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Available at: http://www.pmf.ni.ac.rs/filomat

Polynomials of Unitary Cayley Graphs
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Abstract. The unitary Cayley graph Xn has the vertex set Zn = {0, 1, 2, . . . ,n − 1} and vertices a and b are
adjacent, if and only if gcd(a−b,n) = 1. In this paper, we present some properties of the clique, independence
and distance polynomials of the unitary Cayley graphs and generalize some of the results from [W. Klotz,
T. Sander, Some properties of unitary Cayley graphs, Electr. J. Comb. 14 (2007), #R45]. In addition, using some
properties of Laplacian polynomial we determine the number of minimal spanning trees of any unitary
Cayley graph.

1. Introduction

Let G = (V,E) be a connected simple graph with n = |V(G)| = |V| vertices and m = |E(G)| = |E| edges. For
vertices u, v ∈ V, the distance d(u, v) is defined as the length of the shortest path between u and v in G. The
maximum distance in the graph G is its diameter, denoted by d.

The unitary Cayley graph Xn has the vertex set Zn = {0, 1, 2, . . . ,n − 1} and vertices a and b are adjacent,
if and only if gcd(a − b,n) = 1. Integral circulant graphs are a generalization of unitary Cayley graphs,
recently studied by Klotz and Sander in [11]. The integral circulant graph Xn(D) has the vertex set Zn =
{0, 1, 2, . . . ,n−1} and vertices a and b are adjacent, if and only if gcd(a− b,n) ∈ D, where D = {d1, d2, . . . , dk} is
a set of divisors of n. These graphs play an important role in modeling quantum spin networks supporting
the perfect state transfer [1, 2] and also have applications in chemical graph theory [8].

In this paper we compute the clique polynomial of Xn in Section 2 and present some properties of
independence polynomial in Section 3- thus generalizing results from [11] on the clique and independence
number of the unitary Cayley graphs. In Section 4, using some properties of Laplacian polynomial we
determine the number minimal spanning tress of any unitary Cayley graph. In section 5 we determine the
distance polynomial of Xn.

2. The Clique Polynomial

Recall that the clique number ω(G) of a graph G is the number of vertices in a maximum clique in G.
Let p be the smallest prime divisor of n. In [11], the authors proved that ω(Xn) = p and here we will

calculate the number of cliques of size l, where l ≥ 1. This will further generalize the results from [11] on
the number of triangles in the graph Xn.
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The clique polynomial C(G; x) for the graph G is defined as the polynomial

C(G; x) =

ω(G)∑
l=1

clxl,

where the coefficient of xl for l > 0 is the number of cliques cl in a graph with l vertices, and the constant
term is 1.

Let n = pα1
1 pα2

2 · . . . · p
αk
k and m = p1p2 · . . . · pk. Let S = {x1, x2, . . . , xl} be a clique of size l. Then the residues

of the numbers from S must be all different for modules p1, p2, . . . , pk. In other words, for any 1 ≤ i ≤ k,
1 ≤ s, t ≤ l and s , t holds that xs .pi xt. This further means that for each fixed prime number pi there exists
l−tuple of mutually different number (r1i, r2i, . . . , rli), 0 ≤ r ji < pi, such that

x1 ≡pi r1i, x2 ≡pi r2i, . . . , xl ≡pi rli.

So the total number of the l−tuples is equal to the number of l−element variations of pi elements with
repetition not allowed, which is

(pi
l

)
l!.

Using the Chinese Remainder Theorem we can determine uniquely any xs modulo m, for 1 ≤ s ≤ l. So,
each element from S can be replaced with arbitrary number with the same residue modulo m and there
are exactly n

m such possibilities. Thus, for any fixed choice of k l− tuples of residues we have ( n
m )l l−tuples

(x1, . . . , xl) and the total number of l−tuples is equal to

( n
m

)l
·

k∏
i=1

(
pi

l

)
l!.

Since S is a set (not l−tuple), for counting we should divide the overall number of combinations by l!.
Therefore, the total number of cliques of size l equals

cl =
( n

m

)l
·

1
l!
·

k∏
i=1

(
pi

l

)
l! =

(
pα1−1

1 · pα2−1
2 · . . . · pαk−1

k

)l

l!

∏
p|n

p!
(p − l)!

=
nl

l!

∏
p|n

p!
(p − l)!pl

For l = 1, we have the number of vertices c1 = n.
For l = 2, we have the number of edges

c2 =
n2

2p1p2 · . . . · pk
· p1(p1 − 1)p2(p2 − 1) · . . . · pk(pk − 1) =

nϕ(n)
2

.

For l = 3, we have the number of triangles

c3 =
n3

6

∏
p|n

(1 −
1
p

)(1 −
2
p

). (1)

Finally for l > p1, we have cl = 0 as
(n

s
)

= 0 for s > n. Therefore, it follows that ω(Xn) = p1.
The authors in [3] completely solved the problem of finding the clique number for integral circulant

graphs with exactly one and two divisors–and these results can be used to characterize the clique polynomial
of Xn(d1, d2).
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3. Independence Polynomial

Recall that an independent set or stable set is a set of vertices in a graph, no two of which are adjacent
and independence number is maximal size independent set.

Let sk be the number of independent sets of cardinality k in a graph G. The polynomial

α(G, x) =

α(G)∑
k=0

sk · xk

where α(G) is the independence number, is called the independence polynomial of G.
By definition we have s0 = 1, s1 = n and s2 is the number of edges in complement of G, that is n(n−1−ϕ(n))

2 .
The authors in [11] proved that the independence number of Xn is equal to n

p , where p is the smallest
prime number dividing n. Here we extend the results by counting the number of different independent
sets with size n

p and n
p − 1.

First, we prove that sα(Xn) = p. All p independent sets with size n
p are given by Ik = {k, k + p, . . . , k + n− p},

for k = 0, 1, . . . , p − 1. It easy to see that the sets Ik are independent, since for every a, b ∈ Ik we have p | a − b
and thus gcd(a − b,n) , 1. Now, let I = {a1, a2, . . . , an/p} be an independent set, with a1 < a2 < . . . < an/p. It
can be easily seen that ai+1 − ai ≥ p, or otherwise gcd(ai+1 − ai,n) = 1. Using this inequality, we similarly
obtain an/p − a1 =

∑n/p−1
i=1 (ai+1 − ai) ≥ (n/p − 1)p implying that a1 − an/p + n ≤ p. On the other hand, it holds

that an/p − a1 ≤ n/p − 1 = (n − p)/p ≤ n − p implying that a1 − an/p + n ≥ p. It follows that the differences
between consecutive elements of I must be equal p. Therefore, sα(Xn) = p.

For n being a prime number, Xn is a complete graph and only independent sets are vertices of Xn, so
it holds that α(Xn, x) = n · x. We will further prove that sα(Xn)−1 = n, for n > 6 and not a prime number.
Obviously, by removing one element from each independent set of the size α(Xn) we get an independent
set of size α(Xn) − 1. Namely, if we want to remove the element m = ps + r, for some 0 ≤ r ≤ p − 1, then
we will remove it from the independent set Ir = {r, r + p, . . . , r + n − p}. As all such newly obtained sets
Ir \ {m} are different, it follows that sα(Xn)−1 ≥ n. Let I = {a1, a2, . . . , an/p−1} be an arbitrary independent set
of size n

p − 1, with a1 < a2 < . . . < an/p−1. Let the consecutive differences be bi = ai+1 − ai, 1 ≤ i < n
p − 1 and

bn/p−1 = n − an/p−1 + a1. As in the previous case we have bi ≥ p and
∑ n

p−1

i=1 bi = n. From these relations we
conclude that at least one difference bi is greater than p, i.e. bi ≥ p2.

Assume first that n = pα, α > 1. Let bk = ak+1 − ak ≥ p2 for some 1 ≤ k < n
p . Using the same reasoning

about the sum of consecutive differences, we get

pα =

n
p−1∑
i=1

bi ≥ p(pα−1
− 2) + p2 = pα + p(p − 2).

We see that the last inequality is satisfied for p = 2 and there is exactly one index 1 ≤ k ≤ pα−1
− 1 such that

bk = p2. Since in that case holds p2 = 2p, we conclude that every independent set is of the form Ir \ {m}, for
0 ≤ m ≤ pα − 1, and thus sα(Xpα )−1 = pα.

Assume now that n > 6 has at least two prime divisors, p and q (p < q). Also suppose that bi > p

implying that bi ≥ min{p2, q}, for 1 ≤ i < n
p . Now it is easy to see that

∑ n
p−1

i=1 ≥ ( n
p − 1) min{p2, q} > n, for n > 6.

Therefore, we conclude that there exists some k such that bk = p and bk+1 = q for some prime number q

dividing n. Furthermore, using the sum of the differences, it holds that n =
∑ n

p−1

i=1 bi ≥ p( n
p − 2) + q implying

that p < q < 2p. Next we have gcd(ak+1 − ak−1,n) = gcd(p + q,n) > 1. We will now consider two cases based
on the parity of n. Let β be the largest power of q such that qβ | n.

Case 1. If n is even, we have that p = 2 and q = 3 (since q < 2p). Furthermore, there are exactly two
differences among b1, b2, . . . , bn/p−1 that are equal q and all others are equal to p. Indeed, suppose that there
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is an index i such that bi = r for some prime r > 3 dividing n. This means that
∑ n

p−1

i=1 bi ≥ 2( n
2 − 2) + 3 + r > n,

which is a contradiction. Now, suppose that bi ∈ {p, q} for 1 ≤ i < n
p and s = |{1 ≤ i < n

p | bi = q}|. From the

inequality n =
∑ n

p−1

i=1 bi ≥ 2( n
2 − 1− s) + 3s we obtain that s ≤ 2. For s = 1 we have that ( n

p − 1)p + q = n, which
is impossible since p - q.

Let bi = b j = q, for some 1 ≤ i < j ≤ n
p − 1. These two numbers divide the difference array b into

two parts, and we can consider the larger group. So, we have that t = max{ j − i − 1, i − j + n/p − 2} is the
cardinality of that subsequence. Without loss of generality suppose that t = j− i−1. Therefore, all numbers
ai+1 − ai = q, ai+2 − ai = q + 2, ai+3 − ai = q + 4, . . . , ai+t−1 − ai = q + 2t have a common divisor with n, where

t ≥
n − 2q

2p
=

n − 6
4

>
n
4
− 2 =

n
2p
− 2.

In particular, this means that q+2 · n
2qβ = q+ n

qβ has a common factor with n, since it holds that n
2qβ ≤

n
2p −2 < t.

But, as gcd(q + n
qβ ,n) = 1 we obtain a contradiction.

Case 2. Let n be odd and q1, q2, . . . , qs primes dividing n that are different than p and appear as values of
the sequence bi. In other words, we have that s = |{1 ≤ i ≤ n

p | bi , p}| and n =
(

n
p − 1 − s

)
p +

∑s
i=1 qi implying

that

p(s + 1) =

s∑
i=1

qi. (2)

If q = min{q1, . . . , qs} then we obtain sq ≤ p(s+1) and s ≤ p
q−p ≤

p
2 , since q−p ≥ 2. Therefore, there can be at most

b
p
2 c numbers not equal to p among b1, b2, . . . , bn/p−1. Let t be the maximal number of consecutive elements

of b which are equal to p (the elements are taken in a cyclic order). Thus, it follows that tsp +
∑s

i=1 qs ≥ n.
Furthermore, according to (2) and s ≤ b p

2 c it holds that tb p
2 cp + p(b p

2 c + 1) ≥ n. This means that there is again
a chain of elements qi, qi + p, qi + 2p, . . . , qi + tp that have a common divisor with n, for some 1 ≤ i ≤ s. For
the length t holds the following estimation

t ≥
n − (bp/2c + 1)p
bp/2c · p

=
2n − (p + 1)p

p(p − 1)
>

n
pq
.

In particular this means that q + p · n
pqβ has a common factor with n– which is impossible. So, in both

cases we have that only independent sets od the size α(Xn)− 1 are given in the form Ir \ {m}, which ends the
proof.

We implemented backtrack algorithm for computing the independence polynomials for small values of
n and presented the results in Table 1. Following the results from [10], these results can be generalized to
characterize the properties of the independence polynomial of Xn(d1, d2).

4. Laplacian Polynomial

The Laplacian polynomial is the characteristic polynomial of the Laplacian matrix. The Laplacian matrix
is defined by L = D−A,where D = dia1(d1, ..., dn) is the degree matrix, which is the diagonal matrix formed
from the vertex degrees and A is the adjacency matrix. As Xn is regular graph with the regularity ϕ(n), the
Laplacian matrix of Xn is given by L(Xn) = ϕ(n)In − A(Xn), where In represents a unit matrix of order n.

In this section we assume that n has the following prime factor factorization n = pα1
1 pα2

2 . . . pαk
k and

m = p1p2 · . . . · pk.
Denote by c( j,n) the following expression

c( j,n) = µ(tn, j)
ϕ(n)
ϕ(tn, j)

, tn, j =
n

gcd(n, j)
,
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n The independence polynomial

4 4x + 2x2

5 5x
6 6x + 9x2 + 2x3

7 7x
8 8x + 12x2 + 8x3 + 2x4

9 9x + 9x2 + 3x3

10 10x + 25x2 + 20x3 + 10x4 + 2x5

11 11x
12 12x + 42x2 + 52x3 + 33x4 + 12x5 + 2x6

13 13x
14 14x + 49x2 + 70x3 + 70x4 + 42x5 + 14x6 + 2x7

15 15x + 45x2 + 35x3 + 15x4 + 3x5

16 16x + 56x2 + 112x3 + 140x4 + 112x5 + 56x6 + 16x7 + 2x
17 17x
18 18x + 99x2 + 222x3 + 297x4 + 270x5 + 171x6 + 72x7 + 18x8 + 2x9

19 19x
20 20x + 110x2 + 260x3 + 425x4 + 504x5 + 420x6 + 240x7 + 90x8 + 20x9 + 2x10

21 21x + 84x2 + 112x3 + 105x4 + 63x5 + 21x6 + 3x7

22 22x + 121x2 + 330x3 + 660x4 + 924x5 + 924x6 + 660x7 + 330x8 + 110x9 + 22x10 + 2x11

23 23x
24 24x + 180x2 + 584x3 + 1194x4 + 1752x5 + 1932x6 + 1608x7 + 993x8 + 440x9 + 132x10 + 24x11 + 2x12

25 25x + 50x2 + 50x3 + 25x4 + 5x5

Table 1: The independence polynomials for small n.

where ϕ is Euler’s totient function and µ is the Möbius function defined as

µ(n) =


1, if n = 1
0, if n is not square–free

(−1)k, if n is product of k distinct prime numbers.
(3)

The expression c( j,n) is known as the Ramanujan function ([6, p. 55]).
As noted in [11], the eigenvalues µi of the adjacency matrix of Xn is given by µi = c(i,n), for 0 ≤ i ≤ n− 1.

Since Xn is regular graph with the regularity equal to ϕ(n), then we see that µ0 is the greatest eigenvalue
equal to ϕ(n). Thus all the Laplacian eigenvalues λi = ϕ(n) − µi are positive, for 1 ≤ i ≤ n − 1.

In this section we determine the number of spanning tress in unitary Cayley graphs using the famous
Kirchhoff’s theorem ([12, p. 138]). Then the number of spanning trees of Xn is

t(Xn) =
1
n
λ1λ2 · . . . · λn−1.

Lemma 4.1. If n and 1 ≤ j ≤ n−1 are two arbitrary positive integer number then the Ramanujan function c( j,n) , 0
if and only if pαi−1

i | n for 1 ≤ i ≤ k.

Proof. From the definition of the function c( j,n), we have that c( j,n) , 0 if and only if µ(tn, j) , 0. The last
inequality is true if and only if tn, j is a square–free number. According to the definition of tn, j, we have that
tn, j is square–free if and only if pαi−1

i | gcd(n, j) for 1 ≤ i ≤ k implying that pαi−1
i | j for 1 ≤ i ≤ k.

Theorem 4.2. The number of spanning trees in the unitary Cayley graph Xn is equal to

1
n
ϕ(n)n−1

∏
d|m
d>1

(
1 −

µ(d)
ϕ(d)

)ϕ(d)

.
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Proof. If there exists some 1 ≤ i ≤ k such that pαi−1
i - j for some 1 ≤ j ≤ n − 1 then according to Lemma 4.1 it

holds that λ j = ϕ(n).
Now, assume that pαi−1

i | j for each 1 ≤ i ≤ k. Without loss of generality we can also assume that
pα1−1

1 || j, pα2−1
2 || j, . . . , pαs−1

s || j (where pβ|| j means that pβ | j and pβ+1 - j) and pαi
i | j for some 1 ≤ s ≤ k and every

s < i ≤ k. Notice that the number of previously described elements j is equal to

|{1 ≤ j ≤ n − 1 | gcd( j,n) = pα1−1
1 · . . . · pαs−1

s pαs+1
s+1 · . . . · p

αk
k }| = ϕ(p1p2 · . . . · ps).

Now, we calculate the Laplacian eigenvalue λ j. Since gcd( j,n) = pα1−1
1 · . . . · pαs−1

s pαs+1
s+1 · . . . · p

αk
k we have

that t(n, j) = p1p2 · . . . · ps and finally

λ j = ϕ(n) − (−1)s ϕ(n)
ϕ(p1p2 · . . . · ps)

.

According to Kirchhoff’s theorem we conclude that

t(Xn) =
1
n
ϕ(n)n−1

∏
{i1,...,is}⊆{1,...,k}

(
1 −

(−1)s

ϕ(pi1 · . . . · pis )

)ϕ(pi1 ·...·pis )

.

Since there is a bijection between sets of indices {i1, . . . , is} and divisors d = pi1 · . . . · pis | m we obtain the
formula from the statement of the theorem.

For n being prime we obtain that t(Xn) = 1
n (n − 1)n−1(1 + 1

n−1 )n−1 = nn−2. This result is excepted since in
this case Xn is a complete graph and the number of spanning trees is given by Cayley’s formula.

If n is a prime power number pα for some prime p and integer α ≥ 1, then

t(Xn) =
p(α−1)(pα−1)(p − 1)pα−1

pα
·

(
1 +

1
p − 1

)p−1

= p(α−1)pα+p−2α(p − 1)pα−p.

We see that the formula is much more complicated in comparison with the previous case.
If n has two prime factors p and q, in particular if n = pq, then the product is

t(Xn) =
(p − 1)pq−1(q − 1)pq−1

pq
·

pp−1

(p − 1)p−1 ·
qq−1

(q − 1)q−1 ·
((p − 1)(q − 1) − 1)(p−1)(q−1)

((p − 1)(q − 1))(p−1)(q−1)

= (p − 1)q−1
· (q − 1)p−1

· pp−2
· qq−2

· ((p − 1)(q − 1) − 1)(p−1)(q−1)

In general, there is no evident further cancellation or factorization (especially when n is not square–free),
and only a small amount of such terms can be collected. Since it doesn’t seem like there is much else to be
done here, we will simplify the formula t(Xn), for arbitrary n, by giving its asymptotic form.

Writing
(
1 − µ(d)/ϕ(d)

)ϕ(d) as exp(ϕ(d) ln(1 − µ(d)/ϕ(d))) and using Taylor series for ln(1 − x) around 0
(|µ(d)/ϕ(d)| ≤ 1), we obtain that

t(Xn) =
1
n
ϕ(n)n−1

∏
d|m
d>1

exp
(
ϕ(d)

(
−
µ(d)
ϕ(d)

−
µ(d)2

2ϕ(d)2 + O
(
µ(d)3

ϕ(d)3

)))

=
1
n
ϕ(n)n−1 exp(−

∑
d|m
d>1

µ(d) −
∑

d|m
d>1

µ(d)2

2ϕ(d)
+

∑
d|m
d>1

O(
1

ϕ(d)2 )).
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According to well-known equalities
∑

d|n µ(d) = 0, for n ≥ 2, and
∑

d|n
µ(d)2

ϕ(d) = n
ϕ(n) ([7, p. 24, 36]), it holds

that
∑

d|m µ(d) = −1 and
∑

d|m
µ(d)2

ϕ(d) = m
ϕ(m) − 1. This finally yields that

t(Xn) =
1
n
ϕ(n)n−1 exp(

1
2

(3 −
m
ϕ(m)

) +
∑

d|m
d>1

O(
1

ϕ(d)2 ))

=
1
n
ϕ(n)n−1 exp(

1
2

(3 −
k∏

i=1

pi

pi − 1
)) · exp(

∑
d|m
d>1

O(
1

ϕ(d)2 )).

Using Taylor series for ex around 0 and since m is square–free we further have that

t(Xn) =
1
n
ϕ(n)n−1 exp

1
2

(3 −
k∏

i=1

(1 +
1

pi − 1
))

 · (1 + O(
∑

d|m
d>1

1
ϕ(d)2 ))

=
1
n
ϕ(n)n−1 exp

1
2

(3 −
k∏

i=1

(1 +
1

pi − 1
))

 · (1 + O(
k∑

i=1

1
p2

i

))

=
1
n
ϕ(n)n−1 exp

(
1
2

(3 −
m
ϕ(m)

)
)
· (1 + O(

k∑
i=1

1
p2

i

)).

Asymptotic formulas only makes sense when prime factors (and all divisors d) of n are sufficiently large.
In that case ϕ(d) is always large. In the following table we give a several examples showing the accuracy of
these formulas by calculating the relative error.

n Relative error
5 · 7 -0,024899
7 · 11 -0,0111825
11 · 13 -0,00524387
13 · 17 -0,00340821
29 · 31 -0,000774676

We see that the relative error is smaller for the greater values of the prime factors pi, which makes this
approximation satisfactory.

5. Distance Polynomial

For a parameter x, the distance polynomial (or Hosoya polynomial) of G is defined as [5]

W(G, x) =
∑

u,v∈V(G)

xd(u,v) =

diam(G)∑
k=1

Wk(G) · xk.

Obviously, the sum of all coefficients of the distance polynomial is n(n−1)
2 and the coefficient with x equals

the number of edges of a graph.
According to the following theorem we will distinguish three cases to determine the forms of distance

polynomial.

Theorem 5.1. [11] For a given Xn and n > 2, we have that

diam (Xn) =


1, n is a prime
2, n is an odd composite integer or a power of 2
3, otherwise.

(4)
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Case 1. n is a prime number.
The graph Xn is a complete graph, therefore diam(G) = 1 implying that W(Xn, x) =

n(n−1)
2 x.

Case 2. n is odd composite number or n = 2k for k > 1.
The graph Xn has diameter two, and the adjacent pairs of vertices are on the distance equal to one and

nonadjacent on distance equal to two. Thus we have W(Xn, x) =
nϕ(n)

2 x +
n(n−1−ϕ(n))

2 x2.

Case 3. n is even and has an odd prime divisor.
We count the number of vertices in Xn which are on the distance 3 from the vertex 0. Using 1, as 2 | n,

we obtain that the number of triangles are equal to 0. This means that only the vertices which are on the
distance 2 from the vertex 0 have the common neighbors with the vertex 0. By Theorem 6 from [11] and its
generalization Theorem 4.1 from [4] we have that the number of common neighbors between the vertices
0 and l is given by Fn(l) = n

∏
p|l(1 −

1
p )

∏
p-l(1 −

2
p ). Therefore, according to above discussion we have

{1 ≤ l < n | d(0, l) ∈ {1, 3}} = {1 ≤ l < n | Fn(l) = 0}.

As Fn(l) = 0 only for l even we see the cardinality of the righthand side of the equation is equal to n
2 .

Furthermore, from |{1 ≤ l < n | d(0, l) = 1}}| = ϕ(n) we see that |{1 ≤ l < n | d(0, l) = 3}}| = n
2 − ϕ(n). Finally,

|{1 ≤ l < n | d(0, l) = 2}}| = n − 1 − |{1 ≤ l < n | d(0, l) ∈ {1, 3}}| = n − 1 − n
2 = n

2 − 1. According to the above
discussion finally we get the distance polynomial

W(Xn, x) =
nϕ(n)

2
x +

n(n − 2)
4

x2 +
n(n − 2ϕ(n))

4
x3.

This result can be generalized for Xn(d1, d2) using the results from [4].
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[3] M. Bašić, A. Ilić, On the clique number of integral circulant graphs, Appl. Math. Letters, 22 (2009), 1406–1411.
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[8] A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009), 1881–1889.
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