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Abstract. In this work, we will prove some fixed point results for the class of (G, ¢)-contractions on
vector metric spaces endowed with a graph. Our results extend and unify many known results for (G, ¢)-
contractions on metric spaces with a graph and for ¢-contractions on vector metric spaces. We apply our
results to obtain an existence theorem for the solution of an integral equation.

1. Introduction

In 2007, Jachymski [5] introduced the concept of G-contraction on a metric space endowed with a graph
G. Further, in 2010, Bojor [2] extended the work of Jachymski for (G, ¢)-contraction mapping on a metric
space endowed with a graph G. Recently, in 2012, Petre[7] proved a fixed point theorem for ¢-contractions
on vector metric spaces. In this article, we present some fixed point results for (G, ¢)-contractions on vector
metric spaces endowed with a graph G, thereby, extend many results in the area of fixed point theory, in
particular, the work of above mentioned authors.

Throughout the article IN, R, R* and R~ will denote the set of natural numbers, real numbers, positive
real numbers and negative real numbers respectively.

2. Preliminaries

The following notations, concepts and results may be found in [1, 3, 4]. A set E equipped with a partial
order “<”is called a partially ordered set. In a partially ordered set (E, <), the notation x < y means x < y
and x # y. By an order interval [x, y] in E we mean, aset {z € E: x <z < y}. Wenote that [x,y] = ¢ if x £ y.
An element z € E is said to be an upper bound of a subset S of E if x < z for all x € S and a lower bound
ifz<xforallx € S. AsubsetS of E is said to be bounded above if it has an upper bound and bounded
below if it has a lower bound. Further, an element z € E is said to be a supremum of S if (i) z is an upper
bound of S and (ii) for any upper bound ¢ € E of S we have z < . We say that z is a least upper bound
of S in this case. Similarly, infimum of S can be defined as a greatest lower bound of S in E. Supremum
(or infimum) of a non empty set may or may not exist, but, if it exists, it is unique. A partially ordered
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set (E, <) is a lattice if each pair of elements x,y € E has a supremum and an infimum in E. We use the
notations x V y and x A y to denote sup{x, y} and inf{x, y} respectively. A real linear space E together with
an order relation “<”which is compatible with the algebraic structure of E via the properties (i) for each
x,y,z€ Ewehavex <y = x+z<y+zand (ii) foreachx,y € Eand f € R* wehave x < y = tx < ty
is called an ordered linear space. The set E* = {x € E : 0 < x} is called the positive cone of an ordered
linear space (E, <). An ordered linear space E for which (E, <) is a lattice is called a Riesz space or linear
lattice. For detail study about Riesz spaces one may refer to [1]. The space R"” with usual order defined by
X = (X1,%X2, ..., X1) <Y = (Y1, Y2, ..., Yn) in R" whenever x; < y; for eachi = 1,2, ..., n is a Riesz space [1]. Here
x Vy = (max{x1y1}, max{xy, y2}, ..., max{x,, y,}) and x A y = (min{xy, y1}, min{xy, v}, ..., min{x,, y,}). Both the
vector space C(X) of all continuous real functions and the vector space C,(X) of all bounded continuous
real functions on the topological space X are Riesz spaces when the ordering is defined pointwise. That
is, f < g whenever f(x) < g(x) for each x € X. The lattice operations are: (f V g)(x) = max{f(x), g(x)} and
(f Ag)(x) = min{f(x), g(x)}. For any sequence (x,) in a Riesz space E, x, | x means x, is a decreasing sequence
and inf{x,} = x and for any sequence (x,) in a Riesz space E, x,, T x means x, is an increasing sequence and
supi{x,} = x. For any two decreasing sequences (x,) and (y,) in a Riesz space E, following properties are
satisfied. (i) x, | x and v, | y imply x,, + yu | x + y, (ii) x,, | x implies tx,, | tx for all € R* and tx,, T tx for
allt € R™ and (iii) x, | xand vy, | yimply x, V ¥, L x V y and x, A ¥, | x A y. Now we present some more
definitions and examples useful for our main results and that may be found in [1, 3, 4]. Let E denote a Riesz
space and |x] := x V (=x) for all x € E. A sequence {x,} in a Riesz space E is said to be an order convergent (or
o-convergent) to x (we write x, — x), if there exists a sequence {,} in E satisfying v, | 0 and |x, — x| < y,
for all n € IN. Here are some simple properties of order convergence. (i) A sequence {x,} in a Riesz space
has at most one order limit, (ii) if x,, 5 xand Yn > y then x,, + y,, Sax+ y, (iii) ax, S axforalla € R, (iv)
|xn|i> x|, (V)anyni> xV yand x, /\yng xAyand (vi)if x, <y, forallm >npthenx <y. Let Eand F
be any two Riesz spaces. A function f : E — F is order continuous (or o-continuous) if x,, — x in E implies
f(x:) = f(y)in F. A sequence {x,} in a Riesz space is said to be an order Cauchy (or o-Cauchy), if there
exists a sequence {y,} in E such that y, | 0 and |x, — x,1p| < y, for all n,p € IN. A Riesz space E is called
o-complete if every o-Cauchy sequence in E is o-convergent in E. Let X be a nonempty set and E be a Riesz
space. A functiond : X X X — E is said to be an E-metric or a vector metric on X if (i) d(x, y) = 0 if and only
if x =y (i) d(x,y) < d(x,z) +d(y,z) for all x, y,z € X. Also the triplet (X, d, E) is said to be a vector metric
space or an E-metric space. Vector metric spaces generalize the notion of metric spaces and for arbitrary
elements x, v, z, w of a vector metric space, the following properties hold:(i) 0 < d(x, y) (ii) d(x, y) = d(y, x)
(iif) |d(x, z) — d(y, z)| < d(x, y) (iv) |d(x, z) —d(y, w)| < |d(x, y) —d(z, w)|. A Riesz space E is a vector metric space
with respect to d : E X E — E defined by d(x, y) = |x — y|. This Vector metric is called an absolute valued
metric on E. R? is a Riesz space with respect to coordinatewise ordering of its elements. It is a vector metric
space with respect to the vector metric d : R?> X R? — R? defined by d((x, y), (z, w)) = (alx — zl, Bly — wl),
where a, f € R*. R is a vector metric space with respect to the vector metric d : R X R — RR? defined by
d(x,y) = (alx — yl, Blx — yl), where o, g € R* U {0} with @ + B € R*. Let (X, d, E) be a vector metric space. A

o . . dE .
sequence {x,} in X is said to be E-convergent or vectorially convergent to some x € X, written as x,, — x, if
there exists a sequence {a,} in E such thata, | 0 and d(x,,x) < a, forall n € IN.

Lemma 2.1. Let (X, d, E) be a vector metric space and x, LN x. Then
(i) the limit x is unique,

(ii) any subsequence of {x,} is vectorial convergent to x and

(iii) if yu 25y, then, d(x,, yu) = d(x, y).

Let (X,d,E) be a vector metric space. A sequence {x,} in X is said to be an E-Cauchy if there exists a
sequence {a,} in E with a, | 0 and d(x,, x,4p) < a, for all n,p € N. A vector metric space (X, d, E) is said to
be E-complete if every E-Cauchy sequence in X is E-convergent to a limit in X. A subset Y of X is said to be
E-closed if for any sequence {y,} in Y which is E-convergent to some y € X, we have y € Y.



R. Batra et al. / Filomat 31:7 (2017), 2093-2101 2095

Remark 2.2. If E = IR then the concepts of E-convergence and of E-Cauchy sequence are same as that of metric
convergence and Cauchy sequence respectively. Further, if X = E and d is the absolute valued metric, then, the
concepts of E-convergence and o-convergence are the same.

Let (X,d, E) and (Y, p, F) be vector metric spaces. A function f : X — Y is said to be vectorial continuous (or

E-continuous) at x € X if for every sequence {x,} in X with x, 2, ¥ we have fxn) LR f(x). Further, f is
said to be vectorial continuous on X if f is vectorial continuous at every x € X.

For the following concepts about a graph, one may refer to [5]. Let (X, d, E) be a vector metric space and
A ={(x,x) : x € X}. Consider a directed graph G with the set V(G) of its vertices equal to X and the set E(G)
of its edges as a superset of A. Assume that G has no parallel edges. Now we can identify G with the pair
(V(G), E(G)). The graph G can be converted to a weighted graph by assigning to each edge a weight equal
to the distance between its vertices.

Let G™! denote conversion of the graph G obtained from the graph G by reversing the direction of edges.
Thus we have V(G™) = V(G) and E(G™!) = {(x,y) € X X X : (y,%) € E(G)}. By G we denote the undirected
graph obtained from G by ignoring the direction of edges. It is convenient to treat G as a directed graph for
which the set of its edges is symmetric. That is

E(G) = E(G) UE(G™). 1)

By a subgraph of G we mean a graph H satisfying V(H) C V(G) and E(H) C E(G) such that V(H) contains
the vertices of all edges of E(H).

Definition 2.3. Let (X, d, E) be a vector metric space equipped with a graph G. A mapping f : X — X is orbitally
E-continuous if for all x,y € X and any sequence (kn)nen of positive integers frrx 2E, y = f(ffx) LN fyas
n — oo, (G, E)-continuous if given x € X and a sequence (x,)nen With x, LZN xasn — oo and (x,,xn+1) € E(G) for
alln € N, we have fx, LEN fx and orbitally (G, E)-continuous if for all x, y € X and any sequence (k,)nen of positive
integers, fox 25 together with (ffrx, foix) € E(G) implies f(ffx) 25 fyasn — oo

Clearly we have the following relations.

E-Continuity = (G, E)-continuity = orbital (G, E)-continuity and

E-Continuity = orbital E-continuity = orbital (G, E)-continuity.

If x and y are vertices in a graph G then a path in G from x to y (of length n(n € IN U {0})) is a finite
sequence (x;)!_, of n + 1 vertices such that xo = x, x, = y and (x;-1,x;) € E(G) foralli = 1,2,..,n. A graph
G is connected if there is a path between any two vertices. G is weakly connected if G is connected. If
G is such that E(G) is symmetric and x € V(G) then the subgraph G, consisting of all edges and vertices
that are contained in some path in G begining at x is called the component of G containing x. In this case

V(Gyx) = [x]c where [x]; is the equivalence class of the relation R defined on V(G) by the rule yRz if there is
a path in G from y to z. Clearly G, is connected for all x € G.

Definition 2.4. [7] Let E be a Riesz space. A function ¢ : E¥* — E* is said to be an o-comparison function if (i) ¢ is
increasing, that is, x1,x, € E* and x; < xy imply ¢(x1) < p(xa), (ii) G(t) < t for any t > 0, and (iii) ¢"(t) — O for
any t > 0.

Let @ be the set of all ¢» described in Definition 2.4.

Definition 2.5. [7] Let (X,d, E) be a vector metric space and ¢ € ® be an o-comparison function. A function
T : X — X is said to be a nonlinear ¢-contraction if and only if d(Tx, Ty) < ¢p(d(x, y)) for any x,y € X.

Definition 2.6. [5] Let (X, d) be a metric space and G is a directed graph with V(G) = X and A C E(G). A mapping
T : X — X is said to be a G-contraction if (i) (x,y) € E(G) = (Tx, Ty) € E(G) for all x,y € X and (ii) there exists a
number k € [0,1) such that for all x, y € X with (x, y) € E(G) we have

d(Tx, Ty) < kd(x, y) 2)
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3. Main Results

Throughout this section we assume that X = (X, d, E) is a vector metric space with an E-metric d and
¢ = (G : Gis a directed graph with V(G) = X and A C E(G)}. The set of all fixed points of a self map T on X
will be denoted by Fix(T).

Definition 3.1. Let T be a self map on a vector metric space (X,d, E). T is an E-Picard operator (abbr., EPO) if T

has a unique fixed point x. and T"x 2E, x. forall x € X.

Definition 3.2. Let T be a self map on a vector metric space (X, d, E). T is a weakly E-Picard operator (abbr., WEPO)
if for any x € X, lim,,_,o, T"x exists (it may depend on x) and is a fixed point of T.

Following Definition 2.5 and Definition 2.6 we introduce G-contraction and (G, ¢)-contraction in the fol-
lowing manner.

Definition 3.3. Let (X,d, E) be a vector metric space and G be a directed graph with V(G) = X and A C E(G). A
mapping T : X — X is said to be a G- contraction if

(i) forallx,y € X,
(x,y) € E(G) = (Tx, Ty) € E(G) )

(ii) There exists a number k € [0, 1) such that for all x, y € X with (x, y) € E(G),
d(Tx, Ty) < kd(x, y) (4)

Definition 3.4. Let (X, d, E) be a vector metric space, ¢ € © be an o-comparison function and G € & be given. A
mapping T : X — X is said to be a (G, ¢)-contraction if

(i) forallx,y € X,

(x,y) € E(G) = (Tx, Ty) € E(G) ()
(ii) forall x,y € X with (x,y) € E(G),

d(Tx, Ty) < ¢(d(x, y)) (6)

Remark 3.5. Let G € ¢ be arbitrary. Then every G-contraction on (X, d, E) is a (G, ¢)-contraction for ¢ given by
¢(a) = ka for all a € E*. Here k € [0, 1) is as in Definition 3.3.

Remark 3.6. It follows from (5) that (T(V(G)), (T x T)(E(G))) is a subgraph of G where (I X T)(x, y) = (Tx, Ty) for
all x,y € X.

Example 3.7. Any constant function T : X — X is a (G, ¢)-contraction for every ¢ € ® and G € 4. This follows
because E(G) contains all loops.

Example 3.8. Let ¢ € © be arbitrary. Then every ¢-contraction is an (Go, ¢)-contraction for the complete graph Go
given by V(Go) = X and E(Gp) = X X X.

Example 3.9. Let < be a partial order on X. Define the graph G1 by E(G1) = {(x,y) e XX X:x < y}. Then G, € ¥
and for any ¢ € @, aself map T : X — X is a (G1, ¢)-contraction if it satisfies

(i) T is non decreasing w.r.t. < and

(it) forall x,y € X with (x,y) € E(Gy),

d(Tx, Ty) < P(d(x, y)) )
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We say that T is an order ¢-contraction if T satisfies (ii) in Example 3.9. That is, if (7) is satisfied for all
x,y € Xwithx <y.

Remark 3.10. Conditions (i) and (ii) in Definition 3.4 are independent. For example, identity mapping on any vector
metric space (X, d, E) endowed with a graph G preserves edges but (6) is not satisfied for any k € [0, 1) if there is at
least one (x,y) € E(G) — A. Further, a mapping T : E — E given by Tx = —3x for all x € E is an order {-contraction
for p(a) = La for all a € E* and with respect to absolute valued metric on any Riesz space E but T is not increasing if
E has at least two elements x and y with x < y.

Remark 3.11. Let G, be the graph given by V(G;) = X and E(Gg) = A. Then (3) and (4) are satisfied for every
mapping T : X — X. Thus every T : X — X is a (Gy, ¢)-contraction for every ¢ € @. Consequently, given ¢ € @,
there is no self mapping on X which is not a (G, ¢)-contraction for all G € 4. But for a fixed G € ¢ it is possible to
finda ¢ € ®and a mapping T : X — X such that T is a (G, ¢)-contraction but not a G-contraction.

Example 3.12. Let S, = "(";1), neNU{0}and X =1{S, : n € NU{0}}. Let E = Rand d(x,y) = |x — y| for all
x,y € X. DefineT : X — X by TSy = Soand TS,, = Sy—1 forall n € IN. Take ¢(t) = S, if Sy <t < Sp41, 1 € N U {0}
and §(So) = $(0) = 0. Then ¢ becomes an o-comparison function on E*. Let G be a graph given by V(G) = X and
E(G) ={(54,5,) : n e NU{0}} U {(So, Sp) : n € NY}. It is easy to see that T preserves edges. We show that T satisfies
(6) but not (2). Clearly (x, y) € E(G) with Tx # Ty if and only if x = Soand y = S,, for some n > 1. Further forn > 1
we have d(TSo, TS,)/P(d(So, Sn)) = Sn-1/P(Sn) = Sy-1/Sn-1 = 1. Thus T is a (G, ¢)-contraction. Now for n > 1
we have d(TSy, TS,,)/d(So,Sn) = (Su-1 — S0)/(Sn — So) = Su-1/Sy, = (n —1)/(n + 1) which tends to 1 as n — oo.
Thus T does not satisfy (2). Hence T is a (G, ¢)-contraction which is not a G-contraction.

Example 3.13. Let X = [0,1] X [0,1] € R? and E = R? with componentwise ordering. Let d((x1,y1), (x2, ¥2)) =
(Ix1 = x2l, ly1 = y2l) be a vector metric on X. Let

(1/4,1/4) if(x,y) #(1,1)
T(x,y) = .
ey { A/8,1/8) #F(xy)= (L)
T is not a ¢p-contraction for any ¢ € P as it is not an E-continous mapping. As discussed in Remark 3.11, T is a
(Ga, §)-contraction for every ¢ € @.

Definition 3.14. Two sequences {x,} and {y,} in a vector metric space (X, d, E) are equivalent if d(x,, yn) > 0as
n — oo,

Proposition 3.15. Let (X, d, E) be a vector metric space equipped with a graph G. If a mapping T : X — X is such
that (5) (resp. (6) ) holds, then (5) (resp. (6)) is also satisfied for G™! and G. Hence if T is a (G, ¢)-contraction then T
is both a (G™1, ¢)-contraction and a (é, ¢)-contraction.

Proof. This is an obvious consequence of symmetry of d and (1). [

Lemma 3.16. Let T : X — X be a (G, ¢)-contraction on a vector metric space (X, d, E) equipped with a graph G. For
x € Xand y € [x]g, we have d(T"x, T"y) = 0 as n — oo.

Proof. Let x € X and y € [x]¢. Then there exists a path (x;)Y, in G from x to y. Thatis, xo = x, xy = y
and (x;_1,x;) € E((N}) foralli =1,2,...,N. By Proposition 3.15, T is a ((NZ, ¢)-contraction. So inductively
(T"xi—1, T"x;) € E(G) foralln e N,i =1,2,...,N and

d(T"xi, T"xi) < @" (d(xiz1, xi)) (8)

foralli=1,2,...,Nand n € N. If x, .y = x; for some i = 1,2,...,N, then d(T"x;_1, T"x;) = 0 for all n € IN.
Consider the case when x;_1 # x; for alli = 1,2,...,N. Letting n — oo in (8) we get d(T"x;_1, T"x;) 30
asn — oo for all i = 1,2,...,N. By triangular inequality we get d(T"x, T"y) < YN, d(T"x; 1, T"x;) = 0 as
n—oo. [
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Theorem 3.17. The following statements are equivalent in a vector metric space (X, d, E) equipped with a graph G.
(i) G is weakly connected.
(ii) Forany (G, ¢)-contractionT : X — Xandx,y € X, the sequences {T"x} and {T"y} are E-Cauchy and equivalent.
(iii) For any (G, ¢)-contraction T : X — X, Card(FixT) < 1.

Proof. (1)= (ii):

Let G be weakly connected. Let T : X — X be a (G, ¢)-contraction and x,y € X. Then X = [x]s. Take
y = Tx € [x]¢ in Lemma 3.16. Then d(T"x, T"*'x) = 0 as n — o0. So d(T"x, T"x) < Y./" d(T"+~1, T"+) 5 0
as n — oo. Thus (T"x) is E-Cauchy. By Lemma 3.16, (T"x) and (T"y) are equivalent. So (T"y) is also
E-Cauchy.

(if) = (iii) Let T : X — X be a (G, ¢p)-contraction and x, y € Fix(T). By (ii), (I"x) and (T"y) are E-Cauchy
and equivalent. This gives x = y.

(iii) = (i) Let G be not weakly connected. Then G is disconnected. Let xy € X. Then both [xo]¢ and
X\[x0]¢ are non empty. Choose yo € X\[x0]¢. Define

] xo if x € [xo]
T(x) - { Yo ifxe X\[XO]CN;

Then Fix(T) = {xo, yo}. We now show that T is a (G, ¢)-contraction. Let (x,y) € E(G) be arbitrary. Then
[xle = [yle. Sox, y € [xo]g or x, y € X\[x0]¢. Inboth cases we have Tx = Ty. This shows that (Tx, Ty) € E(G)
because A C E(G). Consequently, (5) and (6) are satisfied. Thus T is a (G, ¢)-contraction having two fixed
points which violates (iif). Hence G must be weakly connected. [

Corollary 3.18. Let (X, d, E) be a complete vector metric space. Then the following statements are equivalent.
(i) G is weakly connected.

(ii) for any (G, ¢)-contraction T : X — X, there exists an x* € X such that lim,_,. T"x = x* forall x € X.

Remark 3.19. Example 3.2 of [5] justifies the fact that we may not improve Corollary 3.18 by adding in (ii) that x* is
a fixed point of T. Mapping T in Example 3.2 of [5] is obviously an order F-contraction for F(a) = Ina for all a > 0.

Theorem 3.20. Let T : X — X be a (G, ¢)-contraction such that Txg € [xo] for some xo € X. Let éxo be component
of G containing xo. Then [xo0lg is T-invariant and Ty, is a (éxo,gi))—contmction. Moreover, if x,y € [xo]s then the
sequences (T"x)yen and (T"y)new are E-Cauchy and equivalent.

Proof. Let x € [xo]g be arbitrary. Then there exists a path (xi)fi o In G from xo to x. Thatis, xy = x and
(xi-1,x;) € E((NS) foralli =1,2,...,N. By Proposition 3.15, every (G, ¢)-contraction is a ((NZ, ¢)-contraction.
SoTisa (CN}, ¢)-contraction. This implies (Txj_1, Tx;) € E(é) foralli =1,2,...,N. Consequently (Tx,-)f\zf RE
a path in G from Txg to Tx. Thus Tx € [Txolg. But Txo € [xolg. So [Txolg = [xole. Hence Tx € [x]e. This
proves that [xo]x is T-invariant.

Now let (x,y) € E(éxO) be arbitrary. This means there is a path (x,v)ﬁ o In G from x; to y such that
Xn-1 = X. Repeating the argument from the first part of the proof we infer that (Tx;)Y  is a path in G
from Txp to Ty. Since Txo € [xo]g, therefore we have a path (yi)f\ﬁo in G from xo to Txg. It follows that
o, vy, -+, ym, Tx1, Txo, ..., Txy) is a path in G from x¢ to Ty. In particular (Txy-1, Txn) € E(Gy,). That is
(Tx, Ty) € E(éxo). Since E((NSxo) CEG)and Tisa (G, ¢)-contraction, therefore (6) holds for the graph (N}xo as
well. Thus Tljy), is a (Gy,, $)-contraction.

Finally Theorem 3.17 and connectedness of G,, imply that (T"x),cn and (T"y),en are E-Cauchy and
equivalent for all x, y € [xole. O
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Theorem 3.21. Let (X,d, E) be a complete vector metric space, T : X — X be a (G, ¢)-contraction, Xt = {x € X :
(x, Tx) € E(G)} and (X, d, E, G) satisfy the following property.

For any x € X with the sequence T"x L5y and (T"x, T"'x) € E(G) for all n € IN, there exists a subsequence
{TFx}pen of (T x}nen satisfying (TFx, x*) € E(G) for all n € N. 9)
Then

(i) Card Fix T=Card{[x]x : x € Xr}.
(ii) FixT # ¢ if and only if Xt # .
(iii) T has a unique fixed point if and only if there exists a point xo € Xt such that Xt C [xo]g.
(iv) Forany x € Xr, Tl is an EPO.
(v) If Xt # ¢ and G is weakly connected then T is an EPO.
(vi) If X’ = U{[x]g : x € Xt} then T|x is a WEPO.
(vii) If T C E(G) then T is a WEPO.

Proof. Let us first prove (iv) and (v). Let x € X7 be arbitrary. Then (x, Tx) € E(G). This implies that Tx € [x].
So by Theorem 3.20, for any y € X sequences (T"x),en and (T"y),en are E-Cauchy and equivalent. Since

(X, d, E) is complete, therefore, there exists an x* € X such that T"x 2E ¥ and Ty 2, ¥+ Since (x, Tx) € E(G),
(5) yields for all n € N

(T"x, T"*'x) € E(G) (10)

By (9), it follows that there exists a subsequence (T*x) of (T"x) such that (T*x, x*) € E(G) foralln € N. By (10),
(x, Tx, T?x, ..., TV x, x*) is a pathin G (and hence in G) from x to x*. So x* € [x]g. Now d(T%*1x, Tx*) < d(Tkx, x*)
for all n € N. Letting n — oo we get d(x", Tx") = 0. That is Tx* = x*. Hence T|[x] is an EPO.

Further if G is weakly connected and x € Xr then X = [x]s. So T is an EPO.

Now (vi) is a consequence of (iv). To prove (vii) observe that T C E(G) implies that X = X7 which gives
X’ = X and hence by (iv), T becomes a WEPO on X.

To prove (i), consider the mapping 7 : Fix T — C given by n(x) = [x]x for all x € Fix T where C = {[x] :
x € Xr}. It suffices to show that 7t is a bijection. Let x € Xr be arbitrary. By (iv), Tl is an EPO. Let
x* = lim, o T"x. Then x* € Fix T N [x]¢ and ix* = [x"]¢ = [x]g. So m is surjective. Now let x1,x; € Fix T be
arbitrary with [x1]¢ = [x2]¢. Then x; € [x1]. By (iv), limy 0o T"x2 € Fix T N [x1]¢ = {x1}. But T"x; = x; for all
n € IN. Thus we get x; = x,. Hence 7 is a bijection.

Finally (ii) and (iii) follows by (i). O

Corollary 3.22. Let (X,d,E) be a complete vector metric space and (X, d, E, G) satisfy the property (9). Then the
following statements become equivalent.

(i) G is weakly connected.
(ii) Every (G, ¢)-contraction T : X — X such that (Txo, xo) € X for some xy € X, is an EPO.
(iii) For any (G, ¢)-contraction T : X — X, card Fix T < 1.

Proof. (i) = (ii) follows from Theorem 3.21 (v).

(ii) = (ifi):

Let T : X — X be a (G, ¢)-contraction. If Xt = ¢ then so is Fix T as Fix T € Xr. In case X7 # ¢ then by
(ii) Fix T is singleton. In both cases card Fix T < 1.

(iii) = (i) :

Follows by Theorem 3.17. O
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Theorem 3.23. Let (X, d, E) be complete and T : X — X be an orbitally (G, E)-continuous (G, ¢)-contraction. Let
Xt ={x € X: (x, Tx) € E(G)}. Then the following statements hold:

(i) Fix T # ¢ if and only if X1 # .

(it) Forany x € Xt and y € [x]g, the sequence (T"y),en converges to a fixed point of T and lim,, . T"y does not
depend on y.

(iii) If Xt # ¢ and G is weakly connected, then T is an EPO.

(iv) If T C E(G) then T is a WEPO.

Proof. We begin with (ii). Let x € X satisfy (x,Tx) € E(G) and y € [x]s. By Theorem 3.20, sequences
(T"x)new and (T"y)qen vectorially converge to the same point x.. Moreover (T"x, T"*1x) € E(G) for alln € N.

Since T is orbitally (G, E)-continuous we get T(T"x) ZE, Tx.. This yields Tx. = x. since, simultaneously,

T(T"x) = T"x 2E, x.. Thus we proved (ii) and ‘<"of (i). “="of (i) follows by the assumption that E(G) 2 A.
(iv) is an immediate consequence of (ii) since T C E(G) means Xt = X. To Prove (iii) observe that if xy € Xt
then [xo]¢ = X so (ii) yields T is an EPO. [

Continuity condition on T can be strengthened by the following version of Theorem 3.23.

Theorem 3.24. Let (X,d, E) be complete and T : X — X be an orbitally E-continuous (G, ¢)-contraction. Let
Xr ={x € X : (x, Tx) € E(G)}. Then the following statements hold:

(i) FixT # ¢ if and only if there exists an xo € X with Txq € [xo].

(i1) If x € X is such that Tx € [x]g, then for any y € [x]x the sequence(T" y),en converges to a fixed point of T and
lim, o T"y does not depend on y.

(iii) If G is weakly connected, then T is an EPO.

(iv) If Tx € [x]g for any x € X then T is a WEPO.

Proof. We begin with (ii). Let x € X be such that Tx € [x]s and let y € [x]s. By Theorem 3.20, sequences
(T"xX)nen and (T"y)uen vectorially converge to the same point x,. Since T is orbitally E-continuous we get

T(T"x) LN Tx.. This yields Tx, = x, since, simultaneously, T(T"x) = T"*"1x LN x.. Thus we proved (ii)
and ‘<’of (i). ‘="of (i) follows by the fact that x € [x]s for any x € X. Now if G is weakly connected then
X = [x]¢ for any x € X. In particular Tx € [x] for any x € X and by (ii) we infer that T is an EPO. Thus (iii)
holds. Finally (iv) is an immediate consequence of (ii). [J

Corollary 3.25. Let (X, d, E) be complete. Then the following statements are equivalent.
(i) G is weakly connected.
(ii) Every orbitally E-continous (G, ¢)-contraction is an EPO.

(iii) For every orbitally E-continous (G, ¢)-contraction T : X — X, card Fix T < 1.

Hence if G is disconnected then there exist at least one orbitally E- continous (G, ¢)-contraction T : X — X
which has at least two fixed points.

Proof. Theorem 3.24 (iii) yields that (i) = (ii). (ii)) = (iii) is obvious. (iii) = (i) follows by the proof of
(iif) = (i) of Theorem 3.17. T defined there is orbitally E-continous. [
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4. Applications

Theorem 4.1. Let I = [a,b] be any interval of the real line, (B, ||.|[) be a partially ordered Banach space satisfying
the property that for any sequence {b,}in B with b, < by for alln € N and b, — b,b € B, we have b, < b. Let
E = C(I,R*) be the space of all continuous functions defined on I taking values in R*, with usual partial order and the
usual operations of addition and multiplication. The space E is a Riesz space under the pointwise lattice operations.
Let X = C(I, B) be the space of all continuous functions defined on I with values in B and pointwise partial order.
Let d : X x X — E defined by d(x, y)(.) = ||x(.) — y()|l for any x,y € X, be a complete vector metric on X. Let
h:Ix1xB — B be continuous and o € X. Consider the Fredholm type integral equation

x(t) = Ih(t, s, x(s))ds + a(t), (11)

fort € I. Assume that
(i) h(t,s,.): B — B is nondecreasing for each t,s € I,

(ii) there exists an o-comparison function ¢ : E. — E, and a continuous function w : I X I — R* such that
1A(t, s, x(s)) — h(t, s, y(s)Il < w(t,s)p(d(x, v))(t) for each t,s € land x < y,

(iii) Ssuprer flw(t, s)ds <1,
(iv) there exists xg € X such that xy(t) < flh(t, s,xo(s))ds + a(t) forall t € I.
Then the integral equation (11) has a unique solution in the set {x € X : x < xg or x = xp}.

Proof. Define a mapping T : X — X by

T(x)(t) := f]h(t’ s, x(s))ds + a(t)

forall t € I. Clearly T is a well defined mapping. Consider a graph G with V(G) = X and E(G) = {(x,y) €
X x X : x £ y}. By the given condition (i), we observe that T is nondecreasing. Thus (x, y) € E(G) implies
that (Tx, Ty) € E(G). Further, G satisfies the property (9) because B satisfies the same for nondecreasing
sequences. Now for any x,y € X with (x,y) € E(G), we have d(T(x), T(y))(t) = IIT(x)(t) — T(y)®)Il <

JilIntt, s, x(s)) = h(t,s, y(s)lids < [w(t, )p(d(x, y)(B)ds = Pd(x, y))(E) [jw(t,s)ds < G(d(x, y))(¢) for all £ € 1.
Thus d(T(x), T(y)) < ¢(d(x, y)) for all x, y € X with (x, y) € E(G). So T is a (G, ¢)-contraction. By (iv), we have
(x0, Txo) € E(G). Also, [xolg = {x € X : x < xg or x > xo}. The conclusion follows by Theorem 3.21. [J
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