ∈ X such that f (x) 6 f (x̂) − ε||x − x̂|| − ε,

(iii) (ε, ε)−quasi properly efficient, if it is (ε, ε)−quasi efficient and there exists M > 0 such that for any i ∈
{1, 2, . . . ,m} and x ∈ X satisfying fi(x) < fi(x̂)− εi||x− x̂|| − εi, there exists an index j ∈ {1, 2, . . . ,m} such that
f j(x̂) < f j(x) + ε j||x − x̂|| + ε j and

fi(x̂) − fi(x) − εi||x − x̂|| − εi

f j(x) − f j(x̂) + ε j||x − x̂|| + ε j
≤M.

We denote the set of all (ε, ε)−quasi weakly efficient, (ε, ε)−quasi efficient and (ε, ε)−quasi properly efficient
solutions of an MOP by Xε,εWE,Xε,εE and Xε,εPE, respectively.

Remark 2.4. Referring to Definition 2.3, it is obvious that

(i) Xε,εPE ⊆ Xε,εE ⊆ Xε,εWE.

(ii) For the case ε = ε = 0, the definitions of (ε, ε)-quasi (weak, proper) efficiency coincide with the definitions of
(weak, proper) efficiency, respectively. Therefore, (ε, ε) , 0 would be of interest

A useful technique to solve an MOP, is to formulate a single objective program (SOP) corresponding to the
given MOP. Let 1 : X → R and consider a SOP as follows:

min 1(x)
s.t. x ∈ X.

(2)

Definition 2.5. [16] Let δ ∈ R=. A point x̂ ∈ X is called to be

(i) an optimal solution of SOP (2), if 1(x̂) ≤ 1(x) for all x ∈ X,

(ii) a δ−optimal solution of SOP (2), if 1(x̂) − δ ≤ 1(x) for all x ∈ X,

(iii) a δ−quasi optimal solution of SOP (2), if 1(x̂) − δ||x − x̂|| ≤ 1(x) for all x ∈ X.
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Remark 2.6. Referring to Definition 2.5, it is obvious that optimality ⇒ δ − optimality and optimality ⇒ δ −
quasi optimality, but the inverse inclusions are not necessarily true.

Definition 2.7. [2] Let (δ, δ) ∈ R= ×R=. A feasible solution x̂ ∈ X is said

(i) a (δ, δ)−quasi optimal solution of SOP (2), if 1(x̂) ≤ 1(x) + δ||x − x̂|| + δ for all x ∈ X,

(ii) a strictly (δ, δ)−quasi optimal solution of SOP (2), if 1(x̂) < 1(x) + δ||x − x̂|| + δ for all x ∈ X.

Remark 2.8. It can be seen that for δ = δ = 0, in (i), we have the optimality definition, for δ = 0 we reach to δ-quasi
optimality and for δ = 0 we get δ-optimality concept.

3. Main Results

The main results, in this section, are necessary and sufficient conditions for (ε, ε)-quasi (weak, proper)
efficient solutions of MOP (1), using the following scalarization problems.

(a) The augmented weighted Tchebycheff scalarization problem (SOP(3)) [29]:

min max
i=1,...,m

λi( fi(x) − yU
i ) +

∑
t∈I

ρt( ft(x) − yU
t )

s.t. x ∈ X,
(3)

where I = {1, . . . ,m},yU is an utopia point, λ = (λ1, . . . , λm) ∈ Rm
= and ρ = (ρ1, ..., ρm) ∈ Rm

= .

(b) The modified weighted Tchebycheff scalarization problem (SOP(4)) [17]:

min max
i=1,...,m

λi[( fi(x) − yU
i ) +

∑
t∈I

ρt( ft(x) − yU
t )]

s.t. x ∈ X,
(4)

where I = {1, . . . ,m}, yU is an utopia point, λ = (λ1, . . . , λm) ∈ Rm
= and ρ = (ρ1, ..., ρm) ∈ Rm

= .

Remark 3.1. It should be noted that, unlike the formulation (3), the bounds on trade-offs generated by formulation
(4) are independent of parameters λi,∀i ∈ I. For more details about bounds on trade-offs see [17, 18].

3.1. Case of (ε, ε)−quasi weak efficiency
Recently, Beldiman et al. [2] provided a necessary condition for approximate quasi weakly efficient

solutions of an MOP (see Theorem 1 in [2]). In the following theorem, via SOPs (3) and(4), we give
sufficient conditions for generating (ε, ε)−quasi weakly efficient solutions of MOP (1).

Theorem 3.2. Consider MOP (1). Let (ε, ε) ∈ Rm
= ×R

m
= , λ ∈ Rm

> , and ρ ∈ Rm
= .

(i) If x̂ ∈ X is a (δ, δ)−quasi optimal solution of SOP (3) with δ ≤ mini=1,...,m{λiεi} +
∑

t∈I ρtεt and δ ≤
mini=1,...,m{λiεi} +

∑
t∈I ρtεt, then x̂ ∈ Xε,εWE.

(ii) If x̂ ∈ X is a (δ, δ)−quasi optimal solution of SOP (4) with δ ≤ mini=1,...,m λi(εi +
∑

t∈I ρtεt) and δ ≤
mini=1,...,m λi(εi +

∑
t∈I ρtεt), then x̂ ∈ Xε,εWE.

Proof. (i) By contradiction, suppose that x̂ < Xε,εWE. Therefore, there exists x ∈ X, x , x̂ with f (x) <
f (x̂) − ε||x − x̂|| − ε. Hence,∑

t∈I

ρt( ft(x) − yU
t + εt||x − x̂|| + εt) ≤

∑
t∈I

ρt( ft(x̂) − yU
t ),
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and

max
i=1,...,m

λi( fi(x) − yU
i + εi||x − x̂|| + εi) < max

i=1,...,m
λi( fi(x̂) − yU

i ).

As a result,

max
i=1,...,m

λi( fi(x̂) − yU
i ) +

∑
t∈I

ρt( ft(x̂) − yU
t ) >

max
i=1,...,m

λi( fi(x) − yU
i + εi||x − x̂|| + εi) +

∑
t∈I

ρt( ft(x) − yU
t + εt||x − x̂|| + εt) ≥

max
i=1,...,m

λi( fi(x) − yU
i ) + ||x − x̂||( min

i=1,...,m
{λiεi} +

∑
t∈I

ρtεt) + ( min
i=1,...,m

{λiεi} +
∑
t∈I

ρtεt) +
∑
t∈I

ρt( ft(x) − yU
t ) ≥

max
i=1,...,m

λi( fi(x) − yU
i ) +

∑
t∈I

ρt( ft(x) − yU
i ) + δ||x − x̂|| + δ,

which is a contradiction.
(ii) The proof is similar to Part (i).

The following example shows that the weakly efficient set of an MOP might be empty, while the approximate
quasi weakly efficient set is nonempty. In this example, the feasible set is not closed.

Example 3.3. Consider a biobjective optimization problem with feasible set

X = {(x1, x2) ∈ R2
|x1 + x2 > 2, x1, x2 ≥ 0}

and objective function f (x1, x2) = (x1, x2). The image (or criterion) space is depicted in Figure 1.

Figure 1: The image space in Example 3.3
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Clearly, there are no weakly efficient solutions for this biobjective optimization problem. Now, assume that
ε = ε = (0.1, 0.1) and yU = (−1,−1). We choose the augmented Tchebycheff scalarization problem (3) with the
parameters (λ1, λ2) = (1, 1) and (ρ1, ρ1) = (0, 0). By Theorem 3.2 we compute the parameters δ and δ as δ = 0.1 and
δ = 0.1. Therefore, the related scalarized problem is as follows:

min
x∈X

max
i=1,2
{x1 + 1, x2 + 1}. (5)

It is easy to see that x̂ = (1.1, 1.1) is a (δ, δ)-quasi optimal solution for the SOP (5). Therefore, by Theorem 3.2, x̂ is
an (ε, ε)-quasi weakly efficient solution for the given biobjective optimization problem.

Now, related to (ε, ε)−quasi weak efficiency, we provide necessary conditions.

Theorem 3.4. Let x̂ ∈ Xε,εWE for some given (ε, ε) ∈ Rm
> ×R

m
> . Then,

(i) There exist ρ ∈ Rm
= and λ ∈ Rm

> such that x̂ is a (δ, δ)−quasi optimal solution for SOP (3) with δ =

maxi=1,··· ,m{λiεi} +
∑

t∈I ρtεt and δ = maxi=1,··· ,m{λiεi} +
∑

t∈I ρtεt.

(ii) There exist ρ ∈ Rm
= and λ ∈ Rm

> such that x̂ is a (δ, δ)−quasi optimal solution for SOP (4) with δ =

maxi=1,··· ,m λi(εi +
∑

t∈I ρtεt) and δ = maxi=1,··· ,m λi(εi +
∑

t∈I ρtεt).

Proof. The proofs are consequences of [2, Theorem 1] by putting ρ = 0 and λi = [ fi(x̂) − yU
i ]−1, i ∈ I.

3.2. Case of (ε, ε)−quasi efficiency

In this subsection, we will study the connections between (δ, δ)−quasi optimal solutions of scalarized
Problems (3) and (4) and (ε, ε)−quasi efficient solutions of MOP (1).

Theorem 3.5. Consider MOP (1) and let (ε, ε) ∈ Rm
= ×R

m
= .

(i) If x̂ ∈ X is a (δ, δ)−quasi optimal solution of SOP (3) withλ ∈ Rm
= and ρ ∈ Rm

> , such that δ ≤ mini=1,...,m{λiεi}+∑
t∈I ρtεt and δ ≤ mini=1,...,m{λiεi} +

∑
t∈I ρtεt, then x̂ ∈ Xε,εE.

(ii) If x̂ ∈ X is a (δ, δ)−quasi optimal solution of SOP (4) with λ ∈ Rm
> and ρ ∈ Rm

> , such that δ ≤ mini=1,...,m λi(εi +∑
t∈I ρtεt) and δ ≤ mini=1,...,m λi(εi +

∑
t∈I ρtεt), then x̂ ∈ Xε,εE.

Proof. (i) Assume that x̂ < Xε,εE. Then, there exists x ∈ X, x , x̂ with f (x) 6 f (x̂) − ε||x − x̂|| − ε. Therefore,∑
t∈I

ρt( ft(x) − yU
t + εt||x − x̂|| + εt) <

∑
t∈I

ρt( ft(x̂) − yU
t ),

and

λi( fi(x) − yU
i + εi||x − x̂|| + εi) ≤ λi( fi(x̂) − yU

i ), f or all i ∈ {1, . . . ,m}.

Consequently,

max
i=1,...,m

λi( fi(x̂) − yU
i ) +

∑
t∈I

ρt( ft(x̂) − yU
t ) >

max
i=1,...,m

λi( fi(x) − yU
i + εi||x − x̂|| + εi) +

∑
t∈I

ρt( ft(x) − yU
t + εt||x − x̂|| + εt) ≥

max
i=1,...,m

λi( fi(x) − yU
i ) + ||x − x̂||( min

i=1,...,m
{λiεi} +

∑
t∈I

ρtεt) + ( min
i=1,...,m

{λiεi} +
∑
t∈I

ρtεt) +
∑
t∈I

ρt( ft(x) − yU
t ) ≥
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max
i=1,...,m

λi( fi(x) − yU
i ) +

∑
t∈I

ρt( ft(x) − yU
i ) + δ||x − x̂|| + δ.

This makes a contradiction. Therefore, x̂ ∈ Xε,εE.
(ii) Suppose x̂ < Xε,εE. Then, there exists x ∈ Xwith x , x̂ and f (x) ≤ f (x̂) − ε||x − x̂|| − ε. Hence,

max
i=1,...,m

λi

(
fi(x̂) − yU

i +
∑
t∈I

ρt( ft(x̂) − yU
t )

)
>

max
i=1,...,m

λi

(
fi(x) − yU

i + εi||x − x̂|| + εi +
∑
t∈I

ρt( ft(x) − yU
t + εt||x − x̂|| + ε)

)
≥

≥ max
i=1,...,m

λi( fi(x) − yU
i +

∑
t∈I

ρt( ft(x) − yU
i )) + δ||x − x̂|| + δ,

which contradicts with (δ, δ)−quasi optimality of x̂.

Remark 3.6. Beldiman et al. [2, Theorems 4 and 5] used SOPs (3) and (4) to obtain sufficient conditions for
(ε, ε)−quasi efficiency. The following facts show that the results given in Theorem 3.5, provide better sufficient
conditions than those obtained in [2]:

(a) ρ > 0 and λ > 0(= 0) given in Theorem 3.5 are arbitrary, while in [2], λ > 0 is required to take a pre-specified
value and its value devolves on (ε, ε)-quasi efficient solution and it makes difficult using of that theorem.

(b) In Theorem 3.5, decision maker allows to select (ε, ε) ∈ Rm
= ×R

m
= , while in [2] all components of (ε, ε) must be

positive, that is (ε, ε) ∈ Rm
> ×R

m
> .

In the following theorem, we provide some other sufficient conditions for generating (ε, ε)−quasi efficient
solutions of MOP (1). The proofs are similar to Theorem 3.5 and therefore are omitted.

Theorem 3.7. Given (ε, ε) ∈ Rm
= ×R

m
= .

(i) If x̂ ∈ X is a strictly (δ, δ)−quasi optimal point of SOP (3) with λ ∈ Rm
> and ρ ∈ Rm

= , such that δ ≤
mini=1,...,m{λiεi} +

∑
t∈I ρtεt and δ ≤ mini=1,...,m{λiεi} +

∑
t∈I ρtεt, then x̂ ∈ Xε,εE.

(ii) If x̂ ∈ X is a strictly (δ, δ)−quasi optimal point of SOP (4) with λ ∈ Rm
≥

and ρ ∈ Rm
= , such that δ ≤

mini=1,...,m λi(εi +
∑

t∈I ρtεt) and δ ≤ mini=1,...,m λi(εi +
∑

t∈I ρtεt), then x̂ ∈ Xε,εE.

3.3. Case of (ε, ε)−quasi proper efficiency

Beldiman et al. [2, Theorems 2 and 3], using SOPs (3) and (4), obtained necessary conditions for (ε, ε)-
quasi properly efficient solutions. Now, in the following theorem, we complete and extend their results to
sufficient conditions for approximate quasi properly efficient solutions.

Theorem 3.8. Given (ε, ε) ∈ Rm
> ×R

m
> .

(i) Let x̂ be a (δ, δ)−quasi optimal point to SOP (3) with δ = maxi∈I{λiεi}+
∑

t∈I ρtεt, δ = maxi∈I{λiεi}+
∑

t∈I ρtεt,
ρ ∈ Rm

> , and yU
i such that for any i ∈ I, λi := [ fi(x̂) − yU

i ]−1 > 0, i = 1, · · · ,m, then x̂ ∈ Xε,εPE.

(ii) Let x̂ be a (δ, δ)-quasi optimal point to SOP (4) with δ = maxi∈I λi(εi +
∑

t∈I ρtεt), δ = maxi∈I λi(εi +
∑

t∈I ρtεt),
ρ ∈ Rm

> , and yU
i such that for any i ∈ I, λi := [ fi(x̂) − yU

i +
∑

t∈I ρt( ft(x̂) − yU
t )]−1 > 0, i = 1, · · · ,m, then

x̂ ∈ Xε,εPE.
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Proof. (i) ε−efficiency of x̂ follows from [2, Theorem 5]. Consider i ∈ I and x ∈ Xwith fi(x) < fi(x̂)−εi||x−x̂||−ε.
To prove, (ε, ε)-quasi proper efficiency of x̂, we need to show that there exist M > 0 and an index j ∈
{1, 2, . . . ,m} such that f j(x̂) − ε j||x − x̂|| − ε j < f j(x) and

fi(x̂) − fi(x) − εi||x − x̂|| − εi

f j(x) − f j(x̂) + ε j||x − x̂|| − ε j
≤M. (6)

Now, we define:

M = max
k,h∈I
{
λh +

∑
t∈I ρt

ρk
}.

Since x̂ ∈ Xε,εE, then there exists t ∈ {1, · · · ,m} such that ft(x̂) − εt||x − x̂|| − εt < ft(x). Define

f j(x̂) − ε j||x − x̂|| − ε j − f j(x) = min
t∈I

( ft(x̂) − εt||x − x̂|| − εt − ft(x)). (7)

It is obvious that f j(x̂) − ε j||x − x̂|| − ε j − f j(x) < 0. We claim that the above index j is the desired one in (6).
By contradiction, assume that

fi(x̂) − fi(x) − εi||x − x̂|| − εi

f j(x) − f j(x̂) + ε j||x − x̂|| + ε j
> M >

maxh∈I{λh} +
∑

t,i ρt

ρi
.

Therefore

max
h∈I
{λh}( f j(x̂) − f j(x) − ε j||x − x̂|| − ε j)+

∑
t,i

ρt( f j(x̂) − f j(x) − ε j||x − x̂|| − ε j) + ρi( fi(x̂) − fi(x) − εi||x − x̂|| − εi) > 0.

Thus by (7), we have

λk( fk(x̂) − fk(x) − εk||x − x̂|| − εk) +
∑
t∈I

ρt( ft(x̂) − ft(x) − εt||x − x̂|| − εt) > 0, ∀k ∈ I.

Therefore,

max
i∈I

λi( fi(x) − yU
i ) +

∑
t∈I

ρt( ft(x) − yU
t ) <

max
i∈I

λi( fi(x̂) − yu
i − εi||x − x̂|| − εi) +

∑
t∈I

ρt( ft(x̂) − yU
t ) − ||x − x̂||

∑
t∈I

ρtεt −
∑
t∈I

ρtεt.

Hence:

max
i∈I

λi( fi(x) − yU
i ) +

∑
t∈I

ρt( ft(x) − yU
t ) <

max
i∈I

λi( fi(x̂) − yU
i ) +

∑
t∈I

ρt( ft(x̂) − yU
t ) −min

i∈I
λi(εi||x − x̂|| + εi) −

∑
ρt(εt||x − x̂|| − εt).

Now, assume we choose yU
i = fi(x̂) − εi||x − x̂|| − εi, ∀i ∈ I. Therefore, λi = (εi||x − x̂|| + εi)−1 > 0, ∀i ∈ I. But,

since, δ = maxi∈I{λiεi} +
∑

t∈I ρtεt, and δ = maxi∈I{λiεi} +
∑

t∈I ρtεt, we have:

δ||x − x̂|| + δ = max
i=1,··· ,m

{λiεi}||x − x̂|| + max
i=1,··· ,m

{λiεi} +
∑
t∈I

ρt(εt||x − x̂|| + εt)
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= max
i=1,··· ,m

λi(εi||x − x̂|| + εi) +
∑
t∈I

ρt(εt||x − x̂|| + εt) = 1 +
∑
t∈I

ρt(εt||x − x̂|| + εt)

= min
i=1,··· ,m

λi(εi||x − x̂|| + εi) +
∑
t∈I

ρt(εt||x − x̂|| + εt).

Therefore,

max
i∈I

λi( fi(x̂) − yU
i ) − δ||x − x̂|| − δ > max

i∈I
λi( fi(x) − yU

i ) +
∑

ρt( ft(x) − yU
t ),

which is a contradiction with (δ, δ)-quasi optimality of x̂.
(ii) The proof is similar to part (i).

Remark 3.9. Beldiman et al. [2, Theorems 4 and 5], under the same assumptions of Theorem 3.8, showed that
x̂ ∈ Xε,εE. Therefore, in Theorem 3.8 we obtained stronger results than the ones in [2].

Taking into consideration the sufficient conditions in Theorem 3.8 and the necessary conditions in [2,
Theorems 2 and 3], we have the following necessary and sufficient conditions for (ε, ε)-quasi properly
efficient points of MOP (1).

Corollary 3.10. (i) Let δ = maxi∈I{λiεi} +
∑

t∈I ρtεt and δ = maxi∈I{λiεi} +
∑

t∈I ρtεt. Then, x̂ ∈ Xε,εPE if and
only if there exist ρ ∈ Rm

> and λ ∈ Rm
> such that x̂ is a (δ, δ)−quasi optimal solution of SOP (3).

(ii) Let δ = maxi∈I λi(εi +
∑

t∈I ρtεt) and δ = maxi∈I λi(εi +
∑

t∈I ρtεt). Then, x̂ ∈ Xε,εPE if and only if there exist
ρ ∈ Rm

> and λ ∈ Rm
> such that x̂ is a (δ, δ)−quasi optimal solution of SOP (4).

4. Conclusion

In this paper, we used some scalarization techniques to consider (ε, ε)-quasi (weakly, properly) efficient
points of a general (with no convexity assumption) multiobjective program. The relations between approx-
imate quasi (weakly, properly) efficient solutions of an MOP and approximate quasi-optimal solutions of
the associated SOP were considered. More precisely, utilizing the augmented weighted Tchebycheff and
the modified weighted Tchebycheff scalarizing problems, we obtained sufficient conditions for (ε, ε)-quasi
(weakly) efficient solutions of an MOP. Also, we derived two necessary conditions for approximate quasi
weak efficiency. Moreover, via given scalarization methods, we completed the results in [2], and derived
sufficient conditions for (ε, ε)-quasi properly efficient solutions of an MOP. Therefore, two necessary and
sufficient conditions for (ε, ε)-quasi proper efficiency were obtained. The results generalized corresponding
ones in [7, 11, 12, 17, 21, 29].

However, in this paper, Rm
= is the order cone, considering the problem in vector optimization under a

general ordering cone can be a worthwhile direction for the future investigation. Also, (ε, ε)−duality in
multiobjective optimization framework can be worth studying.

Acknowledgements: The author would like to express his heartfelt thanks to the editor and anonymous
referees for their useful suggestions which improved the quality of the paper.
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