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Abstract. In this work, we will prove some fixed point results for the class of (G, φ)-contractions on
vector metric spaces endowed with a graph. Our results extend and unify many known results for (G, φ)-
contractions on metric spaces with a graph and for φ-contractions on vector metric spaces. We apply our
results to obtain an existence theorem for the solution of an integral equation.

1. Introduction

In 2007, Jachymski [5] introduced the concept of G-contraction on a metric space endowed with a graph
G. Further, in 2010, Bojor [2] extended the work of Jachymski for (G, φ)-contraction mapping on a metric
space endowed with a graph G. Recently, in 2012, Petre[7] proved a fixed point theorem for φ-contractions
on vector metric spaces. In this article, we present some fixed point results for (G, φ)-contractions on vector
metric spaces endowed with a graph G, thereby, extend many results in the area of fixed point theory, in
particular, the work of above mentioned authors.

Throughout the article N, R, R+ and R− will denote the set of natural numbers, real numbers, positive
real numbers and negative real numbers respectively.

2. Preliminaries

The following notations, concepts and results may be found in [1, 3, 4]. A set E equipped with a partial
order “≤”is called a partially ordered set. In a partially ordered set (E,≤), the notation x < y means x ≤ y
and x , y. By an order interval [x, y] in E we mean, a set {z ∈ E : x ≤ z ≤ y}. We note that [x, y] = φ if x � y.
An element z ∈ E is said to be an upper bound of a subset S of E if x ≤ z for all x ∈ S and a lower bound
if z ≤ x for all x ∈ S. A subset S of E is said to be bounded above if it has an upper bound and bounded
below if it has a lower bound. Further, an element z ∈ E is said to be a supremum of S if (i) z is an upper
bound of S and (ii) for any upper bound t ∈ E of S we have z ≤ t. We say that z is a least upper bound
of S in this case. Similarly, infimum of S can be defined as a greatest lower bound of S in E. Supremum
(or infimum) of a non empty set may or may not exist, but, if it exists, it is unique. A partially ordered
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set (E,≤) is a lattice if each pair of elements x, y ∈ E has a supremum and an infimum in E. We use the
notations x ∨ y and x ∧ y to denote sup{x, y} and inf{x, y} respectively. A real linear space E together with
an order relation “≤”which is compatible with the algebraic structure of E via the properties (i) for each
x, y, z ∈ E we have x ≤ y ⇒ x + z ≤ y + z and (ii) for each x, y ∈ E and t ∈ R+ we have x ≤ y ⇒ tx ≤ ty
is called an ordered linear space. The set E+ = {x ∈ E : 0 ≤ x} is called the positive cone of an ordered
linear space (E,≤). An ordered linear space E for which (E,≤) is a lattice is called a Riesz space or linear
lattice. For detail study about Riesz spaces one may refer to [1]. The space Rn with usual order defined by
x = (x1, x2, ..., xn) ≤ y = (y1, y2, ..., yn) in Rn whenever xi ≤ yi for each i = 1, 2, ...,n is a Riesz space [1]. Here
x∨ y = (max{x1y1},max{x2, y2}, ...,max{xn, yn}) and x∧ y = (min{x1, y1},min{x2, y2}, ...,min{xn, yn}). Both the
vector space C(X) of all continuous real functions and the vector space Cb(X) of all bounded continuous
real functions on the topological space X are Riesz spaces when the ordering is defined pointwise. That
is, f ≤ 1 whenever f (x) ≤ 1(x) for each x ∈ X. The lattice operations are: ( f ∨ 1)(x) = max{ f (x), 1(x)} and
( f ∧1)(x) = min{ f (x), 1(x)}. For any sequence (xn) in a Riesz space E, xn ↓ x means xn is a decreasing sequence
and inf{xn} = x and for any sequence (xn) in a Riesz space E, xn ↑ x means xn is an increasing sequence and
sup{xn} = x. For any two decreasing sequences (xn) and (yn) in a Riesz space E, following properties are
satisfied. (i) xn ↓ x and ym ↓ y imply xn + ym ↓ x + y, (ii) xn ↓ x implies txn ↓ tx for all t ∈ R+ and txn ↑ tx for
all t ∈ R− and (iii) xn ↓ x and ym ↓ y imply xn ∨ ym ↓ x ∨ y and xn ∧ ym ↓ x ∧ y. Now we present some more
definitions and examples useful for our main results and that may be found in [1, 3, 4]. Let E denote a Riesz
space and |x| := x∨ (−x) for all x ∈ E. A sequence {xn} in a Riesz space E is said to be an order convergent (or
o-convergent) to x (we write xn

◦
−→ x), if there exists a sequence {yn} in E satisfying yn ↓ 0 and |xn − x| ≤ yn

for all n ∈ N. Here are some simple properties of order convergence. (i) A sequence {xn} in a Riesz space
has at most one order limit, (ii) if xn

◦
−→ x and yn

◦
−→ y then xn + yn

◦
−→ x + y, (iii) αxn

◦
−→ αx for all α ∈ R, (iv)

|xn|
◦
−→ |x|, (v) xn ∨ yn

◦
−→ x ∨ y and xn ∧ yn

◦
−→ x ∧ y and (vi) if xn ≤ yn for all n ≥ n0 then x ≤ y. Let E and F

be any two Riesz spaces. A function f : E→ F is order continuous (or o-continuous) if xn
◦
−→ x in E implies

f (xn) ◦−→ f (y) in F. A sequence {xn} in a Riesz space is said to be an order Cauchy (or o-Cauchy), if there
exists a sequence {yn} in E such that yn ↓ 0 and |xn − xn+p| ≤ yn for all n, p ∈ N. A Riesz space E is called
o-complete if every o-Cauchy sequence in E is o-convergent in E. Let X be a nonempty set and E be a Riesz
space. A function d : X ×X→ E is said to be an E-metric or a vector metric on X if (i) d(x, y) = 0 if and only
if x = y (ii) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X. Also the triplet (X, d,E) is said to be a vector metric
space or an E-metric space. Vector metric spaces generalize the notion of metric spaces and for arbitrary
elements x, y, z,w of a vector metric space, the following properties hold:(i) 0 ≤ d(x, y) (ii) d(x, y) = d(y, x)
(iii) |d(x, z)− d(y, z)| ≤ d(x, y) (iv) |d(x, z)− d(y,w)| ≤ |d(x, y)− d(z,w)|. A Riesz space E is a vector metric space
with respect to d : E × E → E defined by d(x, y) = |x − y|. This Vector metric is called an absolute valued
metric on E. R2 is a Riesz space with respect to coordinatewise ordering of its elements. It is a vector metric
space with respect to the vector metric d : R2

× R2
→ R2 defined by d((x, y), (z,w)) = (α|x − z|, β|y − w|),

where α, β ∈ R+. R is a vector metric space with respect to the vector metric d : R × R → R2 defined by
d(x, y) = (α|x − y|, β|x − y|), where α, β ∈ R+

∪ {0} with α + β ∈ R+. Let (X, d,E) be a vector metric space. A

sequence {xn} in X is said to be E-convergent or vectorially convergent to some x ∈ X, written as xn
d,E
−−→ x, if

there exists a sequence {an} in E such that an ↓ 0 and d(xn, x) ≤ an for all n ∈N.

Lemma 2.1. Let (X, d,E) be a vector metric space and xn
d,E
−−→ x. Then

(i) the limit x is unique,

(ii) any subsequence of {xn} is vectorial convergent to x and

(iii) if yn
d,E
−−→ y, then, d(xn, yn) ◦−→ d(x, y).

Let (X, d,E) be a vector metric space. A sequence {xn} in X is said to be an E-Cauchy if there exists a
sequence {an} in E with an ↓ 0 and d(xn, xn+p) ≤ an for all n, p ∈ N. A vector metric space (X, d,E) is said to
be E-complete if every E-Cauchy sequence in X is E-convergent to a limit in X. A subset Y of X is said to be
E-closed if for any sequence {yn} in Y which is E-convergent to some y ∈ X, we have y ∈ Y.
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Remark 2.2. If E = R then the concepts of E-convergence and of E-Cauchy sequence are same as that of metric
convergence and Cauchy sequence respectively. Further, if X = E and d is the absolute valued metric, then, the
concepts of E-convergence and o-convergence are the same.

Let (X, d,E) and (Y, ρ,F) be vector metric spaces. A function f : X→ Y is said to be vectorial continuous (or

E-continuous) at x ∈ X if for every sequence {xn} in X with xn
d,E
−−→ x we have f (xn)

ρ,F
−−→ f (x). Further, f is

said to be vectorial continuous on X if f is vectorial continuous at every x ∈ X.
For the following concepts about a graph, one may refer to [5]. Let (X, d,E) be a vector metric space and

∆ = {(x, x) : x ∈ X}. Consider a directed graph G with the set V(G) of its vertices equal to X and the set E(G)
of its edges as a superset of ∆. Assume that G has no parallel edges. Now we can identify G with the pair
(V(G),E(G)). The graph G can be converted to a weighted graph by assigning to each edge a weight equal
to the distance between its vertices.

Let G−1 denote conversion of the graph G obtained from the graph G by reversing the direction of edges.
Thus we have V(G−1) = V(G) and E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}. By ŻG we denote the undirected
graph obtained from G by ignoring the direction of edges. It is convenient to treat ŻG as a directed graph for
which the set of its edges is symmetric. That is

E( ŻG) = E(G) ∪ E(G−1). (1)

By a subgraph of G we mean a graph H satisfying V(H) ⊆ V(G) and E(H) ⊆ E(G) such that V(H) contains
the vertices of all edges of E(H).

Definition 2.3. Let (X, d,E) be a vector metric space equipped with a graph G. A mapping f : X → X is orbitally

E-continuous if for all x, y ∈ X and any sequence (kn)n∈N of positive integers f kn x
d,E
−−→ y ⇒ f ( f kn x)

d,E
−−→ f y as

n→ ∞, (G,E)-continuous if given x ∈ X and a sequence (xn)n∈N with xn
d,E
−−→ x as n→ ∞ and (xn, xn+1) ∈ E(G) for

all n ∈N, we have f xn
d,E
−−→ f x and orbitally (G,E)-continuous if for all x, y ∈ X and any sequence (kn)n∈N of positive

integers, f kn x
d,E
−−→ y together with ( f kn x, f kn+1 x) ∈ E(G) implies f ( f kn x)

d,E
−−→ f y as n→∞.

Clearly we have the following relations.
E-Continuity⇒ (G,E)-continuity⇒ orbital (G,E)-continuity and
E-Continuity⇒ orbital E-continuity⇒ orbital (G,E)-continuity.

If x and y are vertices in a graph G then a path in G from x to y (of length n(n ∈ N ∪ {0})) is a finite
sequence (xi)n

i=0 of n + 1 vertices such that x0 = x, xn = y and (xi−1, xi) ∈ E(G) for all i = 1, 2, ...,n. A graph
G is connected if there is a path between any two vertices. G is weakly connected if ŻG is connected. If
G is such that E(G) is symmetric and x ∈ V(G) then the subgraph Gx consisting of all edges and vertices
that are contained in some path in G begining at x is called the component of G containing x. In this case
V(Gx) = [x]G where [x]G is the equivalence class of the relation R defined on V(G) by the rule yRz if there is
a path in G from y to z. Clearly Gx is connected for all x ∈ G.

Definition 2.4. [7] Let E be a Riesz space. A function φ : E+
→ E+ is said to be an o-comparison function if (i) φ is

increasing, that is, x1, x2 ∈ E+ and x1 ≤ x2 imply φ(x1) ≤ φ(x2), (ii) φ(t) < t for any t > 0, and (iii) φn(t) ◦−→ 0 for
any t > 0.

Let Φ be the set of all φ described in Definition 2.4.

Definition 2.5. [7] Let (X, d,E) be a vector metric space and φ ∈ Φ be an o-comparison function. A function
T : X→ X is said to be a nonlinear φ-contraction if and only if d(Tx,Ty) ≤ φ(d(x, y)) for any x, y ∈ X.

Definition 2.6. [5] Let (X, d) be a metric space and G is a directed graph with V(G) = X and ∆ ⊆ E(G). A mapping
T : X → X is said to be a G-contraction if (i) (x, y) ∈ E(G)⇒ (Tx,Ty) ∈ E(G) for all x, y ∈ X and (ii) there exists a
number k ∈ [0, 1) such that for all x, y ∈ X with (x, y) ∈ E(G) we have

d(Tx,Ty) ≤ kd(x, y) (2)



R. Batra et al. / Filomat 31:7 (2017), 2093–2101 2096

3. Main Results

Throughout this section we assume that X ≡ (X, d,E) is a vector metric space with an E-metric d and
G = {G : G is a directed graph with V(G) = X and ∆ ⊆ E(G)}. The set of all fixed points of a self map T on X
will be denoted by Fix(T).

Definition 3.1. Let T be a self map on a vector metric space (X, d,E). T is an E-Picard operator (abbr., EPO) if T

has a unique fixed point x∗ and Tnx
d,E
−−→ x∗ for all x ∈ X.

Definition 3.2. Let T be a self map on a vector metric space (X, d,E). T is a weakly E-Picard operator (abbr., WEPO)
if for any x ∈ X, limn→∞ Tnx exists (it may depend on x) and is a fixed point of T.

Following Definition 2.5 and Definition 2.6 we introduce G-contraction and (G, φ)-contraction in the fol-
lowing manner.

Definition 3.3. Let (X, d,E) be a vector metric space and G be a directed graph with V(G) = X and ∆ ⊆ E(G). A
mapping T : X→ X is said to be a G- contraction if

(i) for all x, y ∈ X,

(x, y) ∈ E(G)⇒ (Tx,Ty) ∈ E(G) (3)

(ii) There exists a number k ∈ [0, 1) such that for all x, y ∈ X with (x, y) ∈ E(G),

d(Tx,Ty) ≤ kd(x, y) (4)

Definition 3.4. Let (X, d,E) be a vector metric space, φ ∈ Φ be an o-comparison function and G ∈ G be given. A
mapping T : X→ X is said to be a (G, φ)-contraction if

(i) for all x, y ∈ X,

(x, y) ∈ E(G)⇒ (Tx,Ty) ∈ E(G) (5)

(ii) for all x, y ∈ X with (x, y) ∈ E(G),

d(Tx,Ty) ≤ φ(d(x, y)) (6)

Remark 3.5. Let G ∈ G be arbitrary. Then every G-contraction on (X, d,E) is a (G, φ)-contraction for φ given by
φ(a) = ka for all a ∈ E+. Here k ∈ [0, 1) is as in Definition 3.3.

Remark 3.6. It follows from (5) that (T(V(G)), (T × T)(E(G))) is a subgraph of G where (T × T)(x, y) = (Tx,Ty) for
all x, y ∈ X.

Example 3.7. Any constant function T : X → X is a (G, φ)-contraction for every φ ∈ Φ and G ∈ G . This follows
because E(G) contains all loops.

Example 3.8. Let φ ∈ Φ be arbitrary. Then every φ-contraction is an (G0, φ)-contraction for the complete graph G0
given by V(G0) = X and E(G0) = X × X.

Example 3.9. Let � be a partial order on X. Define the graph G1 by E(G1) = {(x, y) ∈ X ×X : x � y}. Then G1 ∈ G
and for any φ ∈ Φ, a self map T : X→ X is a (G1, φ)-contraction if it satisfies

(i) T is non decreasing w.r.t. � and

(ii) for all x, y ∈ X with (x, y) ∈ E(G1),

d(Tx,Ty) ≤ φ(d(x, y)) (7)
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We say that T is an order φ-contraction if T satisfies (ii) in Example 3.9. That is, if (7) is satisfied for all
x, y ∈ X with x � y.

Remark 3.10. Conditions (i) and (ii) in Definition 3.4 are independent. For example, identity mapping on any vector
metric space (X, d,E) endowed with a graph G preserves edges but (6) is not satisfied for any k ∈ [0, 1) if there is at
least one (x, y) ∈ E(G)−∆. Further, a mapping T : E→ E given by Tx = − 1

2 x for all x ∈ E is an order φ-contraction
for φ(a) = 1

2 a for all a ∈ E+ and with respect to absolute valued metric on any Riesz space E but T is not increasing if
E has at least two elements x and y with x < y.

Remark 3.11. Let Gd be the graph given by V(Gd) = X and E(Gd) = ∆. Then (3) and (4) are satisfied for every
mapping T : X → X. Thus every T : X → X is a (Gd, φ)-contraction for every φ ∈ Φ. Consequently, given φ ∈ Φ,
there is no self mapping on X which is not a (G, φ)-contraction for all G ∈ G . But for a fixed G ∈ G it is possible to
find a φ ∈ Φ and a mapping T : X→ X such that T is a (G, φ)-contraction but not a G-contraction.

Example 3.12. Let Sn =
n(n+1)

2 , n ∈ N ∪ {0} and X = {Sn : n ∈ N ∪ {0}}. Let E = R and d(x, y) = |x − y| for all
x, y ∈ X. Define T : X→ X by TS0 = S0 and TSn = Sn−1 for all n ∈N. Take φ(t) = Sn if Sn < t ≤ Sn+1, n ∈N∪ {0}
and φ(S0) = φ(0) = 0. Then φ becomes an o-comparison function on E+. Let G be a graph given by V(G) = X and
E(G) = {(Sn,Sn) : n ∈N∪ {0}} ∪ {(S0,Sn) : n ∈N}. It is easy to see that T preserves edges. We show that T satisfies
(6) but not (2). Clearly (x, y) ∈ E(G) with Tx , Ty if and only if x = S0 and y = Sn for some n > 1. Further for n > 1
we have d(TS0,TSn)/φ(d(S0,Sn)) = Sn−1/φ(Sn) = Sn−1/Sn−1 = 1. Thus T is a (G, φ)-contraction. Now for n > 1
we have d(TS0,TSn)/d(S0,Sn) = (Sn−1 − S0)/(Sn − S0) = Sn−1/Sn = (n − 1)/(n + 1) which tends to 1 as n → ∞.
Thus T does not satisfy (2). Hence T is a (G, φ)-contraction which is not a G-contraction.

Example 3.13. Let X = [0, 1] × [0, 1] ⊆ R2 and E = R2 with componentwise ordering. Let d((x1, y1), (x2, y2)) =
(|x1 − x2|, |y1 − y2|) be a vector metric on X. Let

T(x, y) =

{
(1/4, 1/4) if (x, y) , (1, 1)
(1/8, 1/8) if (x, y) = (1, 1)

T is not a φ-contraction for any φ ∈ Φ as it is not an E-continous mapping. As discussed in Remark 3.11, T is a
(Gd, φ)-contraction for every φ ∈ Φ.

Definition 3.14. Two sequences {xn} and {yn} in a vector metric space (X, d,E) are equivalent if d(xn, yn) ◦−→ 0 as
n→∞.

Proposition 3.15. Let (X, d,E) be a vector metric space equipped with a graph G. If a mapping T : X → X is such
that (5) (resp. (6) ) holds, then (5) (resp. (6)) is also satisfied for G−1 and ŻG. Hence if T is a (G, φ)-contraction then T
is both a (G−1, φ)-contraction and a ( ŻG, φ)-contraction.

Proof. This is an obvious consequence of symmetry of d and (1).

Lemma 3.16. Let T : X→ X be a (G, φ)-contraction on a vector metric space (X, d,E) equipped with a graph G. For
x ∈ X and y ∈ [x]ŻG, we have d(Tnx,Tny) ◦−→ 0 as n→∞.

Proof. Let x ∈ X and y ∈ [x]ŻG. Then there exists a path (xi)N
i=0 in ŻG from x to y. That is, x0 = x, xN = y

and (xi−1, xi) ∈ E( ŻG) for all i = 1, 2,. . . ,N. By Proposition 3.15, T is a ( ŻG, φ)-contraction. So inductively
(Tnxi−1,Tnxi) ∈ E( ŻG) for all n ∈N, i = 1, 2,. . . ,N and

d (Tnxi−1,Tnxi) ≤ φn (d(xi−1, xi)) (8)

for all i = 1, 2,. . . ,N and n ∈ N. If xi−1 = xi for some i = 1, 2, ...,N, then d(Tnxi−1,Tnxi) = 0 for all n ∈ N.
Consider the case when xi−1 , xi for all i = 1, 2,. . . ,N. Letting n → ∞ in (8) we get d(Tnxi−1,Tnxi)

◦
−→ 0

as n → ∞ for all i = 1, 2, ...,N. By triangular inequality we get d(Tnx,Tny) ≤
∑N

i=1 d(Tnxi−1,Tnxi)
◦
−→ 0 as

n→∞.
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Theorem 3.17. The following statements are equivalent in a vector metric space (X, d,E) equipped with a graph G.

(i) G is weakly connected.

(ii) For any (G, φ)-contraction T : X→ X and x, y ∈ X, the sequences {Tnx} and {Tny} are E-Cauchy and equivalent.

(iii) For any (G, φ)-contraction T : X→ X, Card(Fix T) ≤ 1.

Proof. (i)⇒ (ii):
Let G be weakly connected. Let T : X → X be a (G, φ)-contraction and x, y ∈ X. Then X = [x]ŻG. Take

y = Tx ∈ [x]ŻG in Lemma 3.16. Then d(Tnx,Tn+1x) ◦−→ 0 as n → ∞. So d(Tnx,Tmx) ≤
∑n−m

i=1 d(Tm+i−1,Tm+i) ◦−→ 0
as n → ∞. Thus (Tnx) is E-Cauchy. By Lemma 3.16, (Tnx) and (Tny) are equivalent. So (Tny) is also
E-Cauchy.

(ii)⇒ (iii) Let T : X → X be a (G, φ)-contraction and x, y ∈ Fix(T). By (ii), (Tnx) and (Tny) are E-Cauchy
and equivalent. This gives x = y.

(iii) ⇒ (i) Let G be not weakly connected. Then ŻG is disconnected. Let x0 ∈ X. Then both [x0]ŻG and
X\[x0]ŻG are non empty. Choose y0 ∈ X\[x0]ŻG. Define

T(x) =

{
x0 if x ∈ [x0]
y0 if x ∈ X\[x0]ŻG

Then Fix(T) = {x0, y0}. We now show that T is a (G, φ)-contraction. Let (x, y) ∈ E(G) be arbitrary. Then
[x]ŻG = [y]ŻG. So x, y ∈ [x0]ŻG or x, y ∈ X\[x0]ŻG. In both cases we have Tx = Ty. This shows that (Tx,Ty) ∈ E(G)
because 4 ⊆ E(G). Consequently, (5) and (6) are satisfied. Thus T is a (G, φ)-contraction having two fixed
points which violates (iii). Hence G must be weakly connected.

Corollary 3.18. Let (X, d,E) be a complete vector metric space. Then the following statements are equivalent.

(i) G is weakly connected.

(ii) for any (G, φ)-contraction T : X→ X, there exists an x∗ ∈ X such that limn→∞ Tnx = x∗ for all x ∈ X.

Remark 3.19. Example 3.2 of [5] justifies the fact that we may not improve Corollary 3.18 by adding in (ii) that x∗ is
a fixed point of T. Mapping T in Example 3.2 of [5] is obviously an order F-contraction for F(α) = lnα for all α > 0.

Theorem 3.20. Let T : X→ X be a (G, φ)-contraction such that Tx0 ∈ [x0]ŻG for some x0 ∈ X. Let ŻGx0 be component
of ŻG containing x0. Then [x0]ŻG is T-invariant and T|[x0]ŻG

is a ( ŻGx0 , φ)-contraction. Moreover, if x, y ∈ [x0]ŻG then the
sequences (Tnx)n∈N and (Tny)n∈N are E-Cauchy and equivalent.

Proof. Let x ∈ [x0]ŻG be arbitrary. Then there exists a path (xi)N
i=0 in ŻG from x0 to x. That is, xN = x and

(xi−1, xi) ∈ E( ŻG) for all i = 1, 2, . . . ,N. By Proposition 3.15, every (G, φ)-contraction is a ( ŻG, φ)-contraction.
So T is a ( ŻG, φ)-contraction. This implies (Txi−1,Txi) ∈ E( ŻG) for all i = 1, 2, . . . ,N. Consequently (Txi)N

i=0 is
a path in ŻG from Tx0 to Tx. Thus Tx ∈ [Tx0]ŻG. But Tx0 ∈ [x0]ŻG. So [Tx0]ŻG = [x0]ŻG. Hence Tx ∈ [x0]ŻG. This
proves that [x0]ŻG is T-invariant.

Now let (x, y) ∈ E( ŻGx0 ) be arbitrary. This means there is a path (xi)N
i=0 in ŻG from x0 to y such that

xN−1 = x. Repeating the argument from the first part of the proof we infer that (Txi)N
i=0 is a path in ŻG

from Tx0 to Ty. Since Tx0 ∈ [x0]ŻG, therefore we have a path (yi)M
i=0 in ŻG from x0 to Tx0. It follows that

(y0, y1, . . . , yM,Tx1,Tx2, . . . ,TxN) is a path in ŻG from x0 to Ty. In particular (TxN−1,TxN) ∈ E( ŻGx0 ). That is
(Tx,Ty) ∈ E( ŻGx0 ). Since E( ŻGx0 ) ⊆ E( ŻG) and T is a (G, φ)-contraction, therefore (6) holds for the graph ŻGx0 as
well. Thus T|[x0]ŻG

is a ( ŻGx0 , φ)-contraction.
Finally Theorem 3.17 and connectedness of ŻGx0 imply that (Tnx)n∈N and (Tny)n∈N are E-Cauchy and

equivalent for all x, y ∈ [x0]ŻG.
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Theorem 3.21. Let (X, d,E) be a complete vector metric space, T : X → X be a (G, φ)-contraction, XT = {x ∈ X :
(x,Tx) ∈ E(G)} and (X, d,E,G) satisfy the following property.

For any x ∈ X with the sequence Tnx
d,E
−−→ x∗ and (Tnx,Tn+1x) ∈ E(G) for all n ∈ N, there exists a subsequence

{Tkn x}n∈N of {Tnx}n∈N satisfying (Tkn x, x∗) ∈ E(G) for all n ∈N. (9)
Then

(i) Card Fix T=Card{[x]ŻG : x ∈ XT}.

(ii) Fix T , φ if and only if XT , φ.

(iii) T has a unique fixed point if and only if there exists a point x0 ∈ XT such that XT ⊆ [x0]ŻG.

(iv) For any x ∈ XT, T|[x]ŻG
is an EPO.

(v) If XT , φ and G is weakly connected then T is an EPO.

(vi) If X′ = ∪{[x]ŻG : x ∈ XT} then T|X′ is a WEPO.

(vii) If T ⊆ E(G) then T is a WEPO.

Proof. Let us first prove (iv) and (v). Let x ∈ XT be arbitrary. Then (x,Tx) ∈ E(G). This implies that Tx ∈ [x]ŻG.
So by Theorem 3.20, for any y ∈ X sequences (Tnx)n∈N and (Tny)n∈N are E-Cauchy and equivalent. Since

(X, d,E) is complete, therefore, there exists an x∗ ∈ X such that Tnx
d,E
−−→ x∗ and Tny

d,E
−−→ x∗. Since (x,Tx) ∈ E(G),

(5) yields for all n ∈N

(Tnx,Tn+1x) ∈ E(G) (10)

By (9), it follows that there exists a subsequence (Tkn x) of (Tnx) such that (Tkn x, x∗) ∈ E(G) for all n ∈N. By (10),
(x,Tx,T2x, ...,Tk1 x, x∗) is a path in G (and hence in ŻG) from x to x∗. So x∗ ∈ [x]ŻG. Now d(Tkn+1x,Tx∗) ≤ d(Tkn x, x∗)
for all n ∈N. Letting n→∞we get d(x∗,Tx∗) = 0. That is Tx∗ = x∗. Hence T|[x]ŻG is an EPO.

Further if G is weakly connected and x ∈ XT then X = [x]ŻG. So T is an EPO.
Now (vi) is a consequence of (iv). To prove (vii) observe that T ⊆ E(G) implies that X = XT which gives

X′ = X and hence by (iv), T becomes a WEPO on X.
To prove (i), consider the mapping π : Fix T → C given by π(x) = [x]ŻG for all x ∈ Fix T where C = {[x]ŻG :

x ∈ XT}. It suffices to show that π is a bijection. Let x ∈ XT be arbitrary. By (iv), T|[x]ŻG
is an EPO. Let

x∗ = limn→∞ Tnx. Then x∗ ∈ Fix T ∩ [x]ŻG and πx∗ = [x∗]ŻG = [x]ŻG. So π is surjective. Now let x1, x2 ∈ Fix T be
arbitrary with [x1]ŻG = [x2]ŻG. Then x2 ∈ [x1]ŻG. By (iv), limn→∞ Tnx2 ∈ Fix T∩ [x1]ŻG = {x1}. But Tnx2 = x2 for all
n ∈N. Thus we get x1 = x2. Hence π is a bijection.

Finally (ii) and (iii) follows by (i).

Corollary 3.22. Let (X, d,E) be a complete vector metric space and (X, d,E,G) satisfy the property (9). Then the
following statements become equivalent.

(i) G is weakly connected.

(ii) Every (G, φ)-contraction T : X→ X such that (Tx0, x0) ∈ X for some x0 ∈ X, is an EPO.

(iii) For any (G, φ)-contraction T : X→ X, card Fix T ≤ 1.

Proof. (i)⇒ (ii) follows from Theorem 3.21 (v).
(ii)⇒ (iii):
Let T : X → X be a (G, φ)-contraction. If XT = φ then so is Fix T as Fix T ⊆ XT. In case XT , φ then by

(ii) Fix T is singleton. In both cases card Fix T ≤ 1.
(iii)⇒ (i) :
Follows by Theorem 3.17.



R. Batra et al. / Filomat 31:7 (2017), 2093–2101 2100

Theorem 3.23. Let (X, d,E) be complete and T : X → X be an orbitally (G,E)-continuous (G, φ)-contraction. Let
XT = {x ∈ X : (x,Tx) ∈ E(G)}. Then the following statements hold:

(i) Fix T , φ if and only if XT , φ.

(ii) For any x ∈ XT and y ∈ [x]ŻG, the sequence (Tny)n∈N converges to a fixed point of T and limn→∞ Tny does not
depend on y.

(iii) If XT , φ and G is weakly connected, then T is an EPO.

(iv) If T ⊆ E(G) then T is a WEPO.

Proof. We begin with (ii). Let x ∈ X satisfy (x,Tx) ∈ E(G) and y ∈ [x]ŻG. By Theorem 3.20, sequences
(Tnx)n∈N and (Tny)n∈N vectorially converge to the same point x∗. Moreover (Tnx,Tn+1x) ∈ E(G) for all n ∈N.

Since T is orbitally (G,E)-continuous we get T(Tnx)
d,E
−−→ Tx∗. This yields Tx∗ = x∗ since, simultaneously,

T(Tnx) = Tn+1x
d,E
−−→ x∗. Thus we proved (ii) and ‘⇐’of (i). ‘⇒’of (i) follows by the assumption that E(G) ⊇ 4.

(iv) is an immediate consequence of (ii) since T ⊆ E(G) means XT = X. To Prove (iii) observe that if x0 ∈ XT
then [x0]ŻG = X so (ii) yields T is an EPO.

Continuity condition on T can be strengthened by the following version of Theorem 3.23.

Theorem 3.24. Let (X, d,E) be complete and T : X → X be an orbitally E-continuous (G, φ)-contraction. Let
XT = {x ∈ X : (x,Tx) ∈ E(G)}. Then the following statements hold:

(i) FixT , φ if and only if there exists an x0 ∈ X with Tx0 ∈ [x0]ŻG.

(ii) If x ∈ X is such that Tx ∈ [x]ŻG, then for any y ∈ [x]ŻG the sequence(Tny)n∈N converges to a fixed point of T and
limn→∞Tny does not depend on y.

(iii) If G is weakly connected, then T is an EPO.

(iv) If Tx ∈ [x]ŻG for any x ∈ X then T is a WEPO.

Proof. We begin with (ii). Let x ∈ X be such that Tx ∈ [x]ŻG and let y ∈ [x]ŻG. By Theorem 3.20, sequences
(Tnx)n∈N and (Tny)n∈N vectorially converge to the same point x∗. Since T is orbitally E-continuous we get

T(Tnx)
d,E
−−→ Tx∗. This yields Tx∗ = x∗ since, simultaneously, T(Tnx) = Tn+1x

d,E
−−→ x∗. Thus we proved (ii)

and ‘⇐’of (i). ‘⇒’of (i) follows by the fact that x ∈ [x]ŻG for any x ∈ X. Now if G is weakly connected then
X = [x]ŻG for any x ∈ X. In particular Tx ∈ [x]ŻG for any x ∈ X and by (ii) we infer that T is an EPO. Thus (iii)
holds. Finally (iv) is an immediate consequence of (ii).

Corollary 3.25. Let (X, d,E) be complete. Then the following statements are equivalent.

(i) G is weakly connected.

(ii) Every orbitally E-continous (G, φ)-contraction is an EPO.

(iii) For every orbitally E-continous (G, φ)-contraction T : X→ X, card Fix T ≤ 1.

Hence if ŻG is disconnected then there exist at least one orbitally E- continous (G, φ)-contraction T : X → X
which has at least two fixed points.

Proof. Theorem 3.24 (iii) yields that (i) ⇒ (ii). (ii) ⇒ (iii) is obvious. (iii) ⇒ (i) follows by the proof of
(iii)⇒ (i) of Theorem 3.17. T defined there is orbitally E-continous.
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4. Applications

Theorem 4.1. Let I = [a, b] be any interval of the real line, (B, ||.||) be a partially ordered Banach space satisfying
the property that for any sequence {bn} in B with bn ≤ bn+1 for all n ∈ N and bn → b, b ∈ B, we have bn ≤ b. Let
E = C(I,R+) be the space of all continuous functions defined on I taking values inR+, with usual partial order and the
usual operations of addition and multiplication. The space E is a Riesz space under the pointwise lattice operations.
Let X = C(I,B) be the space of all continuous functions defined on I with values in B and pointwise partial order.
Let d : X × X → E defined by d(x, y)(.) = ||x(.) − y(.)|| for any x, y ∈ X, be a complete vector metric on X. Let
h : I × I × B→ B be continuous and α ∈ X. Consider the Fredholm type integral equation

x(t) =

∫
I
h(t, s, x(s))ds + α(t), (11)

for t ∈ I. Assume that

(i) h(t, s, .) : B→ B is nondecreasing for each t, s ∈ I,

(ii) there exists an o-comparison function φ : E+ → E+ and a continuous function w : I × I → R+ such that
||h(t, s, x(s)) − h(t, s, y(s))|| ≤ w(t, s)φ(d(x, y))(t) for each t, s ∈ I and x ≤ y,

(iii) supt∈I
∫

I w(t, s)ds ≤ 1,

(iv) there exists x0 ∈ X such that x0(t) ≤
∫

I h(t, s, x0(s))ds + α(t) for all t ∈ I.

Then the integral equation (11) has a unique solution in the set {x ∈ X : x ≤ x0 or x ≥ x0}.

Proof. Define a mapping T : X→ X by

T(x)(t) :=
∫

I
h(t, s, x(s))ds + α(t)

for all t ∈ I. Clearly T is a well defined mapping. Consider a graph G with V(G) = X and E(G) = {(x, y) ∈
X × X : x ≤ y}. By the given condition (i), we observe that T is nondecreasing. Thus (x, y) ∈ E(G) implies
that (Tx,Ty) ∈ E(G). Further, G satisfies the property (9) because B satisfies the same for nondecreasing
sequences. Now for any x, y ∈ X with (x, y) ∈ E(G), we have d(T(x),T(y))(t) = ||T(x)(t) − T(y)(t)|| ≤∫

I ||h(t, s, x(s)) − h(t, s, y(s))||ds ≤
∫

I w(t, s)φ(d(x, y))(t)ds = φ(d(x, y))(t)
∫

I w(t, s)ds ≤ φ(d(x, y))(t) for all t ∈ I.
Thus d(T(x),T(y)) ≤ φ(d(x, y)) for all x, y ∈ X with (x, y) ∈ E(G). So T is a (G, φ)-contraction. By (iv), we have
(x0,Tx0) ∈ E(G). Also, [x0]ŻG = {x ∈ X : x ≤ x0 or x ≥ x0}. The conclusion follows by Theorem 3.21.
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