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Abstract. In this paper, we introduce a new integrodifferential operator associated with the Hurwitz Lerch
Zeta function in the puncture open disk of the meromorphic functions. We also obtain some properties

of the third-order differential subordination and superordination for this integrodifferential operator, by
using certain classes of admissible functions.

1. Introduction

Let X denote the class of functions f(z) of the form

IN

f@)=—-+) o (1.1)
k=0

[e9)

which are analytic in the punctured open unit disc U* = U\{0} = {z € C : 0 < |z| < 1}. The function f(z) has
a simple pole at z = 0.

We begin by recalling that a general Hurwitz-Lerch Zeta function ®(z, s, b) defined by (see, for example,
[18, P. 121 et seq.] and [19, P. 194 et seq.])

x k
D(z,5,b) = Y (ki—b)s 12)
k=0
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beC\Z,, Zy =20 {0}=1{0, -1, =2,...}, s€ C when z€ U, Re(s) >1 when |z =1).

Several properties of ®(z,s, b) can be found in many papers, for example Attiya and Hakami [3], Choi
etal. [8], Choetal. [7], Ferreira and Lépez [9], Gupta et al. [10] and Luo and Srivastava [14]. See, also Kutbi
and Attiya( [11], [12]), Srivastava and Attiya [17], Srivastava and Gaboury [20], Srivastava et al. [21] and
Owa and Attiya [16].

Analogous to the operator defined by Srivastava and Attiya [17], we define the following operator
associated with the Hurwitz-Lerch Zeta function, as follows:

];,b: Y — X

the operator defined by:

Jpf(2) = G(s,b;2) * f(2) (1.3)
where the function G(s, b; z) defined by

G(s,b;2) =

b*d(z,s,b)
: (1.4)

(zeIU*; b e C\Z;; seC)

and * denotes the Hadamard product (or Convolution). Then we can see that

;&
];fbf(z):E+Z(k+b+l) 7

k=0

(ze U f) e T be C\Zy; s€C).
Remark 1. We note that:

L J§,f(2) = f(2),
2 Jaf@=71 ft‘2f (Hdt O<a<i),

0
z

) = f P £ dt,

0

@

z

Iosf@ = wb f t# (log ;)“‘1 f(Hdt (a>0; p>0),

r“

5L

\ 1 v, k
Ji1f(2) = >t ;‘mﬂkz ,

6. ]*_1,1f(z) = —Zf,(Z)

Ty L) _f® —22f (2)

N
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1 (o)
8. I, 1 f@ = 2+ ) (a2t (1€N),
k=0

9. [ f @ =1+ Y (k422 (n e N),
k=0

where ]; 1, the operator introduced by Cho et al. [6], ];ﬁ the operator introduced by Lashin [13], ];1

the operator introduced by Alhindi and Darus [1], ] _, the operator defined by Uralegaddi and Somanatha
[23] and J] , is the operator analogous to the generaﬁzed Bernardi operator (for Bernardi operator see [5]),
when Re(b) > 0, the operator ]} , introduced by Bajpai [4].

We denote by HJa, ], the class of analytic functions in U in the form
f(2) =a+Zakz" (@aeC,neN=({1,2-})
k=n
and H = H[1,1].

In our investigation we need the following definitions and theorem:

Definition 1.1. Let f(z) and F(z) be analytic functions. The function f(z) is said to be subordinate to F(z), written
f(2) < F(2), if there exists a function w(z) analytic in U with w(0) = 0 and |w(z)| < 1,and such that f(z) =
F(w(z)).If F(z) is univalent, then f(z) < F(z) if and only if f(0) = F(0) and f(U) c F(U).

Definition 1.2. [2, P. 441] Let ID be the set of analytic functions q(z) and univalent on I[_J\E(q), where
E@g) = {C €edU: lirrcl q(z) = oo},

is such that min |q' (C)( = p > 0 for C € JU\E(g). Further, let D(a) = {q(z) € D : q(0) = a} and ID; = ID(1).

Definition 1.3. [2, P. 440] Let W : C* x U — C and h(z) be univalent in U. If p(z) is analytic in U and satisfies
the third-order differential subordination:

V(p2), 2p (2),2%p " (2),2° p" (2); 2) < (2), (L5)

then p(z) is called a solution of the differential subordination. A univalent function q(z) is called a dominant of the
solutions of the differential subordination or more simply a dominant if p(z) < q(z) for all p(z) satisfying(1.5). A
dominant q(z) that satisfies q(z) < q(z) for all dominants of (1.5) is called the best dominant of (1.5).

Definition 1.4. [2, P. 440] Let Q be a set in C, g € ID and n € IN\{1}. The class of admissible functions V,[Q, q]
consists of those functions  : C* x U — C that satisfy the admissibility condition :

P(r,s,t,u;2) ¢ Q
whenever

r=4(0), s =kCq'(Q),

Re(é +1) > kRe(% +1)

and

7'(0)
where z € U; C € JU\E(q) and k > n.

RN
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Analogous to the second order differential superordinations introduced by Miller and Mocanu [15],
Tang et al. [22] defined the differential superordinations as follows:

Definition 1.5. [22, P. 3] Let ¢ : C* x U — C and the function h(z) be analytic in U. If the functions p(z) and
Y(p@), 2P @2 @),2 P ()

are univalent in U and satisfy the following third-order differential superordination:
h@) < (p), zp (2),2% (@, 2 p" (), (1.6)

then p(z) is called a solution of the differential superordination. An analytic function q(z) is called a subordinant
of the solutions of the differential superordination or more simply a subordinant if q(z) < p(z) for p(z) satisfying
(1.6). A univalent subordinant q(z) that satisfies q(z) < q(z) for all supordinants q(z) of (1.6) is said to be the best
superordinant.

Definition 1.6. [22, P. 4] Let Q) be a set in C, q € H[a, n] and q'(z) # 0. The class of admissible functions V;,[Q), q]
consists of those functions  : C* x U — C that satisfy the following admissibility condition :

Y(r,s,t,u;C) €Q,
whenever

r=4(z), s= Zq;;z),

Re(E +1) < lRe(
5 m

Zq”(Z)
q'(z) i 1)

and

u 1 ZZI]NI(Z)
Re(E)SﬁRe( 7@ )

whereze U, CedUand m>n > 2.

Also, we need the following theorems in our investigations:

Theorem 1.1. [2, p. 449] Let p(z) € Hla, n] with n € IN\{1}. Also, let q(z) € ID(a) and satisfy the following
conditions:

q(0) 2'(2)
Re( 70 ) e

where z € U;C € JU\E(q) and k= n.If QisasetinC, ¢ € ¥,[Q,q] and

<k,

W(p@), zp (2),2%" (2),2°p " (2); 2) € Q,

then

p(2) < q(2).



A. A. Attiya et al. / Filomat 30:7 (2016), 2045-2057 2049
Theorem 1.2. [22, p. 4] Let q(z) € H[a, n] and ¢ € W,,[Q, q].If
P(p@), 2p (2),2% (@, 2°p" (@); 2)
is univalent in U and p(z) € D(a) satisfy the following conditions:

zq"(Z)) cp'(©)
M(W@ S e

(zeU;LedUm=>=n>2)

<m

—_ 4

and

Q c {(p@), 2p (),2%"(@),2°p" (2); 2) : z€ U},
implies that

q(z) < p(2).

In this paper, by using the third-order differential subordination and superordination results by An-
tonino and Miller [2] and Tang et al. [22], we define certain classes of admissible functions and investigate
some subordination and superordination properties of meromorphic functions associated with the inte-
grodifferential operator ];,b defined by (1.3). Furthermore, new differential sandwich-type theorems are
obtained.

2. Third Order Differential Subordination with I: b

Definition 2.1. Let Q be a set in C and q(z) € D. The class of admissible functions ®r[Q2, q] consists of those
functions ¢ : C* x U — C that satisfy the admissibility condition:

Plar, az,a3,a4;2) ¢ Q,

whenever
kg b
a1 =q(c), ax = K& © +b4(Q) (C)b+ q(C),
blas—m) 4" ©
Re( ) Zb)z k Re( 70 +1),
Re(b2 (@-a)=8bb+D@-a) o, o 2) S 2 Re(Czq”’(C)),
(a2 —m) 7'(0)

whereze U, be C\Z;,s€C, Ce JU\E(q) and k € N\{1}.

Theorem 2.1. Let ¢ € Or[Q, q]. If f(z) € X and q(z) € D satisfy the following conditions:

4O 2(Jpf@ - TWf@)] _ &
M(¢@)ZQ 70 = o @D
and
{(P(Z];,bf(z)r z ;_1,1,]((2)/2 ;_zlbf(z)/z ];_31,]((2); z):z € U} c Q, (2.2)
then

2T}, f(2) < q(2). (23)
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Proof. Let us define the analytic function p(z) as:

pe) =2,f(x) (e

Using the definition of |7, f(z), we can prove that

2(Iy f@) = b, f@) = 0+ DI, f(2),

then we get

o) =2 (2) ;r bp(@)

which implies

217 , )
SN C R A A AL O

Also, we can see that

Z3PIN(Z) +30b+1) zzp”(z) + (3b2 +3b+ 1)zp'(z) + b3P(Z)

zfi 5, f(2) = 13
Let us define the parameters a5, a;, a3 and a4 as:

s+br t+ (1 +2b)s + b?r
ﬂ1=7’,ﬂ2=T,ﬂ3= 2

and

u+30b+1)t+ B> +3b+1)s+br
ag = B .

Now, we define the transformation
Y:C*xU-C
Y(r,s,t,u;z) = P(ay, az, a3, as; z).
By using the relations from (2.4) to (2.8), we have
Y(p@), 2p'(2), 2°p"(2), 2P (2); 2)
=¢ (Z b @21 f (@), 2)5 5, f(2): 2] 5 f (Z);Z)'

Therefore, we can rewrite (2.2) as

Y(pz), zp'(2), 2°p"(2), 2P (2); 2) € Q.

2050

(2.4)

(2.5)

(2.6)

2.7)

2.8)

2.9)

(2.10)

Then the proof is completed by showing that the admissibility condition for ¢ € ®r[Q),g] is equivalent to

the admissibility condition for ¢ as given in Definition (1.3), since

_ b(as — m) _
a —

E+1 2b
S

and

2 _ _ —
E — b (ﬂ4 al) 3b(b+1)(ﬂ3 ﬂl) +3b2+6b+2.
B (a2 —a1)

(2.11)
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We also note that
@) b2, f@ - T,f@)
7@ q'(C)
<k.

Therefore, i € W;[(Q, g] and hence by Theorem 1.1, p(z) < g(z). O

If Q # Cis asimply connected domain, then () = h(U) for some conformal mapping h(z) of U onto
Q. In this case the class ®r[h(U), q] is written as Or[h, q].

The following theorem is a directly consequence of Theorem 2.1 .

Theorem 2.2. Let ¢ € Or[h, ql. If f(z) € L and q(z) € ID; satisfy the following conditions:

’” z\ T z)—-T* V4
Re(c;;,(g))zol (fsl,bf;’zo [uf@)| ; 212)
and
G(2]3,f @), 2], f @2 ], f (2,25, f(2); 2) < (), (2.13)
then

2], f(2) < q(2).
The next corollary is an extension of Theorem 2.1 to the case where the behavior of 4(z) on dU is not

known.

Corollary 2.1. Let Q C C and let q(z) be univalent in U, q(0) = 1. Let ¢ € Pr[Q,q,] for some p € (0,1) where
90(2) = q(pz). If f(z) € L satisfies

, P
and

ST @), 2 f @2 T f@ 2] f(); D) € Q, 215
then

z],,f(2) < q(2),

where z € U and C € JU\E(q,).

Proof. By using Theorem 2.1, we have J7, f(z) < q,(z). Then we obtain the result from g,(z) < q(z). O

Corollary 2.2. Let Q C C and let q(z) be univalent in U, q(0) = 1. Let ¢ € Dr[h, q,] for some p € (0,1) where
90(2) = q(pz2). If f(z) € X satisfies

. (ng(o) (I, f@ ~ T2, f(2)
‘7,0 @)

< ﬁ (2.16)

>0

= Y
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and
P(z ;bf(z), z ;_Lbf(z),z ;_zlbf(z),z ;_S,bf(z); z) < h(z), (2.17)
then
2[5, f(2) < 4(2),
where z € U and C € JU\E(q,).

Theorem 2.3. Let h(z) be univalent in U. Let ¢ : C* x U — C. Suppose that the differential equation:

’ 2.1 ’ 2
5 (q(Z), zq’(z) ;- bq(z)’ z°q"(z) + (2b +b12)zq (z)+0b q(z), (2.18)

qu”’(z) +3(0b+ 1)qu”(z) -23(31’)2 +3b + 1)zq'(z) + b3q(Z)/_Z) = h(z),

has a solution g(z) with q(0) = 1 which satisfies (2.1). If f(z) € L satisfies (2.17) and

P(z];,f(2), 2] 1, f(2), 2], f(2), 2], 5, f(2); 2)
is analytic in U, then

22, f(@) < 4(2) (2.19)
and q(z) is the best dominant of (2.19).

Proof. By using Theorem 2.1 that g(z) is a dominant of (2.17). Since q(z) satisfies (2.18), it is also a solution
of (2.17) and therefore g(z) will be dominated by all dominants. Hence 4(z) is the best dominant. [

In the case g(z) = 1 + Mz (M > 0) and in view of the Definition 2.1, the class of admissible functions
®r[Q, q] denoted by ®r[CQ), M] is defined below.

Definition 2.2. Let Q be a set in C and M > 0. The class of admissible functions ®r[C), M] consists of those
functions ¢ : C* x U — C that satisfy the admissibility condition

(b + k) Me® L+ (b2 +k(2b + 1)) Me'?
L1+

|1 +Me% 1+ — , (2.20)
N +3(b+ 1)L + (b + k(30 + 3b + 1)) Me®
1+ ;z| € Q,
[
where z € U, Re(Le™?) > (k — 1)kM and Re(Ne™%) > 0 for all real 6 and k € IN\{1}.
Corollary 2.3. Let ¢ € Or[Q, M]. If f(z) € L satisfies the following conditions:
. . kM

|z (]s—l,bf(z) - Is,bf(Z))| < T (2.21)
and

(2], f @), 21 f(2), 2], 00 f (2),2 )55, f(2); 2) €Q, (2.22)
then

|22 - 1] < M.
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In the case Q = g(U) = {w: lw—-1 <M (M > 0)}, for simplification we denote by ®r[M] to the class
Or[Q, M].

Corollary 2.4. Let ¢ € Or[M]. If f(z) € L satisfies the condition (2.21) and

(2T, f @) 2Ty f @2 T f@) 2], f@) 2) = 1| < M, (2.23)
then

22 -1 < M.

Putting ¢(a1, a2,a3,a4; 2) =a, =1 + w in Corollary 2.4, we have the following corollary:

Corollary 2.5. Let M > 0 and b € C\Z; with Re(b) < _?k (k € N\{1}). If f(z) € L satisfies the condition (2.21)
and

el f@) -1 <M,
then
22 -1 < M.

Corollary 2.6. Let k € N\{1}, M >0 and b e C\Z;.If f(z) € L satisfies the condition

kM
‘z (F_1pf @) - IZ,bf(Z))’ < (2.24)
(2.21)then
2@ - 1) <M.
Proof. Let

P(a1, az,a3,a4; z) = ar — ax.
Using Corollary 2.3 with Q =/ (U) and
h(z) = %z (ze ).

Now we show that ¢ € Or[Q, M].
Since the condition (2.21) is satisfied from the condition (2.24) and

b+lMe® L+ (b2 +k@2b+1)) Me
b 1+ 7

¢{1 +Me, 1+

N +3(b+ 1)L + (b + k(30 + 3b + 1)) Me® ]
1+ ;Z
b3
| kMe'?
b
_km
bl ¥

then we have Corollary 2.6. O
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Corollary 2.7. Let k € N\{1}, M >0 and b e C\Z;.If f(z) € L satisfies the condition (2.21) and

b+ 11 + |2b+3|)M

2
|Z (I;—S,bf(z) - ]:—Z,bf(z))| < (

b’ ’

then

|22 - 1] < M.
Proof. We define

(a1, az,a3,a4; z) = ag — as.
Using Corollary 2.3 with Q = h (U) and

2(p+ 17 +[2b + 3) M
h(z) = 3 z (zeU).
bl
Now we show that ¢ € Or[Q, M].
Since

b+KMe® L+ (b2 +k@b+1)) Me?
b , 1+ 7

‘qﬁ {1 +Me, 1+

N +3(b+ 1)L + (b + k(30 + 3b + 1)) Me® J
1+ 3 ;Z

N+ @2b+3)L+k(b+1)> Me®
b3

Ne™ ™+ (2b+3)Le™™® + k(b + 1)* M
B3e-io

Re (Ne—if)) +12b + 3| Re (Le—ff)) +klb+1PM
|’

o (k= 1)kM2b +3| + kb + 1> M

- b

2(jp+ 17 +[2b + 3)) M

bl°

2

4

we completes the proof of Corollary 2.7. [

3. Third Order Differential Superordination with ]: )

2054

(2.25)

Definition 3.1. Let Q beaset in C and q(z) € H with q'(z) # 0. The class of admissible functions ®[[Q), q] consists

of those functions ¢ : C* x U — C that satisfy the admissibility condition:
P(ai,az,a3,a4;C) € Q,

whenever

_ @ +bq@

a1 =4q(z), az b
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b (a3 - ﬂl) _ CEI"(Z)
B o) Ly (29,

2 — — _ 2 117
Re(b @ —a)-3b(b+1) (o —a) + 3% +6b +2) < izRe(Z q (Z)),
(ar — m) m 7' (2)
wherez € U, b € C\Z;, s € CC € JU and m € N\{1}.

Theorem 3.1. Let ¢ € OL[Q, q]. If f(z) € Zand z ];b f(z) € IDy satisfy the following conditions:

zq"(z) z (] ;th () -] ;bf (Z)) m
e ( @ ) =0 e <y 3D
(ST, f@), 2Ty f@, 2 g f@) 2Ty, f@); 2) 12 € U)
is univalent, and
Q {02, @), 2.1, f@), 2]y f @2y, (@) 2) 12 € U, (3.2)

then
q(z) < zJ3,f(2).

Proof. Let the functions p(z) and be defined by (2.4) and (2.9). Since ¢ € ®L[Q, q].Therefore (2.10) and (3.2) imply
Qc(p@), zp'(2), 2°p" (@), 2P (2); 2).

The admissible condition for ¢ € ®L[Q, q] is equivalent to the admissible condition for 1 in Definition 1.6 withn = 2.
Therefore, € W) [Q, q], and by using (3.1) and Theorem 1.2, we have

q(z) < p(2)
which yields

q(z) < 2], f(2).
Therefore we completes the proof of Theorem 3.1. [J

If Q # Cis asimply connected domain, then Q = h(U) for some conformal mapping h(z) of U onto Q.
In this case the class ®.[h(U), q] is written as Ok, q].

The following theorem is a directly consequence of Theorem 2.1 .

Theorem 3.2. Let ¢ € Or[h, q]. Also, let h(z) be analytic in U. If f(z) € L and z]J;, f(z) € ID; satisfies the condition
(3.1),

(02T, f @), 2T f @, 2Ty, f@), 2], f(2); 2) 12 € U
is univalent in U, and

h(z) < ¢(z]; , f(2), 2];_1 , f (@), 2,5, f(2), 2], _3,f(2); 2), (3.3)
then

q(z) < Z] bf(z)



A. A. Attiya et al. / Filomat 30:7 (2016), 2045-2057 2056

Theorem 3.3. Let h(z) be analytic in U, also, let ¢ : C* x U — C and 1 be given by (2.9). Suppose that the
differential equation (2.18) has a solution q(z) € IDy. If f(z) € X satisfies the condition (3.1),

(G(2]f @), 2Ty, f @2 T 5, f(@) 25, f(2); 2) 12 € U)
is univalent in U, and

h@) < (2T, f2), 2Ty o f @2 Ty f @ 2]y ) 2),

then

q(z) <z, f(2). (3.4)
and q(z) is the best subordinant of (3.3).

Proof. The proof is similar to that of Theorem 2.3 and it is being omitted here. [J

By combining Theorem 2.2 and Theorem 3.2 we obtain the following sandwich type result.

Corollary 3.1. Let hy(z) and q1(z) be analytic in U.Also, let hy(z) be univalent in U, q,(z) € IDywithg1(0) = 2(0) = 1
and ¢ € Or[h, gl N D[k, q]. If f(z) € L, z];‘bf(z) eD NH,

(ST @), 2oy f @2 @), 2 ], f(@); 2) 12 € U
is univalent in U,and the conditions (2.12) and (3.1) are satisfied, Also, let

(@) < (2], @), 20y, f @, 2], f@), 2o, f(2); 2) < n(2), (3.5)
then 1(2) < 27, f(2) < 42(2).
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