An Integrodifferential Operator for Meromorphic Functions Associated with the Hurwitz-Lerch Zeta Function

Adel A. Attiyaa, Oh Sang Kwonb, Park Ji Hyangc, Nak Eun Chod

aDepartment of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt
bDepartment of Mathematics, Kyungsung University, Busan 608-736, Republic of Korea
cDepartment of Applied Mathematics, Pukyong National University, Busan 608-737, Republic of Korea
dCorresponding Author, Department of Applied Mathematics, Pukyong National University, Busan 608-737, Republic of Korea

Abstract. In this paper, we introduce a new integrodifferential operator associated with the Hurwitz-Lerch Zeta function in the puncture open disk of the meromorphic functions. We also obtain some properties of the third-order differential subordination and superordination for this integrodifferential operator, by using certain classes of admissible functions.

1. Introduction

Let Σ denote the class of functions $f(z)$ of the form

$$f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} a_k z^k$$

which are analytic in the punctured open unit disc $U^* = U \setminus \{0\} = \{z \in \mathbb{C} : 0 < |z| < 1\}$. The function $f(z)$ has a simple pole at $z = 0$.

We begin by recalling that a general Hurwitz-Lerch Zeta function $\Phi(z, s, b)$ defined by (see, for example, [18, P. 121 et seq.] and [19, P. 194 et seq.])

$$\Phi(z, s, b) = \sum_{k=0}^{\infty} \frac{z^k}{(k+b)^s},$$

2010 Mathematics Subject Classification. 30C45

Keywords. Analytic functions; meromorphic functions; Hurwitz-Lerch Zeta function; Srivastava-Attiya operator.

Received: 17 December 2014; Accepted: 13 March 2015

Communicated by Hari M. Srivastava

The authors would like to express their thanks to Professor H.M. Srivastava, University of Victoria, for his valuable suggestions. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0007037).

Email addresses:aattiy@mans.edu.eg (Adel A. Attiya), oskwon@ks.ac.kr (Oh Sang Kwon), jihyang1822@naver.com (Park Ji Hyang), necho@pknu.ac.kr (Nak Eun Cho)
(b \in \mathbb{C} \setminus \mathbb{Z}_0^-, \mathbb{Z}^- = \mathbb{Z}^- \cup \{0\} = \{0, -1, -2, \ldots\}, s \in \mathbb{C} \text{ when } z \in \mathbb{U}, \text{ Re}(s) > 1 \text{ when } |z| = 1).

Several properties of \(\Phi(z, s, b) \) can be found in many papers, for example Attiya and Hakami [3], Choi et al. [8], Cho et al. [7], Ferreira and López [9], Gupta et al. [10] and Luo and Srivastava [14]. See, also Kutbi and Attiya [11, 12], Srivastava and Attiya [17], Srivastava and Gaboury [20], Srivastava et al. [21] and Owa and Attiya [16].

Analogous to the operator defined by Srivastava and Attiya [17], we define the following operator associated with the Hurwitz-Lerch Zeta function, as follows:

\[
J^*_s, b : \Sigma \rightarrow \Sigma
\]

the operator defined by:

\[
J^*_s, b f(z) = G(s, b; z) \ast f(z)
\] (1.3)

where the function \(G(s, b; z) \) defined by

\[
G(s, b; z) = \frac{b^s \Phi(z, s, b)}{z}
\] (1.4)

\((z \in \mathbb{U}^*; b \in \mathbb{C} \setminus \mathbb{Z}_0^-; s \in \mathbb{C})\)

and \(\ast \) denotes the Hadamard product (or Convolution). Then we can see that

\[
J^*_s, b f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} \left(\frac{b}{k + b + 1} \right)^s a_k z^k
\]

\((z \in \mathbb{U}^*; f(z) \in \Sigma; b \in \mathbb{C} \setminus \mathbb{Z}_0^-; s \in \mathbb{C})\).

Remark 1. We note that:

1. \(J^*_{0, b} f(z) = f(z), \)
2. \(J^*_1, \frac{1}{2} f(z) = \frac{1 - 2a}{a z^{a+\frac{1}{2}}} \int_0^z t^{a-\frac{1}{2}} f(t) \, dt \quad (0 < a < \frac{1}{2}), \)
3. \(J^*_1, b f(z) = \frac{b}{z^{b+1}} \int_0^z t^b f(t) \, dt, \)
4. \(J^*_{s, \frac{1}{2}} f(z) = \frac{b^s}{\Gamma(b+1)} \int_0^z t^b \left(\log \frac{1}{t} \right)^{s-1} f(t) \, dt \quad (\alpha > 0; \beta > 0), \)
5. \(J^*_1, f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} \frac{1}{(k+2)^s} a_k z^k, \)
6. \(J^*_{-1, 1} f(z) = -zf'(z), \)
7. \(J^*_{-1, -2} f(z) = \frac{f(z) -zf'(z)}{2}, \)
8. \(f_{n-1} \) \(f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} (-k)^{n} a_{k} z^{k} \ (n \in \mathbb{N}) \),

9. \(f_{n} \) \(f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} (k+2)^{n} a_{k} z^{k} \ (n \in \mathbb{N}) \),

where \(f_{n} \) the operator introduced by Cho et al. [6], \(f_{s} \) the operator introduced by Lashin [13], \(f_{s,1} \) the operator introduced by Alhindi and Darus [1], \(f_{s} \) the operator defined by Urallegaddi and Somanatha [23] and \(f_{1,b} \) is the operator analogous to the generalized Bernardi operator (for Bernardi operator see [5]), when \(\text{Re}(b) > 0 \), the operator \(f_{1,b} \) introduced by Bajpai [4].

We denote by \(H[a, n] \), the class of analytic functions in \(U \) in the form

\[
f(z) = a + \sum_{k=n}^{\infty} a_{k} z^{k} \quad (a \in \mathbb{C}; n \in \mathbb{N} = \{1, 2, \cdots \})
\]

and \(H = H[1, 1] \).

In our investigation we need the following definitions and theorem:

Definition 1.1. Let \(f(z) \) and \(F(z) \) be analytic functions. The function \(f(z) \) is said to be subordinate to \(F(z) \), written \(f(z) < F(z) \), if there exists a function \(w(z) \) analytic in \(U \) with \(w(0) = 0 \) and \(|w(z)| < 1 \), and such that \(f(z) = F(w(z)) \). If \(F(z) \) is univalent, then \(f(z) < F(z) \) if and only if \(f(0) = F(0) \) and \(f(U) \subset F(U) \).

Definition 1.2. [2, P. 441] Let \(D \) be the set of analytic functions \(q(z) \) and univalent on \(U \setminus E(q) \), where

\[
E(q) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} q(z) = \infty \right\},
\]

is such that \(\min |q'(\zeta)| = \rho > 0 \) for \(\zeta \in \partial U \setminus E(q) \). Further, let \(\mathcal{D}(a) = \{ q(z) \in \mathcal{D} : q(0) = a \} \) and \(\mathcal{D}_1 = \mathcal{D}(1) \).

Definition 1.3. [2, P. 440] Let \(\Psi : \mathbb{C}^{4} \times U \to \mathbb{C} \) and \(h(z) \) be univalent in \(U \). If \(p(z) \) is analytic in \(U \) and satisfies the third-order differential subordination:

\[
\psi(p(z), z p'(z), z^{2} p''(z), z^{3} p'''(z); z) < h(z), \quad (1.5)
\]

then \(p(z) \) is called a solution of the differential subordination. A univalent function \(q(z) \) is called a dominant of the solutions of the differential subordination or more simply a dominant if \(p(z) < q(z) \) for all \(p(z) \) satisfying (1.5). A dominant \(\bar{q}(z) \) that satisfies \(\bar{q}(z) < q(z) \) for all dominants of (1.5) is called the best dominant of (1.5).

Definition 1.4. [2, P. 440] Let \(\Omega \) be a set in \(\mathbb{C} \), \(q \in \mathcal{D} \) and \(n \in \mathbb{N} \setminus \{1\} \). The class of admissible functions \(\Psi_{n}[\Omega, q] \) consists of those functions \(\psi : \mathbb{C}^{4} \times U \to \mathbb{C} \) that satisfy the admissibility condition:

\[
\psi(r, s, t, u; z) \notin \Omega
\]

whenever

\[
r = q(\zeta), \quad s = k \zeta q'(\zeta), \\
\text{Re} \left(\frac{t}{s} + 1 \right) \geq k \text{Re} \left(\frac{\zeta q''(\zeta)}{q'(\zeta)} + 1 \right)
\]

and

\[
\text{Re} \left(\frac{u}{s} \right) \geq k^{2} \text{Re} \left(\frac{\zeta^{2} q'''(\zeta)}{q'(\zeta)} \right),
\]

where \(z \in \mathbb{U}; \zeta \in \partial U \setminus E(q) \) and \(k \geq n \).
Analogous to the second order differential superordinations introduced by Miller and Mocanu [15], Tang et al. [22] defined the differential superordinations as follows:

Definition 1.5. [22, P. 3] Let \(\psi : \mathbb{C}^4 \times \mathbb{U} \to \mathbb{C} \) and the function \(h(z) \) be analytic in \(\mathbb{U} \). If the functions \(p(z) \) and \(\psi(p(z), z\, p'(z), z^2\, p''(z), z^3\, p'''(z)) \)

are univalent in \(\mathbb{U} \) and satisfy the following third-order differential superordination:

\[
h(z) < \psi(p(z), z\, p'(z), z^2\, p''(z), z^3\, p'''(z)),
\]

then \(p(z) \) is called a solution of the differential superordination. An analytic function \(q(z) \) is called a subordinant if \(q(z) < p(z) \) for \(p(z) \) satisfying (1.6). A univalent subordinant \(\tilde{q}(z) \) that satisfies \(\tilde{q}(z) < q(z) \) for all supordinants \(q(z) \) of (1.6) is said to be the best superordinant.

Definition 1.6. [22, P. 4] Let \(\Omega \) be a set in \(\mathbb{C} \), \(q \in H[a, n] \) and \(q'(z) \neq 0 \). The class of admissible functions \(\Psi_n[\Omega, q] \) consists of those functions \(\psi : \mathbb{C}^4 \times \overline{\mathbb{U}} \to \mathbb{C} \) that satisfy the following admissibility condition:

\[
\psi(r, s, t, u; \zeta) \in \Omega,
\]

whenever

\[
r = q(z), \quad s = \frac{zq'(z)}{m}, \quad \text{Re}\left(\frac{r}{s} + 1\right) \leq \frac{1}{m} \text{Re}\left(\frac{zq''(z)}{q'(z)} + 1\right)
\]

and

\[
\text{Re}\left(\frac{u}{s}\right) \leq \frac{1}{m^2} \text{Re}\left(\frac{z^2q'''(z)}{q'(z)}\right),
\]

where \(z \in \mathbb{U}, \zeta \in \partial \mathbb{U} \) and \(m \geq n \geq 2 \).

Also, we need the following theorems in our investigations:

Theorem 1.1. [2, p. 449] Let \(p(z) \in H[a, n] \) with \(n \in \mathbb{N} \setminus \{1\} \). Also, let \(q(z) \in D(a) \) and satisfy the following conditions:

\[
\text{Re}\left(\frac{zq''(z)}{q'(z)}\right) > 0, \quad \left|\frac{zq'(z)}{q'(z)}\right| \leq k,
\]

where \(z \in \mathbb{U}, \zeta \in \partial \mathbb{U} \setminus E(q) \) and \(k \geq n \). If \(\Omega \) is a set in \(\mathbb{C} \), \(\psi \in \Psi_n[\Omega, q] \) and

\[
\psi(p(z), z\, p'(z), z^2\, p''(z), z^3\, p'''(z); z) \in \Omega,
\]

then

\[
p(z) < q(z).
\]
Theorem 2.1. [22, p. 4] Let \(q(z) \in H[a, n] \) and \(\psi \in \Psi''[\Omega, q] \). If
\[
\psi(p(z), z p'(z), z^2 p''(z), z^3 p'''(z) ; z)
\]
is univalent in \(U \) and \(p(z) \in \mathbb{D}(a) \) satisfy the following conditions:
\[
\text{Re} \left(\frac{zq''''(z)}{q'(z)} \right) \geq 0, \quad \left| \frac{\psi'(z)}{q'(z)} \right| \leq m, \tag{2.1}
\]
\[(z \in U; \zeta \in \partial U; m \geq n \geq 2) \]
and
\[
\Omega \subset \left\{ \psi(p(z), z p'(z), z^2 p''(z), z^3 p'''(z) ; z) : z \in U \right\},
\]
implies that
\[
q(z) < p(z).
\]

In this paper, by using the third-order differential subordination and superordination results by Antonino and Miller [2] and Tang et al. [22], we define certain classes of admissible functions and investigate some subordination and superordination properties of meromorphic functions associated with the integro-differential operator \(\mathcal{I}_{s,b}^* \) defined by (1.3). Furthermore, new differential sandwich-type theorems are obtained.

2. Third Order Differential Subordination with \(\mathcal{I}_{s,b}^* \)

Definition 2.1. Let \(\Omega \) be a set in \(\mathbb{C} \) and \(q(z) \in \mathbb{D} \). The class of admissible functions \(\Phi_1[\Omega, q] \) consists of those functions \(\phi : \mathbb{C}^4 \times \mathbb{U} \rightarrow \mathbb{C} \) that satisfy the admissibility condition:
\[
\phi(a_1, a_2, a_3, a_4; z) \not\in \Omega,
\]
whenever
\[
a_1 = q(z), \quad a_2 = \frac{k \zeta q''(\zeta) + b q(\zeta)}{b},
\]
\[
\text{Re} \left(\frac{b (a_3 - a_1)}{(a_2 - a_1) - 2b} \right) \geq k \text{ Re} \left(\frac{\zeta q''(\zeta)}{q'(\zeta)} + 1 \right),
\]
\[
\text{Re} \left(\frac{b^2 (a_4 - a_1) - 3b (b + 1) (a_3 - a_1)}{(a_2 - a_1) (a_2 - a_1) - 3b^2 + 6b + 2} \right) \geq k^2 \text{ Re} \left(\frac{\zeta^2 q'''(\zeta)}{q'(\zeta)} \right),
\]
where \(z \in \mathbb{U}, b \in \mathbb{C} \setminus \mathbb{Z}_0^+, s \in \mathbb{C}, \zeta \in \partial \mathbb{U} \setminus \mathbb{E}(q) \) and \(k \in \mathbb{N} \setminus \{1\} \).

Theorem 2.1. Let \(\phi \in \Phi_1[\Omega, q] \). If \(f(z) \in \Sigma \) and \(q(z) \in \mathbb{D}_1 \) satisfy the following conditions:
\[
\text{Re} \left(\frac{\zeta^2 q'''(\zeta)}{q'(\zeta)} \right) \geq 0, \quad \left| \frac{\zeta\left(\mathcal{I}_{s-1,b}^* f(z) - \mathcal{I}_{s,b}^* f(z)\right)}{q'(\zeta)} \right| \leq \frac{k}{|b|} \tag{2.1}
\]
and
\[
\left\{ \phi(z) \mathcal{I}_{s,b}^* f(z), z \mathcal{I}_{s-1,b}^* f(z), z \mathcal{I}_{s-2,b}^* f(z), z \mathcal{I}_{s-3,b}^* f(z) ; z \right\} \in \Omega,
\]
then
\[
z \mathcal{I}_{s,b}^* f(z) < q(z). \tag{2.3}
\]
Proof. Let us define the analytic function \(p(z) \) as:
\[
p(z) = zJ^*_{s,b}f(z) \quad (z \in \mathbb{U}).
\] (2.4)
Using the definition of \(J^*_{s,b}f(z) \), we can prove that
\[
z\left(J^*_{s,b}f(z)\right)' = bJ^*_{s-1,b}f(z) - (b + 1)J^*_{s,b}f(z),
\] (2.5)
then we get
\[
zJ^*_{s-1,b}f(z) = \frac{zp'(z) + bp(z)}{b},
\] (2.6)
which implies
\[
zJ^*_{s-2,b}f(z) = \frac{z^2p''(z) + (2b + 1)zp'(z) + b^2p(z)}{b^2}.\] (2.7)
Also, we can see that
\[
zJ^*_{s-3,b}f(z) = \frac{z^3p'''(z) + 3(b + 1)z^2p''(z) + (3b^2 + 3b + 1)zp'(z) + b^3p(z)}{b^3}.\] (2.8)
Let us define the parameters \(a_1, a_2, a_3 \) and \(a_4 \) as:
\[
a_1 = r, \quad a_2 = \frac{s + br}{b}, \quad a_3 = \frac{t + (1 + 2b)s + b^2r}{b^2}
\] and
\[
a_4 = \frac{u + 3(b + 1)t + (3b^2 + 3b + 1)s + b^3r}{b^3}.
\] (2.9)
Now, we define the transformation
\[
\psi : \mathbb{C}^4 \times \mathbb{U} \to \mathbb{C}
\]
\[
\psi(r, s, t, u; z) = \phi(a_1, a_2, a_3, a_4; z).
\] (2.10)
By using the relations from (2.4) to (2.8), we have
\[
\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z) = \phi \left(zJ^*_{s,b}f(z), zJ^*_{s-1,b}f(z), zJ^*_{s-2,b}f(z), zJ^*_{s-3,b}f(z); z\right).
\] (2.11)
Therefore, we can rewrite (2.2) as
\[
\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z) \in \Omega.
\]
Then the proof is completed by showing that the admissibility condition for \(\phi \in \Phi_\Gamma[\Omega, q] \) is equivalent to the admissibility condition for \(\psi \) as given in Definition (1.3), since
\[
\frac{t}{s} + 1 = \frac{b(a_3 - a_1)}{a_2 - a_1} - 2b
\] (2.11)
and
\[
\frac{u}{s} = \frac{b^2(a_4 - a_1) - 3b(b + 1)(a_3 - a_1)}{(a_2 - a_1)} + 3b^2 + 6b + 2.
\]
we also note that
\[|zp'(z)| \leq \frac{bz\left(\int_{\zeta} f(z) - \int_{\zeta} f(z)\right)}{q'(\zeta)} \leq k. \]

Therefore, \(\psi \in \Psi_2[\Omega, q] \) and hence by Theorem 1.1, \(p(z) < q(z). \]

If \(\Omega \neq \mathbb{C} \) is a simply connected domain, then \(\Omega = h(U) \) for some conformal mapping \(h(z) \) of \(U \) onto \(\Omega \). In this case the class \(\Phi_T[h(U), q] \) is written as \(\Phi_T[h, q] \).

The following theorem is a directly consequence of Theorem 2.1.

Theorem 2.2. Let \(\phi \in \Phi_T[h, q] \). If \(f(z) \in \Sigma \) and \(q(z) \in D_1 \) satisfy the following conditions:
\[
\Re \left(\frac{\zeta q''(z)}{q'(z)} \right) \geq 0, \quad \left| \frac{z\left(\int_{\zeta} f(z) - \int_{\zeta} f(z)\right)}{q'(z)} \right| \leq \frac{k}{|b|} \tag{2.12}
\]
and
\[
\phi(z_{\zeta, b} f(z), z_{\zeta, b} f(z), z_{\zeta, b} f(z), z_{\zeta, b} f(z) ; z) \leq h(z), \tag{2.13}
\]
then
\[
z_{\zeta, b} f(z) < q(z).
\]

The next corollary is an extension of Theorem 2.1 to the case where the behavior of \(q(z) \) on \(\partial U \) is not known.

Corollary 2.1. Let \(\Omega \subset \mathbb{C} \) and let \(q(z) \) be univalent in \(U \), \(q(0) = 1 \). Let \(\phi \in \Phi_T[\Omega, q] \) for some \(\rho \in (0, 1) \) where \(q_p(z) = q(\rho z) \). If \(f(z) \in \Sigma \) satisfies
\[
\Re \left(\frac{\zeta q''(z)}{q'(z)} \right) \geq 0, \quad \left| \frac{z\left(\int_{\zeta} f(z) - \int_{\zeta} f(z)\right)}{q'(z)} \right| \leq \frac{k}{|b|} \tag{2.14}
\]
and
\[
\phi(z_{\zeta, b} f(z), z_{\zeta, b} f(z), z_{\zeta, b} f(z), z_{\zeta, b} f(z) ; z) \in \Omega, \tag{2.15}
\]
then
\[
z_{\zeta, b} f(z) < q(z),
\]
where \(z \in U \) and \(\zeta \in \partial U \setminus E(q_\rho) \).

Proof. By using Theorem 2.1, we have \(f_{\zeta, b} f(z) < q_\rho(z) \). Then we obtain the result from \(q_\rho(z) < q(z) \).}

Corollary 2.2. Let \(\Omega \subset \mathbb{C} \) and let \(q(z) \) be univalent in \(U \), \(q(0) = 1 \). Let \(\phi \in \Phi_T[h, q] \) for some \(\rho \in (0, 1) \) where \(q_p(z) = q(\rho z) \). If \(f(z) \in \Sigma \) satisfies
\[
\Re \left(\frac{\zeta q''(z)}{q'(z)} \right) \geq 0, \quad \left| \frac{z\left(\int_{\zeta} f(z) - \int_{\zeta} f(z)\right)}{q'(z)} \right| \leq \frac{k}{|b|} \tag{2.16}
\]
Corollary 2.3. Let $\phi = \frac{zq'(z) + bq(z)}{b}, \frac{z^2q''(z) + (2b + 1)zq'(z) + b^2q(z)}{b^2}$, then

$$\phi(zJ_{s+1}f(z), zJ_{s-1}f(z), zJ_{s-2}f(z), zJ_{s-3}f(z); z) < h(z),$$

(2.17)

then

$$zJ_{s+1}f(z) < q(z),$$

where $z \in \mathbb{U}$ and $\zeta \in \partial \mathbb{U} \setminus E(q)$.

Theorem 2.3. Let $h(z)$ be univalent in \mathbb{U}. Let $\phi : \mathbb{C}^4 \times \mathbb{U} \rightarrow \mathbb{C}$. Suppose that the differential equation:

$$\phi \left(q(z), \frac{zq'(z) + bq(z)}{b}, \frac{z^2q''(z) + (2b + 1)zq'(z) + b^2q(z)}{b^2}, \frac{z^3q'''(z) + 3(b + 1)z^2q''(z) + 3b^2 + 3b + 1)zq'(z) + b^3q(z)}{b^3} ; z \right) = h(z),$$

(2.18)

has a solution $q(z)$ with $q(0) = 1$ which satisfies (2.1). If $f(z) \in \Sigma$ satisfies (2.17) and

$$\phi(zJ_{s+1}f(z), zJ_{s-1}f(z), zJ_{s-2}f(z), zJ_{s-3}f(z); z)$$

is analytic in \mathbb{U}, then

$$zJ_{s+1}f(z) < q(z)$$

(2.19)

and $q(z)$ is the best dominant of (2.19).

Proof. By using Theorem 2.1 that $q(z)$ is a dominant of (2.17). Since $q(z)$ satisfies (2.18), it is also a solution of (2.17) and therefore $q(z)$ will be dominated by all dominants. Hence $q(z)$ is the best dominant.

In the case $q(z) = 1 + Mz$ ($M > 0$) and in view of the Definition 2.1, the class of admissible functions $\Phi_T[\Omega, q]$ denoted by $\Phi_T[\Omega, M]$ is defined below.

Definition 2.2. Let Ω be a set in \mathbb{C} and $M > 0$. The class of admissible functions $\Phi_T[\Omega, M]$ consists of those functions $\phi : \mathbb{C}^4 \times \mathbb{U} \rightarrow \mathbb{C}$ that satisfy the admissibility condition

$$\phi \left(1 + Me^{i\theta}, 1 + \frac{(b + k)Me^{i\theta}}{b}, 1 + \frac{L + (b^2 + k(2b + 1))Me^{i\theta}}{b^2}, \frac{N + 3(b + 1)L + (b^3 + k(3b^2 + 3b + 1))Me^{i\theta}}{b^3} ; z \right) \in \Omega,$$

(2.20)

where $z \in \mathbb{U}$, $\text{Re}(Le^{-i\theta}) \geq (k - 1)kM$ and $\text{Re}(Ne^{-i\theta}) \geq 0$ for all real θ and $k \in \mathbb{N} \setminus \{1\}$.

Corollary 2.3. Let $\phi \in \Phi_T[\Omega, M]$. If $f(z) \in \Sigma$ satisfies the following conditions:

$$\left| z \left(f_{s+1} - f_{s} \right) \right| \leq \frac{kM}{|b|}$$

(2.21)

and

$$\phi(zJ_{s+1}f(z), zJ_{s-1}f(z), zJ_{s-2}f(z), zJ_{s-3}f(z); z) \in \Omega,$$

(2.22)

then

$$\left| zJ_{s+1}(z) - 1 \right| < M.$$
In the case $\Omega = q(U) = \{ w : |w - 1| < M \ (M > 0) \}$, for simplification we denote by $\Phi_T[\Omega, M]$ to the class $\Phi_T[\Omega, M]$.

Corollary 2.4. Let $\phi \in \Phi_T[\Omega]$. If $f(z) \in \Sigma$ satisfies the condition (2.21) and
\[
\left| \phi(z_{j,b}^* f(z), z_{j,1,b}^* f(z), z_{j,b}^* f(z), z_{j,-1,b}^* f(z), z_{j,-2,b}^* f(z); z) - 1 \right| < M, \tag{2.23}
\]
then
\[
\left| z_{j,b}^* f(z) - 1 \right| < M.
\]

Putting $\phi(a_1, a_2, a_3, a_4; z) = a_2 = 1 + \frac{b + k}{M} e^{i\theta}$ in Corollary 2.4, we have the following corollary:

Corollary 2.5. Let $M > 0$ and $b \in \mathbb{C} \setminus \mathbb{Z}_0$ with $\text{Re}(b) < \frac{k}{2} \ (k \in \mathbb{N}\setminus\{1\})$. If $f(z) \in \Sigma$ satisfies the condition (2.21) and
\[
\left| z_{j,b}^* f(z) - 1 \right| < M,
\]
then
\[
\left| z_{j,b}^* f(z) - 1 \right| < M.
\]

Corollary 2.6. Let $k \in \mathbb{N}\setminus\{1\}$, $M > 0$ and $b \in \mathbb{C} \setminus \mathbb{Z}_0$. If $f(z) \in \Sigma$ satisfies the condition
\[
\left| z \left(z_{j,b}^* f(z) - z_{j,b}^* f(z) \right) \right| < \frac{kM}{|b|}, \tag{2.24}
\]
(2.21) then
\[
\left| z_{j,b}^* f(z) - 1 \right| < M.
\]

Proof. Let
\[
\phi(a_1, a_2, a_3, a_4; z) = a_2 - a_1.
\]
Using Corollary 2.3 with $\Omega = h(U)$ and
\[
h(z) = \frac{kM}{|b|} z \ (z \in U).
\]
Now we show that $\phi \in \Phi_T[\Omega, M]$.

Since the condition (2.21) is satisfied from the condition (2.24) and
\[
\left| \phi \left(1 + M e^{i\theta} \right), 1 + \frac{(b + k) M e^{i\theta}}{b}, 1 + \frac{L + (b^2 + k(2b + 1)) M e^{i\theta}}{b^2} \right. \left. \frac{N + 3(b + 1)L + (b^3 + k(3b^2 + 3b + 1)) M e^{i\theta}}{b^3}; z \right) \frac{1}{b^3}
\]
\[
= \frac{kM}{|b|},
\]
then we have Corollary 2.6. \[\square\]
Corollary 2.7. Let \(k \in \mathbb{N}\setminus\{1\}, \) \(M > 0 \) and \(b \in \mathbb{C}\setminus\mathbb{Z}_0 \). If \(f(z) \in \Sigma \) satisfies the condition (2.21) and
\[
\left| z \left(J_{s-3,b}^* f(z) - J_{s-2,b}^* f(z) \right) \right| < 2 \left(\frac{|b| + 1|^2 + |2b + 3|}{|b|^3} \right) M,
\tag{2.25}
\]
then
\[
\left| z J_{s,b}^*(z) - 1 \right| < M.
\]

Proof. We define
\[
\phi(a_1, a_2, a_3, a_4; z) = a_4 - a_3.
\]
Using Corollary 2.3 with \(\Omega = h(U) \) and
\[
h(z) = \frac{2 \left(\frac{|b| + 1|^2 + |2b + 3|}{|b|^3} \right) M}{|b|^3} z \quad (z \in U).
\]
Now we show that \(\phi \in \Phi_{\Gamma}[\Omega, M] \).
Since
\[
\phi \left(1 + Me^{i\theta}, 1 + \frac{(b + k) Me^{i\theta}}{b}, 1 + \frac{L + \left(b^2 + k(2b + 1) \right) Me^{i\theta}}{b^2}, \frac{N + 3(b + 1)L + \left(b^3 + k(3b^2 + 3b + 1) \right) Me^{i\theta}}{b^3} ; z \right)
= \left| \frac{N + (2b + 3) L + k(b + 1)^2 M}{b^3} e^{-i\theta} \right|
\geq \frac{\Re \left(N e^{-i\theta} \right) + |2b + 3| \Re \left(L e^{-i\theta} \right) + k |b + 1|^2 M}{|b|^3}
\geq \frac{(k - 1) k M |2b + 3| + k |b + 1|^2 M}{|b|^3}
\geq \frac{2 \left(\frac{|b| + 1|^2 + |2b + 3|}{|b|^3} \right) M}{|b|^3},
\]
we completes the proof of Corollary 2.7. \(\square \)

3. Third Order Differential Superordination with \(J_{s,b}^* \)

Definition 3.1. Let \(\Omega \) be a set in \(\mathbb{C} \) and \(q(z) \in H \) with \(q'(z) \neq 0 \). The class of admissible functions \(\Phi_{\Gamma}[\Omega, q] \) consists of those functions \(\phi : \mathbb{C}^4 \times \overline{U} \rightarrow \mathbb{C} \) that satisfy the admissibility condition:
\[
\phi(a_1, a_2, a_3, a_4; \zeta) \in \Omega,
\]
whenever
\[
a_1 = q(z), \quad a_2 = \frac{\partial q}{\partial z}(z) + b q(z) \frac{\partial q}{\partial b}, \quad m_b.
\]
Theorem 3.1. Let $\phi \in \Phi^1_\Gamma[\Omega, q]$. If $f(z) \in \Sigma$ and $zJ_{s,b}^* f(z) \in \mathbb{D}_1$ satisfy the following conditions:
\[
\text{Re} \left(\frac{zf''(z)}{q'(z)} \right) \geq 0, \quad \left| \frac{z(f_{s-1,b}^* f(z) - f_{s,b}^* f(z))}{q'(z)} \right| \leq \frac{m}{|b|^s} \tag{3.1}
\]
\[
\{ \phi(zJ_{s,b}^* f(z), zJ_{s-1,b}^* f(z), zJ_{s-2,b}^* f(z), zJ_{s-3,b}^* f(z) ; z) : z \in \mathbb{U} \}
\]
is univalent, and
\[
\Omega \subset \{ \phi(zJ_{s,b}^* f(z), zJ_{s-1,b}^* f(z), zJ_{s-2,b}^* f(z), zJ_{s-3,b}^* f(z) ; z) : z \in \mathbb{U} \},
\tag{3.2}
\]
then
\[
q(z) < zJ_{s,b}^* f(z).
\]

Proof. Let the functions $p(z)$ and ψ be defined by (2.4) and (2.9). Since $\phi \in \Phi^1_\Gamma[\Omega, q]$, Therefore (2.10) and (3.2) imply
\[
\Omega \subset \psi(p(z), z, z^2 p''(z), z^3 p'''(z); z).
\]
The admissible condition for $\phi \in \Phi^1_\Gamma[\Omega, q]$ is equivalent to the admissible condition for ψ in Definition 1.6 with $n = 2$. Therefore, $\psi \in \Psi^2_\Gamma[\Omega, q]$, and by using (3.1) and Theorem 1.2, we have
\[
q(z) < p(z)
\]
which yields
\[
q(z) < zJ_{s,b}^* f(z).
\]

Therefore we completes the proof of Theorem 3.1. \square

If $\Omega \neq \mathbb{C}$ is a simply connected domain, then $\Omega = h(\mathbb{U})$ for some conformal mapping $h(z)$ of \mathbb{U} onto Ω. In this case the class $\Phi^1_\Gamma[h(\mathbb{U}), q]$ is written as $\Phi^1_\Gamma[h, q]$.

The following theorem is a directly consequence of Theorem 2.1.

Theorem 3.2. Let $\phi \in \Phi^1_\Gamma[h, q]$. Also, let $h(z)$ be analytic in \mathbb{U}. If $f(z) \in \Sigma$ and $zJ_{s,b}^* f(z) \in \mathbb{D}_1$ satisfies the condition (3.1),
\[
\{ \phi(zJ_{s,b}^* f(z), zJ_{s-1,b}^* f(z), zJ_{s-2,b}^* f(z), zJ_{s-3,b}^* f(z) ; z) : z \in \mathbb{U} \}
\]
is univalent in \mathbb{U}, and
\[
h(z) < \phi(zJ_{s,b}^* f(z), zJ_{s-1,b}^* f(z), zJ_{s-2,b}^* f(z), zJ_{s-3,b}^* f(z) ; z),
\tag{3.3}
\]
then
\[
q(z) < zJ_{s,b}^* f(z).
\]
Theorem 3.3. Let \(h(z) \) be analytic in \(U \), also, let \(\phi : \mathbb{C}^4 \times \overline{U} \to \mathbb{C} \) and \(\psi \) be given by (2.9). Suppose that the differential equation (2.18) has a solution \(q(z) \in D_1 \). If \(f(z) \in \Sigma \) satisfies the condition (3.1),

\[
\left\{ \phi(z f^*_p(z), z f^*_{p-1}(z), z f^*_{p-2}(z), z f^*_{p-3}(z); z) : z \in U \right\}
\]

is univalent in \(U \), and

\[
h(z) < \phi(z f^*_p(z), z f^*_{p-1}(z), z f^*_{p-2}(z), z f^*_{p-3}(z); z),
\]

then

\[
q(z) < z f^*_p(z).
\]

and \(q(z) \) is the best subordinant of (3.3).

Proof. The proof is similar to that of Theorem 2.3 and it is being omitted here. □

By combining Theorem 2.2 and Theorem 3.2 we obtain the following sandwich type result.

Corollary 3.1. Let \(h_1(z) \) and \(q_1(z) \) be analytic in \(U \). Also, let \(h_2(z) \) be univalent in \(U \), \(q_2(z) \in D_1 \) with \(q_1(0) = q_2(0) = 1 \) and \(\phi \in \Phi_{(h_1,q)} \cap \Phi_{r}(h_1,q) \). If \(f(z) \in \Sigma \), \(z f^*_p(z) \in D_1 \cap H \),

\[
\left\{ \phi(z f^*_p(z), z f^*_{p-1}(z), z f^*_{p-2}(z), z f^*_{p-3}(z); z) : z \in U \right\}
\]

is univalent in \(U \), and the conditions (2.12) and (3.1) are satisfied, Also, let

\[
h_1(z) < \phi(z f^*_p(z), z f^*_{p-1}(z), z f^*_{p-2}(z), z f^*_{p-3}(z); z) < h_2(z),
\]

then \(q_1(z) < z f^*_p(z) < q_2(z) \).

References