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Abstract. The non-commuting graph Γ(G) of group G is a graph with the vertex set G − Z(G) and two
distinct vertices x and y are adjacent whenever xy , yx. The aim of this paper is to study integral regular
non-commuting graphs of valency at most 16.

1. Introduction

In graph theory, the techniques of graph spectral is used to estimate the algebraic properties of a graph
from its structure with significant role in computer science, biology, chemistry, etc. The spectrum of a
graph is based on the adjacency matrix of graph and it is strongly dependent on the form of this matrix.
A number of possible disadvantage can be derived by using only the spectrum of a graph. For example,
some information about expansion and randomness of a graph can be derived from the second largest
eigenvalue of a graph. One of the main applications of graph spectra in chemistry is the application in
Hückel molecular orbital theory for the determination of energies of molecular orbitals of π-electrons.

On the other hand, by computing the smallest eigenvalue, we can get data about independence number
and chromatic number. A graph with exactly two eigenvalues is the complete graph Kn or a regular graph
has exactly three eigenvalues if and only if it is a strongly regular graph. Further, some groups can be
uniquely specified by the spectrum of their Cayley graphs, see for example [2, 4–6, 17, 24].

The energy ε(Γ) of the graph Γ was introduced by Gutman in 1978 as the sum of the absolute values of
the eigenvalues of Γ, see [20–22]. The stability of a molecule can also be estimated by the number of zero
eigenvalues of a graph, namely the nullity of a graph. Nowadays, computing the spectrum of a graph is an
interesting field for mathematicians, see for example [13–15, 18, 19, 28].

The non-commuting graph Γ(G) of group G was first considered by Paul Erdős to answer a question
on the size of the cliques of a graph in 1975, see [27]. For background materials about non-commuting
graphs, we encourage the reader to references [1, 3, 12, 25, 26, 29]. In this article, we prove that there is no
k−regular non-commuting graphs where k is an odd number. We also prove that there is no 2sq−regular
non-commuting graph, where q is a prime number greater than 2. On the other hand, we characterized
all k−regular integral non-commuting graphs where 1 ≤ k ≤ 16. Here, in the next section, we give
necessary definitions and some preliminary results and section three contains some new results on regular
non-commuting graphs.
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2. Definitions and Preliminaries

Our notation is standard and mainly taken from standard books of graph and algebraic graph theory
such as [7, 8, 11, 30]. All graphs considered in this paper are simple and connected. All considered groups
are non-abelian groups. The vertex and edge sets of graph Γ are denoted by V(Γ) and E(Γ), respectively.

There are a number of constructions of graphs from groups or semigroups in the literature. Let G be
a non-abelian group with center Z(G). The non-commuting graph Γ(G) is a simple and undirected graph
with the vertex set G/Z(G) and two vertices x, y ∈ G/Z(G) are adjacent whenever xy , yx.

The characteristic polynomial χλ(Γ) of graph Γ is defined as

χλ(Γ) = |λI − A|,

where A denotes to the adjacency matrix of Γ. The eigenvalues of graph Γ are the roots of the characteristic
polynomial and form the spectrum of this graph.

3. Main Results

The aim of this section is to study the regular non-commuting graphs. First, we prove that there is no
k-regular non-commuting graph where k is odd. The following theorem is implicitly contained in [1].

Proposition 3.1. Let G be a finite non-abelian group such that Γ(G) is a regular graph. Then G is nilpotent of class
at most 3 and G = P×A, where A is an abelian group, P is a p-group (p is a prime) and furthermore Γ(P) is a regular
graph.

Theorem 3.2. Let G be a finite group, where Γ(G) is k-regular, then k is even.

Proof. Suppose that k is odd. Then, for any non-central element x ∈ G,

k = |G| − |CG(x)| = |CG(x)|(|G : CG(x)| − 1)

from which we deduce that |CG(x)| is odd and that |G/Z(G)| is even. Since |CG(x)| is odd for all non-central
elements x ∈ G, all non-central elements of G have odd order as does Z(G). This contradicts the fact that
|G/Z(G)| is even.

Proposition 3.3. If G = P × A, then for every x = (α, β) ∈ G where α ∈ P and β ∈ A, we have

dΓ(G)(x) = dΓ(P)(α)|A|.

Proof. It is easy to see that

dΓ(G)(x) = |G| − |CG(x)|

= |P||A| −
|P||A|
|(αP, βA)|

= |P||A| − |CP(α)||CA(β)|
= |P||A| − |CP(α)||A|
= (|P| − |CP(α))||A|
= dΓ(P)(α)|A|.

Theorem 3.4. Let G be a non-abelian finite group and assume that Γ(G) is 2s
− re1ular. Then G is a 2-group.

Proof. We have
2s = |CG(x)|(|G : CG(x)| − 1).

Thus, every element of G/Z(G) is a 2-element. Hence G is a 2-group.
In continuing, we determine all 2sq-regular non-commuting graphs where q is a prime number. To do

this, let G be a finite group where Γ(G) is 6-regular. By notations of Proposition 3. 3, the following cases
hold:
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• a = 1, hence pn−i(pi
− 1) = 6. Thus, p = 2 or p = 3. If p = 2, then i = 2 and n = 3. This implies that

G � D8 or G � Q8, both of them are contradictions, since G is 4-regular. If p = 3, then i = 1,n = 2 and
so G is abelian, a contradiction.

• a = 2, then p = 2 or p = 3. If p = 2, then n = i = 2, a contradiction or p = 3 and so 3n−i(3i
− 1) = 3, a

contradiction.

• a = 3, hence p = 2. This implies that i = 1, n = 2 and hence G � Z4 ×Z3 or G � Z2 ×Z6, both of them
are contradictions, since G is abelian. If p = 3, then n = i = 1, a contradiction.

• a = 6, thus p = 2, i = 1 and n = 1. It follows that G � Zp ×Z6 is abelian, a contradiction.

Hence, one can conclude the following Lemma.

Lemma 3.5. Let G be a finite non-abelian group which is not a p−group and q be a prime number. Then, there is no
2sq-regular NC graph where s = 1, 2, 3.

Proof. Let d(x) = 2q, where q is a prime number, then pn−i(pi
− 1)a = 2q. Since G is not a p−group, a , 1 and

three following cases hold:
Case 1. a = 2, hence pn−i(pi

− 1) = q and thus pn−i = q or pi
− 1 = q. If pn−i = q, then n − i = 1 and pi

− 1 = 1.
Hence, p = 2, i = 1 and n = 2, a contradiction, since G is not abelian. If pi

− 1 = q, then necessarily n = i,
pn
− 1 = q and so |G| = 2q + 2. Similar to the last discussion, |Z(G)| ≥ 2 and so |G/Z(G)| ≤ 2q. Hence Γ(G) is a

2q−regular graph on at most 2q vertices which is impossible.
Case 2. a = q, hence pn−i(pi

− 1)q = 2q. This implies that pn−i(pi
− 1) = 2 and so p = 2 or p = 3. If p = 2 then

n − i = 1 and i = 1. Hence, n = 2 and G is abelian, a contradiction. If p = 3, then n = i = 1, a contradiction.
Case 3. a = 2q, then pn−i(pi

−1) = 1. It follows that p = 2 and n = i = 1, a contradiction, since G is not abelian.
Let now d(x) = 4q, similar to the last discussion, the following cases hold:

Case 1. a = 2, hence pn−i(pi
− 1) = 2q. Thus p = q = 3 and n − i = i = 1, a contradiction or p = 2,n − i = 1

and 2i
− 1 = q. Then |G| = pna = 2i+2 = 4(q + 1). It follows that Γ(G) is a 4q−regular graph on at most

|G/Z(G)| ≤ 4(q + 1) − 8 = 4q − 4 vertices which is impossible.
Case 2. a = 4, thus pn−i(pi

− 1) = q implies that p = q = 2 and n − i = i = 1, a contradiction or (pi
− 1) = q and

n = i. In this case, |G| = pna = 4(q + 1), since |Z(P)| ≥ p, we have |V(Γ(G))| = |G/Z(G)| ≤ 4q + 4 − 4p < 4q, a
contradiction.
Case 3. a = q, hence pn−i(pi

− 1) = 4. Thus p = 5 and n = i = 1, a contradiction or p = 2,n − i = 2 and i = 1.
In this case |P| = 8 and so we have a 4-regular graph with at most |V(Γ)| = |P| − |Z(P)| ≤ 8 − 2 = 6 vertices
which is impossible (according to Proposition 3. 3).
Case 4. a = 2q, hence pn−i(pi

− 1) = 2. Thus p = 2 or p = 3. If p = 2, then n − i = 1 and i = 1 which is
impossible, since G is not abelian. If p = 3, then n = i = 1, a contradiction.
Case 5. a = 4q, therefore pn−i(pi

− 1) = 1. This implies that p = 2 and n = i = 1, a contradiction.
Finally, suppose d(x) = 8q, then the following cases hold:

Case 1. a = 2, hence pn−i(pi
− 1) = 4q. Thus p = q = 5 and n − i = i = 1, a contradiction or p = 2,n − i = 2

and pi = q + 1. In this case |G| = 4(q + 1) and so Γ(G) is an 8q−regular graph on |G/Z(G)| ≤ 4q vertices, a
contradiction.
Case 2. a = 4, thus pn−i(pi

− 1) = 2q and so p = q = 3, n − i = i = 1, a contradiction or p = 2 and (2i
− 1) = q.

In this case, |G| = pna = 2(q + 1). Since |Z(P)| ≥ 2, one can see that |V(Γ(G))| = |G/Z(G)| ≤ 4q + 4 − 4p < 4q, a
contradiction.
Case 3. a = 8, thus pn−i(pi

− 1) = q implies that p = q = 2 and n − i = i = 1, a contradiction or (pi
− 1) = q and

n = i. In this case, |G| = pna = 8(q + 1) and since |Z(P)| ≥ p hence |V(Γ(G))| = |G/Z(G)| ≤ 8q + 8 − 8p < 8q, a
contradiction with Γ is 8q−regular.
Case 4. a = q, hence pn−i(pi

−1) = 8. Thus p = 2,n− i = 3 and i = 1. It follows that |G| = 16q, since |Z(G)| ≥ 2q,
by Proposition 3.3, Γ(P) is an 8-regular graph with |V(Γ(P))| ≤ 14, a contradiction.
Case 5. a = 2q, hence pn−i(pi

− 1) = 4. This implies that p = 5 and n = i = 1, a contradiction or p = 2,n− i = 2
and i = 1. It follows that Γ(P) is an 4-regular graph with |V(Γ(P))| ≤ 6 vertices, a contradiction.
Case 6. a = 4q, therefore pn−i(pi

− 1) = 2. This implies that p = 3 and n = i = 1, a contradiction or p = 2 and
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n − i = i = 1, a contradiction with G is not abelian.
Case 7. a = 8q, therefore pn−i(pi

− 1) = 1. This implies that p = 2 and n = i = 1, a contradiction, since G is not
abelian.

In general, we have the following theorem:

Theorem 3.6. Suppose that G is a non-abelian finite group and Γ(G) is k−regular. Then k , 2sq where q is an odd
prime.

Proof. Suppose that k = 2sq. First assume that G/Z(G) is not a 2-group. Let x ∈ G be such that Z(G)x has
odd order greater than 1. We have

2sq = |CG(x)|(|G : CG(x)| − 1)

and so, as x ∈ CG(x), |CG(x)| = 2aq for some integer a and Z(G)x has order q. In particular, Z(G) is a 2-group.
Let Q be a Sylow q-subgroup of G and y ∈ Z(Q) with y , 1. Then Z(G)y has odd order greater than 1 as
Z(G) is a 2-group. Thus |CG(y)| = 2bq for some integer b. Since Q ≤ CG(y) we see that Q has order q. Thus
every element of odd order in G has order q and G has Sylow q-subgroups of order q. Especially, |G| = 2cq
for some integer c. Now

2cq = |G| = 2sq + |CG(x)| = 2sq + 2bq = 2bq(2s−b + 1)

from which we deduce 2s−b + 1 = 2 and |G| = 2s+1q. Further CG(x) has index 2 in G. But then every conjugate
of x is contained in CG(x). Hence 〈x〉 is normal in G. Let y be a 2-element which does not commute with
x. Then |CG(y)| = 2d whereas |G| − |CG(y)| = 2sq = |G| − |CG(x)|, a contradiction. Next consider the case that
G/Z(G) is a 2-group. In this case q divides |Z(G)|. Let x be a non-central element of G. Then |CG(x)| = 2bq for
some integer b. Now

2sq = |CG(x)|(|G : CG(x)| − 1) = 2bq(2c
− 1)

so, we deduce that 2c
− 1 = 1 and CG(x) = G which is impossible. This proves the claim.

3.1. Which non-commuting graphs are integral?

An integral graph is a graph with integral spectrum considered by Harary and Schwenk [23] for the first
time. Cvetković et al. [6, 9, 10] determined all cubic integral graphs. Following their method, we classify all
groups whose non-commuting k−regular graphs are integral where 1 ≤ k ≤ 16. The following two lemmas
are crucial in what follows.

Lemma 3.7. [1] Let Γ be a non-commuting graph with diameter d, then d ≤ 2.

Lemma 3.8. [10] Let Γ be an integral k-regular graph on n vertices with diameter d. Then

n ≤
k(k − 1)d

− 2
k − 2

.

According to Lemma 3. 7, the diameter of a non-commuting graph is at most 2, then from Lemma 3. 8, it
follows that the number of vertices of Γ is less than or equal to k(k−1)2

−2
k−2 . Clearly, there is no integral regular

non-commuting graph of odd degree. So, we should study just the regular non-commuting graph with
even valency.

Theorem 3.9. If Γ(G) is k−regular integral non-commuting graph where k ≤ 16, then k = 4 and G � D8,Q8 or
k = 8 and G � Z2 ×D8,Z2 ×Q8,SU(2),M16,Z4 n Z4,Z4 n Z2 ×Z2 or k = 16 and G � SmallGroup(32, i) where

i ∈ {2, 4, 5, 12, 17, 22, 23, 24, 25, 26, 37, 38, 46, 47, 48, 49, 50}.
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Proof. According to Theorem 3. 2, k is even. Since G is non-abelian, k ≥ 3 and so k ∈ {4, 6, 8, 10, 12, 14, 16}.
According to Theorem 3.4, k < {6, 10, 12, 14} and so k ∈ {4, 8, 16}. Let Γ(G) be a 4-regular integral non-
commuting graph. According to Lemma 3. 8,

n ≤
4 × 32

− 2
4 − 2

= 17.

But Γ is not a complete graph and then 6 ≤ n ≤ 17. Since |Z(G)| divides |G|, we can suppose |G/Z(G)| = t
and so

n = |G| − |Z(G)| = t|Z(G)| − |Z(G)| = (t − 1)|Z(G)|.

Let n = 6, since (t − 1)|Z(G)| = 6, |Z(G)| = 1, 2, 3 or 6. If |Z(G)| = 6, then |G/Z(G)| = 2 and so G is abelian,
a contradiction. If |Z(G)| = 3, then |G| = 9 and so G is abelian, a contradiction. If |Z(G)| = 2, then |G| = 8
and G � D8 or Q8. By a direct computation, one can see that both Γ(D8) and Γ(Q8) are 4-regular graphs.
If |Z(G)| = 1, then |G| = 7 and so G is abelian, a contradiction. Let now n = 7, then |Z(G)| = 1 or 7. If
|Z(G)| = 7, then |G| = 14 and the only non-abelian group of order 14 is D14. The non-commuting graph
of D14 is not 4-regular. If |Z(G)| = 1, then |G| = 8, a contradiction, since the center of a 2−group is not
trivial. In continuing, let n = 8. Since G is non-abelian, |Z(G)| = 2, 4 or 8. If |Z(G)| = 2, then |G| = 10 and so
G � D10. One can see that Γ(D10) is not 4-regular. If |Z(G)| = 4, 8 then Γ(G) is not 4-regular. In this case, by
using a GAP program [16] (presented in the end of this paper), we can prove that just the non-commuting
graphs Γ(D8) and Γ(Q8) are 4-regular graphs. Let now, Γ(G) be an 8-regular integral non-commuting graph.
According to Lemma 3. 8,

7 ≤ n ≤
8 × 72

− 2
8 − 2

= 65.

If n = 7, then |Z(G)| = 1 or 7. If |Z(G)| = 1, then |G| = 8 and there is not a group of order 8 whose
non-commuting graph is 8-regular. For |Z(G)| = 7, |G| = 14 and similar to the last discussion, the only
non-abelian group of order 14 is D14 and the degrees of vertices of Γ(D14) are 7 and 12, a contradiction. This
implies that n ≥ 8. If n = 8, then |G| = 9, 10, 12, 16. From the part one, we can conclude that |G| , 9, 10, 12.
Suppose |G| = 16 and |Z(G)| = 8, then G

Z(G) is cyclic and so G is abelian, a contradiction. If n = 10, then
|G| = 11, 12, 15, 20 and similar to the last discussion their non-commuting graphs are not regular. Suppose
n = 12, then |Z(G)| = 1, 2, 3, 4, 6, 12 and so |G| = 13, 14, 15, 16, 18, 24. By these conditions, one can prove that
|G| = 16 and |Z(G)| = 4. There are six non-abelian groups whose non-commuting graphs are 8-regular. They
are Z2 × D8, group of the Pauli matrices Z2 × Q8, SU(2), modular or Isanowa group M16 of order 16 and
Semidirect products Z4 n Z4, Z4 n Z2 × Z2. By continuing our method and applying GAP program, we
can deduce that the above groups are the only groups whose non-commuting graphs are 8-regular. Finally,
suppose k = 16, then

n ≤
16 × 152

− 2
16 − 2

= 257.

Again, by applying GAP program, we can deduce that only for |G| = 32, there are some non-abelian groups
whose non-commuting graphs are 16-regular. We name them as SmallGroup(32, i) where

i ∈ {2, 4, 5, 12, 17, 22, 23, 24, 25, 26, 37, 38, 46, 47, 48, 49, 50}.

This completes the proof.
Acknowledgement. The authors are indebted to Professor Said Sidki for critical discussion on this

paper.
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A GAP program for computing the non-commuting graph of groups

f := f unction(G)
local x, y,M,MM, i, j, s, d;

M := []; MM := []; s := 0; d := [];
f or x in Di f f erence(Elements(G),Elements(Center(G))) do

f or y in Di f f erence(Elements(G),Elements(Center(G))) do
i f x ∗ y = y ∗ x then
Add(M, 0);
else
Add(M, 1);
f i;

od;
Add(MM,M); M := [];

od;
Print(MM);
Print(Size(Center(G)));
f or i in MM do

f or j in i do
s := s + j;

od;
Add(d, s); s := 0;

od;
Print(d);
Print(” ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗”);
return;
end;
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