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Abstract. We present new sharp estimates concerning distance function which leads to generalizations of
some of our results on extremal problems in Bergman type classes.

1. Introduction

The intention of this note is to extend our previous results on extremal problems from [21] and [22]. We
however choose another setting for this.

Namely, we study tube domains over symmetric cones and provide generalizations of our previous
results. Then we provide similar extensions also in the unit ball and polydisk, but we provide these
results without proofs, since proofs are completely parallel to the case of tubular domains over symmetric
cones. The base of all proofs is well-known Forelli-Rudin type estimate for Bergman kernel and Bergman
representation formula together with chain of transparent arguments combined with classical inequalities
of functions theory. All these are valid in analytic spaces in the tubular domains over symmetric cones, unit
ball and unit polydisk.

We shortly remind the history of this problem to readers.
After the appearance of [27] various papers appeared where arguments which can be seen in [27] were

changed, extended and modified in various directions (see [3], [21], [22]).
In particular in mentioned papers various new results on distances for analytic function spaces in higher

dimension (unit ball and polydisk ) were obtained. Then by authors many new sharp results for large scales
of analytic mixed norm spaces in higher dimension were proved.

Later, several new sharp results for harmonic functions of several variables in the unit ball and upper-
halfplane of Euclidean space were also obtained (see, for example, [3] and references there).

We mention separately [18] and [25] where the case of higher dimension was considered in special
cases of analytic spaces on subframe and new similar sharp results in the context of bounded strictly
pseudoconvex domains with smooth boundary were also provided.

The classical Bergman representation formula in various forms and in various domains serves as a base
in all these papers in proofs of main results.
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We would like to note also, recently, Wen Xu (see [26]) repeating arguments of Ruhan Zhao in the unit
ball obtained results on distances from Bloch functions to some Möbius invariant function spaces in one
and higher dimension in a relatively direct way.

The motivation of this problem related with distance function is to find a concrete formula which will
help to calculate this function more concretely via the well-known Bergman kernel.

The goal of this note is to develop further some ideas from our recent mentioned papers and present a
new sharp theorem in tube domain over symmetric cones and other domains.

We note in case of upper halfplane of complex plane C which is a tube domain in one dimension such
results already were obtained previously by first author (see [18]).

We formulate our problem in detail first in basic case of the unit disk and provide some known results.
These type results will be provided in higher dimension in next section.

Let U be, as usual, the unit disk on the complex plane, dm2(z) be the normalized Lebesgue measure on
U so that m2(U) = 1 and dm(ξ) be the Lebesgue measure on the circle T = {ξ : |ξ| = 1}. Let further H(U) be
the space of all analytic functions on the unit disk U.

For f ∈ H(U) and f (z) =
∑

k akzk,define the fractional derivative of the function f as usual in the following
manner

Dα f (z) =

∞∑
k=0

(k + 1)αakzk, α ∈ R.

We will write D f (z) if α = 1. Obviously, for all α ∈ R, Dα f ∈ H(U) if f ∈ H(U).
For a ∈ U, let 1(z, a) = log( 1

|ϕa(z)| ) be the Green’s function for U with pole at a, where ϕa(z) = a−z
1−az . For

0 < p < ∞, −2 < q < ∞, 0 < s < ∞, −1 < q + s < ∞, we say that f ∈ F(p, q, s), if f ∈ H(U) and

‖ f ‖pF(p,q,s) = sup
a∈D

∫
U
|D f (z)|p(1 − |z|2)q1(z, a)sdm2(z) < ∞.

As we know [27], if 0 < p < ∞, −2 < q < ∞, 0 < s < ∞, −1 < q + s < ∞, f ∈ F(p, q, s) if and only if

sup
a∈D

∫
U
|D f (z)|p(1 − |z|2)q(1 − |ϕa(z)|)sdm2(z) < ∞.

It is known (see [27]) that F(2, 0, 1) = BMOA.
We recall that the weighted Bloch class Bα(U), α > 0, is the collection of the analytic functions on the

unit disk satisfying
‖ f ‖Bα = sup

z∈U
|D f (z)|(1 − |z|2)α < ∞.

Space Bα(U) is a Banach space with the norm ‖ f ‖Bα . Note B1(U) = B(U) is a classical Bloch class (see [11],
[14] and the references there).

For k > s, 0 < p, q ≤ ∞, the weighted analytic Besov space Bq,p
s (U) is the class of analytic functions

satisfying (see [11])

‖ f ‖q
B

q,p
s

=

∫ 1

0

(∫
T
|Dk f (rξ)|p|dm(ξ)|

) q
p

(1 − r)(k−s)q−1dr < ∞.

Quasinorm ‖ f ‖
B

q,p
s

does not depend on k. If min(p, q) ≥ 1, the class Bq,p
s (U) is a Banach space under the

norm ‖ f ‖
B

q,p
s
. If min(p, q) < 1, then we have a quasinormed class.

The well-known so called “duality” approach to extremal problems in theory of analytic functions leads
to the following general formula

distY(1,X) = sup
l∈X⊥,‖l‖≤1

|l(1)| = inf
ϕ∈X
‖1 − ϕ‖Y,

where 1 ∈ Y, X is subspace of a normed space Y, Y ∈ H(U) and X⊥ is the ortogonal complement of X in Y∗,
the dual space of Y and l is a linear functional on Y.
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Various extremal problems in Hp Hardy classes in U based on duality approach we mentioned were
discussed in [8, Chapter 8]. In particular for a function K ∈ Lq(T) the following equality holds (see [8]),
1 ≤ p < ∞, 1

p + 1
q = 1,

distLq (K,Hq) = inf
1∈Hq,K∈Lq

‖K − 1‖Hq = sup
f∈Hp,‖ f ‖Hp≤1

1
2π

∣∣∣∣∣∫
T

f (ξ)K(ξ)dm(ξ)
∣∣∣∣∣ .

It is well known that if p > 1 then the inf-dual extremal problem in the analytic Hp Hardy classes has a
solution, it is unique if an extremal function exists (see [8]).

Note also that extremal problems for Hp spaces in multiply connected domains were studied before in
[1], [12].

Various new results on extremal problems in Ap Bergman class and in its subspaces were obtained
recently by many authors (see [10] and the references there).

In this paper we will provide direct proofs for estimation of distY( f ,X) = inf1∈X ‖ f − 1‖Y, X ⊂ Y, X,Y ⊂
H(U), f ∈ Y, not only in the unit disk, but also in higher dimension.

Let further Ωk
α,ε = {z ∈ U : |Dk f (z)|(1 − |z|2)α ≥ ε}, α ≥ 0, ε > 0, Ω0

α,ε = Ωα,ε.
Applying famous Fefferman duality theorem, P. Jones proved the following

Theorem A. (see [27]) Let f ∈ B. Then the following are equivalent:
(a) d1 = distB( f ,BMOA);
(b) d2 = inf{ε > 0 : χΩ1

1,ε( f )(z) dm2(z)
1−|z|2 is a Carleson measure},

where χ denotes the characteristic function of the mentioned set.

In the following theorem, see [21], we showed that in Zhao’s theorems (see[27]) Möebius invariant Bloch
classes can be replaced by Bloch classes with general weights.

Theorem B. (see [21]) Let 1 ≤ p < ∞, α > 0, 0 < s ≤ 1, α ≥ q+2
p , q > α(p − 1) − s − 1, q > s − 2 + α(p − 1) and

f ∈ Bα. Then the following are equivalent:
(a) d1 = distBα ( f ,F(p, q, s));
(b) d2 = inf{ε > 0 : χΩ1

α,ε
(z) dm2(z)

(1−|z|2)αp−q−s is an s − Carleson measure}.

In the following theorem, in [21], we calculated distances from a weighted Bloch class to Bergman spaces
for q ≤ 1. Let B̃−t = D−1

B
−t =

{
f ∈ H(U) : D−1 f ∈ B−t

}
, t < 0. It is well-known that Bq,q

s (U) ⊂ B̃−t(U), t =

s − 1
q , t < 0, s < 0 (see [11]).

Theorem C. (see [21]) Let 0 < q ≤ 1, s < 0, t ≤ s− 1
q , β >

1−sq
q −2 and β > −1− t. Let f ∈ B̃−t. Then the following

are equivalent:
(a) l1 = dist

B̃−t ( f ,Bq,q
s );

(b) l2 = inf{ε > 0 :
∫

U

(∫
Ωε,−t( f )

(1−|w|)β+t

|1−zw|2+β dm2(w)
)q

(1 − |z|)−sq−1dm2(z) < ∞}.

The following theorem is a version of Theorem C for the case q > 1.

Theorem D. (see [21]) Let q > 1, s < 0, t ≤ s − 1
q , β >

−1−sq
q and β > −1 − t. Let f ∈ B̃−t. Then the following are

equivalent:
(a) l1 = dist

B̃−t ( f ,Bq,q
s );

(b) l̂2 = inf{ε > 0 :
∫

U

(∫
Ωε,−t( f )

(1−|w|)β+t

|1−zw|2+β dm2(w)
)q

(1 − |z|)−sq−1dm2(z) < ∞}.

Throughout the paper, we write C (sometimes with indexes) to denote a positive constant which might
be different at each occurrence (even in a chain of inequalities) but is independent of the functions or
variables being discussed.

The notation A � B means that there is a positive constant C, such that B
C ≤ A ≤ CB. We will write for

two expressions A . B if there is a positive constant C such that A < CB.
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2. Formulations and Proofs of Main Results

In this section we formulate and prove main results of this paper. We refer the reader for various basic
notations concerning ball, polydisk and tube domain our previous mentioned papers on extremal problems
(see [20], [21], [22]). Note a combination of Minkowski and Young inequalities leads to direct generalizations
of some of our previously known results (see [21]) in two directions, simultaneously: to larger scales of
values of parameters and to higher dimension (we consider in this paper the case of polydisk, the unit
ball and the tubular domains). Note also, the case of higher dimensions were provided before in [22] only
for particular values of parameters and without proofs. Moreover, complete analogues of results of this
paper with similar proofs are valid also for spaces of harmonic and n-harmonic functions, based also on
our previously used methods in this direction, (see [17], [20] and for particular values of parameters see
[3]). We do not discuss this topic related with harmonic functions here, leaving it to our future work.

The following result can be seen in our previous paper without proof (see [21]) and it serves as model
for formulations and proofs of our main results.

Actually, we are dealing now with simplest case δ = 1 in Bergman A1
α class in the unit ball (see [21]). For

α > 0, let

A∞α (Bn) =

{
f ∈ H(Bn) : sup

r<1

(∫
Sn
| f (rξ)||dσ(ξ)|

)
(1 − r)α < ∞

}
, Sn is a unit sphere, (1)

or we denote it by H1
α(Bn). Let also Ap

α(Bn) =
{

f ∈ H(Bn) :
∫

Bn | f (z)|p(1 − |z|)pα−1dV(z) < ∞
}
, 0 < p < ∞ be

Bergman space where H(Bn) is a space of all analytic functions in the unit ball Bn. Similarly we define such
spaces in tube TΩ and polydisk Un (see [19], [21], [22] for definitions). These are spaces Hδ

s (TΩ) (analogue
of A∞α ), Hp

s (Un), Ap
s (TΩ) and Ap

α(Un). For example, in polydisk, for 0 < p ≤ ∞, s > 0, we have

Hp
s (Un) =

{
f ∈ H(Un) : supr j<1

((∫
Un | f (r jξ)|pdm2(ξ)

) 1
p ∏n

j=1(1 − r j)s
)
< ∞

}
, where H(Un) is a space of all ana-

lytic functions in polydisk.
We define a new subset of the unit interval and then using its characteristic function we will give a sharp

assertion concerning distance function.
For ε > 0, f ∈ H(Bn), let

Lε,α( f ) = {r ∈ (0, 1) : (1 − r)α
∫

Sn
| f (rξ)||dσ(ξ)| ≥ ε}. (2)

Theorem 2.1. Let f ∈ A∞α (Bn), α > 0. Then the following are equivalent:
(a) s1 = distA∞α (Bn)( f ,A1

α(Bn));

(b) s2 = inf{ε > 0 :
∫ 1

0 (1 − r)−1χLε,α( f )(r)dr < ∞}.

Proof. First we prove s1 ≥ s2. Let as assume that s1 < s2. Then we can find two numbers ε, ε1 such that

ε > ε1 > 0, and a function fε1 ∈ A1
α(Bn), ‖ f − fε1‖A∞α (Bn) ≤ ε1, and

∫ 1

0 (1 − r)−1χLε,α( f )(r)dr = ∞. Hence we have

(1 − r)α
∫

Sn
| fε1 (rξ)||dσ(ξ)| (3)

≥ (1 − r)α
∫

Sn
| f (rξ)||dσ(ξ)| − sup

r<1
(1 − r)α

∫
Sn
| f (rξ) − fε1 (rξ)||dσ(ξ)|

≥ (1 − r)α
∫

Sn
| f (rξ)||dσ(ξ)| − ε1.

Hence for any s ∈ [−1,∞),

(ε − ε1)
∫ 1

0
(1 − r)sχLε,α( f )(r)dr ≤ C

∫ 1

0

(∫
Sn
| fε1 (rξ)||dσ(ξ)|

)
(1 − r)α+sdr. (4)
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Thus we have a contradiction.
It remains to show s1 ≤ Cs2. Let I = [0, 1). We argue as above and obtain from the classical Bergman

representation formula (see [28]).

f (ρζ) = f (z) = C(t)
∫

Lε,α( f )

∫
Sn

f (rξ)(1 − r)t

(1 − rξρζ)t+n+1
dσ(ξ)dr + C(t)

∫
I\Lε,α( f )

∫
Sn

f (rξ)(1 − r)t

(1 − rξρζ)t+n+1
dσ(ξ)dr

= f1(z) + f2(z), where t is large enough. Then we have

(1 − ρ)α
∫

Sn
| f2(ρζ)||dσ(ζ)| ≤ C(1 − ρ)α

∫
Sn

∫
I\Lε,α( f )

∫
Sn

| f (rξ)|(1 − r)t

|1 − rξρζ|t+n+1
|dσ(ξ)|dr|dσ(ζ)| (5)

≤ C(1 − ρ)α
∫

I\Lε,α( f )

∫
Sn
| f (rξ)|(1 − r)t

∫
Sn

1

|1 − rξρζ|t+n+1
|dσ(ζ)|

 |dσ(ξ)|dr

≤ C(1 − ρ)α
∫

I\Lε,α( f )

∫
Sn
| f (rξ)||dσ(ξ)|

(1 − r)t

(1 − rρ)t+1 dr ≤ Cε(1 − ρ)α
∫ 1

0

(1 − r)t−α

(1 − rρ)t+1 dr ≤ Cε.

For α > 0 we have

∫
Bn

(1 − ρ)α−1
| f1(ρζ)|dV(ρζ) (6)

≤ C
∫

Bn
(1 − ρ)α−1

∫
Lε,α( f )

∫
Sn

| f (rξ)|(1 − r)t

|1 − rξρζ|t+n+1
|dσ(ξ)|drdV(ρζ)

≤ C sup
r<1

(
(1 − r)α

∫
Sn
| f (rξ)||dσ(ξ)|

) ∫
Lε,α( f )

(1 − r)t−α

(1 − r)t+1−α dr

= C sup
r<1

(
(1 − r)α

∫
Sn
| f (rξ)||dσ(ξ)|

) ∫
Lε,α( f )

1
(1 − r)

dr.

Note that the implication‖ f1‖A1
α(Bn) < ∞ follows directly from the known estimate for α > 0, f1 ∈ H(Bn)∫ 1

0
(1 − ρ)α−1

(∫
Sn
| f1(ρξ)|dσ(ξ)

)
dρ ≤ C

∫
Bn

(1 − ρ)α−1
| f1(ρξ)|dV(ρξ). (7)

Hence inf1∈A1
α(Bn) ‖ f − 1‖A∞α (Bn) ≤ C‖ f − f1‖A∞α (Bn) = ‖ f2‖A∞α (Bn) ≤ Cε.

The theorem is proved.

Let for tube TΩ over cone Ω

Aq,p
ν (TΩ) =

 f ∈ H(TΩ) :
∫

Ω

(∫
Rn
| f (x + iy)|qdx

) p
q

∆(y)ν−
n
r dy < ∞

 , 1 ≤ p, q < ∞, ν >
n
r
− 1,

where ∆ is a determinant function in TΩ (see [4]), H(TΩ) is a space of all analytic functions in TΩ. Also, we
put Ap,p

ν = Ap
ν, 1 ≤ p < ∞, ν > n

r − 1.

Let now 1 ≤ p < ∞, 1 ≤ q < ∞. Let also q ≤ s. Then (see [4]) Ap,q
ν (TΩ) ⊂ Hs

β(TΩ), where ν >
n
r
− 1 and

where β =
ν
q

+
n
rp
−

n
rs
. For p = q = s this embedding with appropriate estimate is taking obviously a very

simple form (see [4], Proposition 3.5) and the distance problem here can be easily posed again obviously in
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general case and in mentioned simple case. Note for analytic and harmonic function spaces it was posed
and solved in [3], [21] and [22] in various domains but not in tube domains.

We define H̃p
s (TΩ), 1 ≤ p < ∞, s ∈ R as a subset of Hp

s (TΩ) so that for each f function from that subset the
Bergman representation formula with large enough α0 index is valid. As we will see from our discussion
below this assumption can be removed since this subset coincide with all space.

Since (see [4]) Ap,δ
ν (TΩ) ⊂ Hs

β(TΩ), where 1 ≤ p < ∞, 1 ≤ δ < ∞, δ ≤ s, ν >
n
r
− 1, β =

ν
δ

+
n
r

(
1
p
−

1
s

)
,

we have:

Theorem 2.2. Let s =
ν
δ
, 1 ≤ δ < ∞, s ∈ R, ν > δ

(n
r
− 1

)
,

Ls,ε,δ( f ) =

y ∈ Ω :
(∫
Rn
| f (x + iy)|δdx

)1/δ

∆s(y) ≥ ε


for ε > 0, s > 0. Let f ∈ H̃δ

s (TΩ). Then
l1( f ) � l2( f ),

where l1( f ) = distH̃δ
s (TΩ)( f ,Aδ,δ

ν (TΩ)) and l2( f ) = inf
{
ε > 0 :

∫
Ω
χLs,ε,δ (y)∆−

n
r (y)dy < ∞

}
, 1
δ + 1

δ′ = 1, n
r < δ

′.

Proof. The proof follows standard scheme we provided in [3], [2], [15], [21]. And the new ingredient is
application of Minkowski and Youngs inequality which leads to generalizations of our previous results
(case δ = 1).

First we prove l1( f ) ≥ l2( f ) in a general form for Ap,δ
ν (TΩ) spaces. Let us assume l1 < l2. Then there are two

numbers ε, ε1, ε > 0, ε1 > 0, such that fε1 ∈ Ap,δ
ν (TΩ), ε > ε1, ‖ f − fε1‖Hδ

s (TΩ) ≤ ε1 and
∫

Ω
χLs,ε,δ( f )y∆−

n
r (y)dy = ∞,

we first consider general case of Ap,δ
ν (TΩ) spaces.

We have (∫
Rn | fε1 (τ + iy)|δdτ

) 1
δ

∆s(y) ≥

≥ ∆s(y)
(∫
Rn | f (τ + iy)|δdτ

) 1
δ
− supy∈Ω ∆s(y)

(∫
Rn

∣∣∣ f (τ + iy) − fε1 (τ + iy)
∣∣∣δ dτ

) 1
δ

≥

≥ ∆s(y)
(∫
Rn | f (τ + iy)|δdτ

) 1
δ
− ε1.

Hence we have now

(ε − ε1)p
∫

Ω

(∆(y))α̃ χLs,ε,δ( f )(y)dy ≤ C
∫

Ω

(∫
Rn
| fε1 (τ + iy)|)δdτ

) p
δ

∆sp(y)∆α− n
r (y)dy,

α̃ = − n
r + α for any α > 0. We have a contradiction.

Hence for sp >
n
r
− 1, δ ∈ [1,∞), p ∈ [1,∞), p ≤ δ, s ∈ R

distHδ
s (TΩ)( f ,Aδ,p

sp (TΩ)) ≥ inf
{
ε > 0 :

∫
Ω

χLs,ε,δ( f )(y)(∆(y))−
n
r dy < ∞

}
.

Let us show the reverse implication.
We assume first that if f ∈ Hδ

s (TΩ), then for large enough α̃, α̃ > α0

f (z) =

∫
Ω

∫
Rn

Bα̃(z,w) f (w)∆α̃− n
r (Imw)dV(w).

Using this we define

f1(z) =

∫
Ls,ε,ν

∫
Rn

Bα̃(z,w) f (w)∆α̃− n
r (Imw)dV(w),



R. F. Shamoyan, O. R. Mihić / Filomat 31:2 (2017), 285–293 291

f2(z) =

∫
Ω\Ls,ε,ν

∫
Rn

Bα̃(z,w) f (w)∆α̃− n
r (Imω)dV(w).

If ‖ f2‖Hδ
s (TΩ) < C1ε, ‖ f1‖Aδ

ν(TΩ) < C‖ f ‖Hδ
s (TΩ),

n
r
< δ, ν >

n
r
− 1, s =

ν
δ
, 1 ≤ δ < ∞, then we get what we need

since we have obviously the following

distHδ
s (TΩ)( f ,Aδ

ν(TΩ)) = inf
1∈Aδ

ν

‖ f − 1‖Hδ
s (TΩ) ≤ C‖ f − f1‖Hδ

s (TΩ) = ‖ f2‖Hδ
s (TΩ) < ∞.

Now using Minkowsky and Young’s inequality and lemmas above we have now the following estimates

(we use that Ap,q
β (TΩ) ⊂ As,t

ν (TΩ), 1 ≤ p ≤ s < ∞, 1 ≤ q ≤ t < ∞, β >
n
r
− 1, ν >

n
r
− 1

β

q
−
ν
t

=
n
r

(
1
s
−

1
p

)
, see

[15]):

‖ f2‖Hδ
s (TΩ) ≤ C sup

y
∆s(y)

∫
Rn

(∫
Ω\Ls,ε,ν

∫
Rn
|Bα̃(z,w)|| f (w)|∆α̃− n

r (Imw)dV(w)
)δ

dx


1
δ

≤

≤ C sup
y

∆s(y)
∫

Ω\Ls,ε,ν

∆−α̃(Imz + Imw)‖ f (w)‖δ∆α̃− n
r (Imw)dV(w) ≤

≤ εC sup
y

∆s(y)
∫

Ω

∆−α̃(x + y)∆α̃− n
r −s(y)dy ≤ Cε.

Using embedding we mentioned above and lemmas above

‖ f1‖Aδ
ν
≤ C

∫
Ω

∆
ν
δ−

n
r (ỹ)

(∫
Rn
| f1(x + iỹ)|δdx

) 1
δ

dỹ ≤

≤

∫
Ω

∆
ν
δ−

n
r (ỹ)

∫
Ls,ε,ν

∆−α̃(ỹ + y)‖ fy‖δ∆
α̃− n

r (y)dydỹ ≤

≤ C1‖ f ‖Hδ
s (TΩ)

∫
Ls,ε,ν

∫
Ω

∆
ν
δ−

n
r (ỹ)∆−α̃(y + ỹ)dỹ∆α̃− n

r −s(y)dy ≤

≤ C2‖ f ‖Hδ
s (TΩ), ν >

(n
r
− 1

)
δ, α̃ > α0.

The proof of Theorem 2.2 is complete.

Remark 2.3. For δ = 1 case theorem was proved before by first author in [15] in more general Siegel domains of
second type. This theorem for δ = 1 was proved in [19] in tube domains.

It is easy to show that Ap
s is embedded in Hp

s for all positive p and s, so we pose dist problem. Using
classical embedding between Hardy and Bergman spaces in unit ball (see [14]) we have

Theorem 2.4. Let ε > 0, s > 0 and

L̂s,ε,δ( f ) =

r ∈ (0, 1) :
(∫

Sn
| f (rξ)|δdξ

) 1
δ

(1 − r)s
≥ ε

 .
Then

distHδ
s (Bn)( f ,Aδ

ν(B
n)) � inf

{
ε > 0 :

∫ 1

0
χ̂Ls,ε,y

(y)(1 − y)−1dy < ∞
}
,

1 ≤ δ < ∞, s ∈ R, s = ν
δ , ν > 0.

It is easy to show that Ap
s is embedded in Hp

s for all positive p and s, so we pose dist problem. Using
classical embedding between Hardy and Bergman spaces in the polydisk (see [14]) we have
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Theorem 2.5. Let ε > 0, s > 0, Tn is unit torus of polydisk, In = [0, 1)n and

L̃s,ε,δ( f ) =

r ∈ In :
(∫

Tn
| f (rξ)|δdξ

) 1
δ n∏

k=1

(1 − rk)s
≥ ε

 .
Then

distHδ
s (Un)( f ,Aδ

ν(U
n)) � inf

ε > 0 :
∫ 1

0
· · ·

∫ 1

0
χL̃s,ε,δ

(y)
n∏

j=1

(1 − y j)−1dy1 · · · dyn < ∞

 ,
1 ≤ δ < ∞, s ∈ R, s = ν

δ , ν > 0.

Remark 2.6. Theorem 2.4 and 2.5 were known for δ = 1 case (see [20], [21], [22] for various types of domains).

Theorems 2.4, 2.5 repeats in proofs all arguments of proof of Theorem 2.2, and we omit proofs.
Now we have to return to assumption we made before formulation of Theorem 2.2 to show that Hardy

spaces H̃p
ν(TΩ) and Hp

ν(TΩ) coincide first for function with compact support.
Now, if f ∈ H1

ν(TΩ) then we can use Bergman representation formula to show it for all values of ν.
Indeed, if f ∈ H1

ν(TΩ) then we use estimate(∫
Ω

(∫
Rn | f (x + iy)|dx

)q
∆α− n

r (y)dy
) 1

q
≤

≤ C
(
supy∈Ω

(∫
Rn | f (x + iy)|dx

)q
(∆qν(y))

) 1
q
×

(∫
Ω

∆α− n
r −qν(y)dy

) 1
q
≤

≤ C1‖ f ‖H1
ν(TΩ),

if α >
n
r
− 1, α −

n
r
− qν < −

2n
r

+ 1, (similarly Hδ
ν(TΩ) ⊂ Aδ,q

α (TΩ), q > q0, α >
n
r
− 1).

Now we have to use H1
ν(TΩ) ⊂ A1,q

α (TΩ), q > q0, α >
n
r
− 1. But for all α̃ >

n
r
− 1, f ∈ A1,q

α (TΩ), 1 ≤ q < ∞
(see [15])

f (z) =

∫
TΩ

Bα̃(z,w) f (w)∆α̃− n
r (Imw)dV(w), z ∈ TΩ.

Same is true for Hk
ν(TΩ).

In general case (not only for f functions with compact support as we had above) the mentioned above
embeddings between weighted Hardy and Bergman spaces are also true (see [5], [6]). The proof is the same
as in one-dimensional case of analytic functions in the unit disk and it is based on a fact that Lp(Rn) norm
of f function is monotone in cone and on existence of r-lattice of cone with nice properties (see [5], [6]).

Note also in addition in [11] and [14] it was actually proved that for weighted analytic Hardy spaces Hs
δ

the Bergman representation formula in the ball and in the polydisk is valid with large enough kernel index.

Remark 2.7. The tubular domains over symmetric cones are the most typical examples of unbounded Siegel domains
of second type. Our theorem (it is complete analogue) is valid also for the most typical example of bounded Siegel
domain of second type namely unit ball in Cn. We formulated it above. Note this type observation was made also for
sharp trace theorems and embedding theorems for multifunctional analytic spaces which were proved before by first
author in [24] and [23]. Namely results of first section of [23] are valid also for the tubular domains over symmetric
cones and results of [24] are valid also for bounded pseudoconvex domains with smooth boundary in Cn with very
similar proofs.
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[21] R. Shamoyan, O. Mihić, On new estimates for distances in analytic fuction spaces in the unit disc, polydisc and unit ball, Bol.

de la Asoc. Matematica Venezolana, 17(2), (2010), 89–103.
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