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A Note on Integral Non-Commuting Graphs

Modjtaba Ghorbani?, Zahra Gharavi-Alkhansari
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Tehran, 16785-136, 1. R. Iran

Abstract. The non-commuting graph T'(G) of group G is a graph with the vertex set G — Z(G) and two
distinct vertices x and y are adjacent whenever xy # yx. The aim of this paper is to study integral regular
non-commuting graphs of valency at most 16.

1. Introduction

In graph theory, the techniques of graph spectral is used to estimate the algebraic properties of a graph
from its structure with significant role in computer science, biology, chemistry, etc. The spectrum of a
graph is based on the adjacency matrix of graph and it is strongly dependent on the form of this matrix.
A number of possible disadvantage can be derived by using only the spectrum of a graph. For example,
some information about expansion and randomness of a graph can be derived from the second largest
eigenvalue of a graph. One of the main applications of graph spectra in chemistry is the application in
Hiickel molecular orbital theory for the determination of energies of molecular orbitals of 7-electrons.

On the other hand, by computing the smallest eigenvalue, we can get data about independence number
and chromatic number. A graph with exactly two eigenvalues is the complete graph K, or a regular graph
has exactly three eigenvalues if and only if it is a strongly regular graph. Further, some groups can be
uniquely specified by the spectrum of their Cayley graphs, see for example [2, 4-6, 17, 24].

The energy ¢(T') of the graph I' was introduced by Gutman in 1978 as the sum of the absolute values of
the eigenvalues of I, see [20—22]. The stability of a molecule can also be estimated by the number of zero
eigenvalues of a graph, namely the nullity of a graph. Nowadays, computing the spectrum of a graph is an
interesting field for mathematicians, see for example [13-15, 18, 19, 28].

The non-commuting graph I'(G) of group G was first considered by Paul Erdds to answer a question
on the size of the cliques of a graph in 1975, see [27]. For background materials about non-commuting
graphs, we encourage the reader to references [1, 3, 12, 25, 26, 29]. In this article, we prove that there is no
k—regular non-commuting graphs where k is an odd number. We also prove that there is no 2°q—regular
non-commuting graph, where g is a prime number greater than 2. On the other hand, we characterized
all k—regular integral non-commuting graphs where 1 < k < 16. Here, in the next section, we give
necessary definitions and some preliminary results and section three contains some new results on regular
non-commuting graphs.
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2. Definitions and Preliminaries

Our notation is standard and mainly taken from standard books of graph and algebraic graph theory
such as [7, 8, 11, 30]. All graphs considered in this paper are simple and connected. All considered groups
are non-abelian groups. The vertex and edge sets of graph I are denoted by V(I') and E(I'), respectively.

There are a number of constructions of graphs from groups or semigroups in the literature. Let G be
a non-abelian group with center Z(G). The non-commuting graph I'(G) is a simple and undirected graph
with the vertex set G/Z(G) and two vertices x, y € G/Z(G) are adjacent whenever xy # yx.

The characteristic polynomial x;(I') of graph I' is defined as

() =|AL= 4],

where A denotes to the adjacency matrix of I'. The eigenvalues of graph I' are the roots of the characteristic
polynomial and form the spectrum of this graph.

3. Main Results

The aim of this section is to study the regular non-commuting graphs. First, we prove that there is no
k-regular non-commuting graph where k is odd. The following theorem is implicitly contained in [1].

Proposition 3.1. Let G be a finite non-abelian group such that T'(G) is a regular graph. Then G is nilpotent of class
at most 3 and G = P X A, where A is an abelian group, P is a p-group (p is a prime) and furthermore I'(P) is a regular

graph.

Theorem 3.2. Let G be a finite group, where I'(G) is k-reqular, then k is even.

Proof. Suppose that k is odd. Then, for any non-central element x € G,
k=G| = ICc(@)l = ICc(MIIG : Ce(x)l - 1)

from which we deduce that |Cs(x)| is odd and that |G/Z(G)| is even. Since |Cg(x)| is odd for all non-central
elements x € G, all non-central elements of G have odd order as does Z(G). This contradicts the fact that
|G/Z(G)| is even.

Proposition 3.3. If G = P X A, then for every x = (a, f) € G where o € P and p € A, we have
dr(c)(x) = drp)(@)|Al.
Proof. It is easy to see that
dre(®) = Gl =ICo(x)l
IPIlA]

= |PlAl = ———5
l(a”, pH)]
= [PIIA] = [Cp(a)lICA(B)]
= [PIIA] = [Cp(a)llA|
= (1Pl = ICp(a)llAl
= drp)(a)lAl

Theorem 3.4. Let G be a non-abelian finite group and assume that I'(G) is 2° — reqular. Then G is a 2-group.

Proof. We have
2° = |Cc()I(G : Co(®) = 1).

Thus, every element of G/Z(G) is a 2-element. Hence G is a 2-group.

In continuing, we determine all 2°g-regular non-commuting graphs where g is a prime number. To do
this, let G be a finite group where I'(G) is 6-regular. By notations of Proposition 3. 3, the following cases
hold:
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e a=1,hence p"(p' —1) = 6. Thus,p =2 orp = 3. If p = 2, theni = 2 and n = 3. This implies that
G = Dg or G = Qg, both of them are contradictions, since G is 4-regular. If p = 3, theni =1,n =2 and
so G is abelian, a contradiction.

ea=2thenp=2o0rp=3. Ifp=2, thenn =i=2,acontradiction or p = 3 and so 3" (3’ = 1) = 3, a
contradiction.

e 1 =3, hence p = 2. This implies thati =1, n = 2 and hence G = Z, X Z3 or G = Z, X Zg, both of them
are contradictions, since G is abelian. If p = 3, then n = i = 1, a contradiction.

e a=6,thusp=2,i=1andn = 1. It follows that G = Z, X Z is abelian, a contradiction.

Hence, one can conclude the following Lemma.

Lemma 3.5. Let G be a finite non-abelian group which is not a p—group and q be a prime number. Then, there is no
2°q-regular NC graph wheres = 1,2,3.

Proof. Let d(x) = 29, where g is a prime number, then p"~(p' — 1)a = 24. Since G is not a p—group, a # 1 and
three following cases hold:
Case 1. 4 = 2, hence p"'(p' —=1) = gand thus p" " =qorp' —1=q. If p" ' =g, thenn—i=1landp' -1 =1.
Hence, p = 2,i = 1 and n = 2, a contradiction, since G is not abelian. If pi —1 = g, then necessarily n = i,
p" —1=gand so |G| = 2q + 2. Similar to the last discussion, |Z(G)| > 2 and so |G/Z(G)| < 29. Hence I'(G) is a
2g-regular graph on at most 24 vertices which is impossible.
Case 2. a = g, hence p"~(p' — 1)g = 2. This implies that p"“(p' —1) =2and sop =2 orp = 3. If p = 2 then
n—i=1andi=1. Hence, n = 2 and G is abelian, a contradiction. If p = 3, then n = i = 1, a contradiction.
Case 3. a = 2g, then p"~/(p' — 1) = 1. It follows that p = 2and 1 = i = 1, a contradiction, since G is not abelian.

Let now d(x) = 44, similar to the last discussion, the following cases hold:
Case 1. 2 = 2, hence p"~'(p' = 1) = 29. Thusp =g =3andn—i =i =1, a contradictionorp =2,n —i =1
and 2 =1 = g. Then |G| = p"a = 2'*2 = 4(g + 1). It follows that I'(G) is a 4g-regular graph on at most
|G/Z(G)| < 4(g + 1) — 8 = 4q — 4 vertices which is impossible.
Case 2. a = 4, thus p"~/(p' — 1) = g implies thatp = g = 2and n — i = i = 1, a contradiction or (p — 1) = g and
n = i. In this case, |G| = p"a = 4(q + 1), since |Z(P)| = p, we have |[V(I'(G))| = |G/Z(G)| < 4q+4—-4p < 4g, a
contradiction.
Case 3. a = g, hence p"(p' —1) =4. Thusp =5and n =i = 1, a contradictionorp =2,n —i =2and i = 1.
In this case |P| = 8 and so we have a 4-regular graph with at most [V(I')] = |P| — |Z(P)| < 8 — 2 = 6 vertices
which is impossible (according to Proposition 3. 3).
Case 4. a = 2g, hence p"i(p' =1) = 2. Thusp=2o0rp =3. Ifp =2, thenn—i = 1and i = 1 which is
impossible, since G is not abelian. If p = 3, then n = i = 1, a contradiction.
Case 5. a = 4q, therefore p"~(p' — 1) = 1. This implies that p =2 and n = i = 1, a contradiction.

Finally, suppose d(x) = 84, then the following cases hold:
Case 1. a = 2, hence p""'(p' —1) = 4q. Thusp =g =5andn—i =i =1, a contradictionorp = 2,n —i = 2
and p' = q + 1. In this case |G| = 4(q + 1) and so I['(G) is an 8g—regular graph on |G/Z(G)| < 4q vertices, a
contradiction.
Case 2. a =4, thusp"(p' —1) =2gand sop =g =3,n—i=1i=1,a contradiction or p =2 and 2 - 1) = q.
In this case, |G| = p"a = 2(g + 1). Since |Z(P)| > 2, one can see that |V(I'(G))| = |G/Z(G)| <49 +4—-4p <4g,a
contradiction.
Case 3. a = 8, thus p"~/(p' — 1) = g implies thatp = g = 2and n — i = i = 1, a contradiction or (p' — 1) = g and
n = i. In this case, |G| = p"a = 8(g + 1) and since |Z(P)| = p hence |[V(I'(G))| = |G/Z(G)| < 85 +8 -8p < 8g,a
contradiction with I is 8g—regular.
Cased4. a = g, hence p""'(p'—1) = 8. Thusp = 2,n—i = 3and i = 1. It follows that |G| = 16g, since |Z(G)| > 24,
by Proposition 3.3, I'(P) is an 8-regular graph with |V(I'(P))| < 14, a contradiction.
Case 5. a = 2g, hence p"~/(p' — 1) = 4. This implies thatp = 5and n =i = 1, a contradiction orp = 2,n—i = 2
and i = 1. It follows that I'(P) is an 4-regular graph with [V(I'(P))| < 6 vertices, a contradiction.
Case 6. a = 44, therefore p"~'(p' — 1) = 2. This implies that p = 3 and n = i = 1, a contradiction or p = 2 and
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n—1i=1=1,a contradiction with G is not abelian.
Case 7. a = 8¢, therefore p"~/(p' — 1) = 1. This implies that p = 2 and n = i = 1, a contradiction, since G is not
abelian.

In general, we have the following theorem:

Theorem 3.6. Suppose that G is a non-abelian finite group and I'(G) is k—regular. Then k # 2°q where q is an odd
prime.

Proof. Suppose that k = 2°g. First assume that G/Z(G) is not a 2-group. Let x € G be such that Z(G)x has
odd order greater than 1. We have

2°q = 1Cc(M(G : Ce(x) - 1)

and so, as x € Cg(x), |Cg(x)| = 2°q for some integer a and Z(G)x has order 4. In particular, Z(G) is a 2-group.
Let Q be a Sylow g-subgroup of G and y € Z(Q) with y # 1. Then Z(G)y has odd order greater than 1 as
Z(G) is a 2-group. Thus |Cs(y)| = 2%q for some integer b. Since Q < Cg(y) we see that Q has order g. Thus
every element of odd order in G has order g and G has Sylow g-subgroups of order g. Especially, |G| = 2°7
for some integer c. Now

2% =Gl = 2°q + |Ca(x)| = 2°q +2°q = 2°9(2°" + 1)

from which we deduce 25 + 1 = 2 and |G| = 2°*4. Further C¢(x) has index 2 in G. But then every conjugate
of x is contained in C¢(x). Hence (x) is normal in G. Let y be a 2-element which does not commute with
x. Then |Ce(y)| = 24 whereas |G| — ICc(y)l = 2°q = |G| — |C(x)|, a contradiction. Next consider the case that
G/Z(G) is a 2-group. In this case q divides |Z(G)|. Let x be a non-central element of G. Then |Cs(x)| = 2°q for
some integer b. Now

2°g = |Cc(0)I(IG : Co(®)| - 1) = 2°q(2° - 1)

so, we deduce that 2° — 1 = 1 and Cg(x) = G which is impossible. This proves the claim.

3.1. Which non-commuting graphs are integral?

An integral graph is a graph with integral spectrum considered by Harary and Schwenk [23] for the first
time. Cvetkovi¢etal. [6,9, 10] determined all cubic integral graphs. Following their method, we classify all
groups whose non-commuting k—regular graphs are integral where 1 < k < 16. The following two lemmas
are crucial in what follows.

Lemma 3.7. [1] Let T be a non-commuting graph with diameter d, then d < 2.

Lemma 3.8. [10] Let I be an integral k-reqular graph on n vertices with diameter d. Then

_ 1) —
K-y -2
k-2

According to Lemma 3. 7, the diameter of a non-commuting graph is at most 2, then from Lemma 3. 8, it
follows that the number of vertices of I' is less than or equal to % Clearly, there is no integral regular
non-commuting graph of odd degree. So, we should study just the regular non-commuting graph with

even valency.

Theorem 3.9. If I'(G) is k—regular integral non-commuting graph where k < 16, then k = 4 and G = Dg, Qg or
k=8and G =Z, x Dg, Z5 x Qs, SU(2), M1, Zy < Zy, Zy < Zy X Z5 or k = 16 and G = SmallGroup(32, i) where

i€{2,4,512,17,22,23,24,25,26,37,38,46,47,48, 49, 50}.
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Proof. According to Theorem 3. 2, k is even. Since G is non-abelian, k > 3 and so k € {4, 6, 8,10, 12,14, 16}.
According to Theorem 3.4, k ¢ {6,10,12,14} and so k € {4,8,16}. Let I'(G) be a 4-regular integral non-
commuting graph. According to Lemma 3. 8,

4x32-2
< — = .
n< ) 17
But I' is not a complete graph and then 6 < n < 17. Since |Z(G)| divides |G|, we can suppose |G/Z(G)| = ¢
and so

n = |Gl = |Z(G) = HZ(G)| = IZ(G)| = (t = DIZ(G)I.

Let n = 6, since (t — 1)|Z(G)| = 6, |Z(G)| = 1,2,3 or 6. If |Z(G)| = 6, then |G/Z(G)| = 2 and so G is abelian,
a contradiction. If |Z(G)| = 3, then |G| = 9 and so G is abelian, a contradiction. If |Z(G)| = 2, then |G| = 8
and G = Dg or Qg. By a direct computation, one can see that both I'(Dg) and I'(Qg) are 4-regular graphs.
If |Z(G)| = 1, then |G| = 7 and so G is abelian, a contradiction. Let now n = 7, then |Z(G)| = 1 or 7. If
|Z(G)| = 7, then |G| = 14 and the only non-abelian group of order 14 is D14. The non-commuting graph
of Dy4 is not 4-regular. If |Z(G)| = 1, then |G| = 8, a contradiction, since the center of a 2—group is not
trivial. In continuing, let n = 8. Since G is non-abelian, |Z(G)| = 2,4 or 8. If |Z(G)| = 2, then |G| = 10 and so
G = Dyp. One can see that I'(Dyp) is not 4-regular. If |[Z(G)| = 4, 8 then I'(G) is not 4-regular. In this case, by
using a GAP program [16] (presented in the end of this paper), we can prove that just the non-commuting
graphs I'(Dg) and I'(Qs) are 4-regular graphs. Let now, I'(G) be an 8-regular integral non-commuting graph.
According to Lemma 3. 8,

8§x72-2

7<n< "% =65
=18

If n =7, then |Z(G)| = 1 or 7. If |Z(G)| = 1, then |G| = 8 and there is not a group of order 8 whose
non-commuting graph is 8-regular. For |Z(G)| = 7, |G| = 14 and similar to the last discussion, the only
non-abelian group of order 14 is D14 and the degrees of vertices of I'(D14) are 7 and 12, a contradiction. This
implies that n > 8. If n = 8, then |G| = 9,10,12,16. From the part one, we can conclude that |G| # 9,10, 12.
Suppose |G| = 16 and |Z(G)| = 8§, then % is cyclic and so G is abelian, a contradiction. If n = 10, then
|G| = 11,12,15,20 and similar to the last discussion their non-commuting graphs are not regular. Suppose
n =12, then |Z(G)| = 1,2,3,4,6,12 and so |G| = 13,14, 15, 16, 18, 24. By these conditions, one can prove that
|G| = 16 and |Z(G)| = 4. There are six non-abelian groups whose non-commuting graphs are 8-regular. They
are Z, X Dg, group of the Pauli matrices Z, X Qg, SU(2), modular or Isanowa group Mjs of order 16 and
Semidirect products Z4 < Zy, Z4 < Z, X Z,. By continuing our method and applying GAP program, we
can deduce that the above groups are the only groups whose non-commuting graphs are 8-regular. Finally,
suppose k = 16, then

16 x 152 -2
ns ————

) = 257.

Again, by applying GAP program, we can deduce that only for |G| = 32, there are some non-abelian groups
whose non-commuting graphs are 16-regular. We name them as SmallGroup(32, i) where

i€{2,4,512,17,22,23,24,25,26,37,38,46,47,48, 49, 50}.

This completes the proof.
Acknowledgement. The authors are indebted to Professor Said Sidki for critical discussion on this

paper.
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A GAP program for computing the non-commuting graph of groups

f = function(G)

local x, y, M, MM, i, j,s, d;
M:=[; MM :=[]; s :=0; d := [];

for x in Dif ference(Elements(G), Elements(Center(G))) do
for y in Dif ference(Elements(G), Elements(Center(G))) do
if x+y=y=xthen
Add(M, 0);
else
Add(M, 1);
fi;
od;
Add(MM, M); M :=[];
od;

Print(MM);
Print(Size(Center(G)));
foriin MM do

for jinido
si=s+];
od;

Add(d,s); s :=0;
od;

Pr
Pr
re

int(d);
int(”>e>e>(->e>(->e>e>(->e>e>(->e>(->e>e>(->e*********************”,‘

turn;

end;
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