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Abstract. Let H1, H2, H3 be real Hilbert spaces, let A : H1 → H3, B : H2 → H3 be two bounded linear
operators. The general multiple-set split common fixed-point problem under consideration in this paper is
to

find x ∈ ∩p
i=1F(Ui), y ∈ ∩r

j=1F(T j) such that Ax = By, (1)

where p, r ≥ 1 are integers, Ui : H1 → H1 (1 ≤ i ≤ p) and T j : H2 → H2 (1 ≤ j ≤ r) are quasi-nonexpansive
mappings with nonempty common fixed-point sets ∩p

i=1F(Ui) = ∩
p
i=1{x ∈ H1 : Uix = x} and ∩r

j=1F(T j) =

∩
r
j=1{x ∈ H2 : T jx = x}. Note that, the above problem (1) allows asymmetric and partial relations between

the variables x and y. If H2 = H3 and B = I, then the general multiple-set split common fixed-point problem
(1) reduces to the multiple-set split common fixed-point problem proposed by Censor and Segal [J. Convex
Anal. 16(2009), 587-600]. In this paper, we introduce simultaneous parallel and cyclic algorithms for the
general split common fixed-point problems (1). We introduce a way of selecting the stepsizes such that the
implementation of our algorithms does not need any prior information about the operator norms. We prove
the weak convergence of the proposed algorithms and apply the proposed algorithms to the multiple-set
split feasibility problems. Our results improve and extend the corresponding results announced by many
others.

1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. Let I denote the identity operator on H. Let T : H→ H be a mapping. A point x ∈ H is said to be
a fixed point of T provided Tx = x. In this paper, we use F(T) to denote the fixed point set.

Recall that the convex feasibility problem (CFP) is formulated as finding a point x∗ satisfying the property:

x∗ ∈
p⋂

i=1

Ci, (2)
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where p ≥ 1 is an integer and each Ci is a nonempty closed convex subset of H. Note that the CFP
has received a lot of attention due to its extensive applications in many applied disciplines as diverse
as approximation theory, image recovery and signal processing, control theory, biomedical engineering,
communications and geophysics (see [2, 12, 21] and the references therein).

The multiple-set split feasibility problem (MSFP) which finds application in intensity modulated radia-
tion therapy was proposed in [7] and is formulated as finding a point x∗ with the property:

x∗ ∈
p⋂

i=1

Ci such that Ax∗ ∈
r⋂

j=1

Q j, (3)

where p, r ≥ 1 are integers, {Ci}
p
i=1 are nonempty closed convex subsets of real Hilbert space H1, {Q j}

r
j=1 are

nonempty closed convex subsets of real Hilbert space H2 and A : H1 → H2 is a bounded linear operator.
The MSFP (3) with p = r = 1 is known as the split feasibility problem (SFP) originally introduced in Censor
and Elfving [8] which is formulated as finding a point x∗ with the property:

x∗ ∈ C such that Ax∗ ∈ Q, (4)

where C and Q are nonempty closed convex subset of H1 and H2, respectively. The SFP (4) and MSFP (3)
model image retrieval [8] and intensity-modulated radiation therapy [6], and have recently been investi-
gated by many researchers([4, 9, 20, 22, 23, 25, 26]).

Let A−1(Q) = {x : Ax ∈ Q}, then the MSFP (3) can be viewed as a special case of the CFP (2) since (3) can
be rewritten as

x∗ ∈
p+r⋂
i=1

Ci, Cp+ j = A−1(Q j), 1 ≤ j ≤ r.

However, the methodologies for studying the MSFP (3) are actually different from those for the CFP (2) in
order to avoid usage of the inverse A−1. In other words, the methods for solving CFP (2) may not apply to
solve the MSFP (3) straightforwardly without involving the inverse A−1.

Assuming that the SFP (4) is consistent (i.e., (4) has a solution), it is not hard to see that x∗ ∈ C solves (4)
if and only if it solves the fixed point equation

x = PC(I − γA∗(I − PQ)A)x, x ∈ C, (5)

where PC and PQ are the (orthogonal) projections onto C and Q, respectively, γ > 0 is any positive constant
and A∗ denotes the adjoint of A. To solve the SFP (4), Byrne [5] proposed his CQ algorithm that involves
only the orthogonal projections onto C and Q and does not need to compute the inverse A−1 to solve the
SFP (4). The CQ algorithm is defined as follows:

xk+1 = PC(I − γA∗(I − PQ)A)xk, k ≥ 1,

where γ ∈ (0, 2
λ ) with λ being the spectral radius of the operator A∗A.

Since every closed convex subset of a Hilbert space is the fixed point set of its associating projection,
the problems (3) and (4) are all special cases of the so-called multiple-set split common fixed-point problem
(MSCFP) which is formulated as find a point x∗ with the property:

x∗ ∈
p⋂

i=1

F(Ui) such that Ax∗ ∈
r⋂

j=1

F(T j), (6)

where p, r ≥ 1 are integers, {Ui}
p
i=1 : H1 → H1, {T j}

r
j=1 : H2 → H2 are nonlinear operators and A : H1 → H2 is

a bounded linear operator. In particular, if p = r = 1, then (6) reduces to find a point x∗ with the property:

x∗ ∈ F(U) such that Ax∗ ∈ F(T), (7)
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which is usually called the solution set of the two-sets of SCFP.
The concept of SCFP in finite-dimensional Hilbert spaces was first introduced by Censor and Segal [10]

who proposed and proved, in finite-dimensional spaces, the convergence of the following algorithm for the
SCFP of nonexpansive operators with nonempty fixed-point sets:

xk+1 = U(xk + γAt(T − I)Axk), k ∈ N,

where γ ∈ (0, 2
λ ) with λ being the largest eigenvalue of the matrix AtA (At stands for matrix transposition).

Recently, Moudafi [17] introduced a new split common fixed-point problem (SCFP). Let H1, H2, H3 be
real Hilbert spaces, let A : H1 → H3, B : H2 → H3 be two bounded linear operators, let U : H1 → H1
and T : H2 → H2 be two firmly quasi-nonexpansive operators. The SCFP in [17] is to find x∗, y∗ with the
property:

x∗ ∈ F(U), y∗ ∈ F(T) such that Ax∗ = By∗, (8)

which allows asymmetric and partial relations between the variables x and y. The interest is to cover many
situation, for instance in decomposition methods for PDEs, applications in game theory and in intensity-
modulated radiation therapy (IMRT). In decision sciences, this allows to consider agents who interplay
only via some components of their decision variables (see [1]). In (IMRT), this amounts to envisage a weak
coupling between the vector of doses absorbed in all voxels and that of the radiation intensity (see [6]). If
H2 = H3 and B = I, then the SCFP (8) reduces to the two-sets of the SCFP (7).

For solving the SCFP (8), Moudafi [17] introduced the following alternating algorithm

xk+1 = U(xk − γkA∗(Axk − Byk)), (9)
yk+1 = T(yk + γkB∗(Axk+1 − Byk))

for firmly quasi-nonexpansive operators U and T, where non-decreasing sequence γk ∈ (ε,min ( 1
λA
, 1
λB

)− ε),
and λA, λB stand for the spectral radius of A∗A and B∗B respectively.

In [3], Byrne and Moudafi consider and study the algorithms to solve the approximate split equality
problem (ASEP), which can be regarded as obtaining the consistent case and the inconsistent case of the
split equality problem (SEP):

x ∈ C, y ∈ Q such that Ax = By, (10)

where C ⊂ H1, Q ⊂ H2 be two nonempty closed convex sets. There they proposed a simultaneous iterative
algorithm:

xk+1 = PC(xk − γkAT(Axk − Byk)), (11)
yk+1 = PQ(yk + γkBT(Axk − Byk)),

where ε ≤ γk ≤
2
λG
− ε, λG stand for the spectral radius of GTG and G = [A − B].

Very recently, Moudafi [18] introduced the following simultaneous iterative method to solve SCFP (8):

xk+1 = U(xk − γkA∗(Axk − Byk)), (12)
yk+1 = T(yk + γkB∗(Axk − Byk))

for firmly quasi-nonexpansive operators U and T, where γk ∈ (ε, 2
λA+λB

− ε), λA, λB stand for the spectral
radius of A∗A and B∗B respectively.

In this paper, inspired and motivated by the works mentioned above, the MSFP under consideration is
nothing but to find x∗, y∗ with the property:

x∗ ∈
p⋂

i=1

Ci, y∗ ∈
r⋂

j=1

Q j, such that Ax∗ = By∗, (13)
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and the general MSCFP is to find x∗, y∗ with the property:

x∗ ∈
p⋂

i=1

F(Ui), y∗ ∈
r⋂

j=1

F(T j), such that Ax∗ = By∗. (14)

For example, let H1 = H2 = H3 = l2, we define bounded linear operators A : H1 → H3 and B : H2 → H3 by
Ax = x and B(x1, x2, · · · ) = (x2, x3, · · · ), respectively. Let U1,U2 : H1 → H1 be defined by U1(x1, x2, x3, · · · ) =
(0, x1, x2, · · · ) and U2(x1, x2, x3, · · · ) = (0, 0, x1, · · · ). Let T : H2 → H2 be defined by Tx = x. Then the general
MSCFP under consideration is to find x∗ = 0, y∗ ∈ {(x1, 0, 0, · · · ) : x1 ∈ R} such that x∗ ∈ F(U1) ∩ F(U2),
y∗ ∈ F(T) and Ax∗ = By∗ = 0.

Note that in the algorithms (9), (11) and (12) mentioned above, the determination of the stepsize {γk}

depends on the operator (matrix) norms ‖A‖ and ‖B‖ (or the largest eigenvalues of A∗A and B∗B ). In order to
implement the above algorithms, one needs to know the operator norms of A and B (or, at least, estimate),
which is in general not an easy work in practice. To overcome this difficulty, López et al [14] and Zhao and
Yang [28] presented a helpful method for estimating the stepsizes which don’t need prior knowledge of the
operator norms for solving the SFP and MSFP, respectively. Inspired by them, in this paper, we introduce
a new choice of the stepsize sequence {γk} for the simultaneous parallel and cyclic algorithms to solve the
general MSCFP (14) governed by quasi-nonexpansive operators as follows

γk ∈
(
0,

2‖Axk − Byk‖
2

‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2
)
. (15)

The advantage of our choice (15) of the stepsizes lies in the fact that no prior information about the operator
norms of A and B is required, and still convergence is guaranteed. At last, we apply the proposed parallel
and cyclic algorithms to solve the MSFP (13) and variational problems by resolvent mappings.

2. Preliminaries

In this paper, we use→ and ⇀ to denote the strong convergence and weak convergence, respectively.
We use ωw(xk) = {x : ∃xk j ⇀ x} stand for the weak ω-limit set of {xk} and use Γ stand for the solution set of
the general SCFP (14).

- A mapping T : H→ H belongs to the set ΦN of nonexpansive mappings if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀(x, y) ∈ H ×H.

- A mapping T : H → H belongs in the general class ΦQ of (possibly discontinuous) quasi-nonexpansive
mappings if F(T) , ∅ and

‖Tx − q‖ ≤ ‖x − q‖, ∀(x, q) ∈ H × F(T).

- A mapping T : H→ H belongs to the set ΦFN of firmly nonexpansive mappings if

‖Tx − Ty‖2 ≤ ‖x − y‖2 − ‖(x − y) − (Tx − Ty)‖2, ∀(x, y) ∈ H ×H.

- A mapping T : H→ H belongs to the set ΦFQ of firmly quasi-nonexpansive mappings if F(T) , ∅ and

‖Tx − q‖2 ≤ ‖x − q‖2 − ‖x − Tx‖2, ∀(x, q) ∈ H × F(T).

It is easily observed that ΦFN ⊂ ΦN ⊂ ΦQ and that ΦFN ⊂ ΦFQ ⊂ ΦQ. Furthermore, ΦFN is well known to
include resolvents and projection operators, while ΦFQ contains subgradient projection operators (see, for
instance, [15] and the reference therein).

A mapping T : H→ H is called demiclosed at the origin if, for any sequence {xn}which weakly converges
to x, and if the sequence {Txn} strongly converges to 0, then Tx = 0.

We remark here that a quasi-nonexpansive operator T may be not nonexpansive. See the following
examples.
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Example 2.1. ([13]) Let H = R, and define a mapping by T : H→ H by

Tx :=

 x
2 sin 1

x , x , 0,
0, x = 0.

Then F(T) = {0} and T is quasi-nonexpansive but not nonexpansive. It is easily to see that T − I is demiclosed at
origin. Similarly, let H = l2, and define T : H→ H by

Tx :=

( x1
2 sin 1

x1
, 0, 0, · · · ), x1 , 0,

(0, 0, · · · ), x1 = 0,

where x = (x1, x2, x3, · · · ). Then T is quasi-nonexpansive but not nonexpansive.

Example 2.2. ([11]) Let K := {x ∈ l∞ : ‖x‖∞ ≤ 1}. Define T : K → K by Tx := (0, x2
1, x

2
2, x

2
3, · · · ) for x =

(x1, x2, x3, · · · ) in K. Then it is clear that T is continuous and maps K into K. Moreover, Tx∗ = x∗ if and only if x∗ = 0.
Furthermore,

‖Tx − x∗‖∞ = ‖Tx‖∞ = ‖(0, x2
1, x

2
2, x

2
3, · · · )‖∞

≤‖(0, x1, x2, x3, · · · )‖∞ = ‖x‖∞ = ‖x − x∗‖∞

for all x ∈ K. Therefore, T is quasi-nonexpansive. However, T is not nonexpansive, for if x = ( 3
4 ,

3
4 , · · · ) and

y = ( 1
2 ,

1
2 , · · · ), it is clear that x and y belong to K. Furthermore, ‖x − y‖∞ = ‖( 1

4 ,
1
4 , · · · )‖∞ = 1

4 , and ‖Tx − Ty‖∞ =

‖(0, 5
16 ,

5
16 , · · · )‖∞ = 5

16 > ‖x − y‖∞.

Recall that, given a nonempty closed convex subset C of a Hilbert space H, the projection PC : H → C
assigns each x ∈ H to its closest point from C defined by

PCx = ar1minz∈C‖x − z‖.

It is well known that PC is firmly nonexpansive and PCx is characterized by the inequality:

PCx ∈ C, 〈x − PCx, z − PCx〉 ≤ 0, z ∈ C.

In real Hilbert space, we easily get the following equality:

2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x − y‖2 = ‖x + y‖2 − ‖x‖2 − ‖y‖2, ∀x, y ∈ H. (16)

In what follows, we give some key properties of the α-relaxed operator Tα = αI + (1 − α)T which will be
needed in the convergence analysis of our algorithms.

Lemma 2.3. ([19]) Let H be a real Hilbert space and T : H→ H a quasi-nonexpansive mapping. Set Tα = αI+(1−α)T
for α ∈ [0, 1). Then, the following properties are reached for all (x, q) ∈ H × F(T):
(i) 〈x − Tx, x − q〉 ≥ 1

2‖x − Tx‖2 and 〈x − Tx, q − Tx〉 ≤ 1
2‖x − Tx‖2,

(ii) ‖Tαx − q‖2 ≤ ‖x − q‖2 − α(1 − α)‖Tx − x‖2;
(iii) 〈x − Tαx, x − q〉 ≥ 1−α

2 ‖x − Tx‖2.

Remark 2.4. Let Tα = αI + (1 − α)T, where T : H → H is a quasi-nonexpansive mapping and α ∈ [0, 1). We
have F(Tα) = F(T) and ‖Tαx − x‖2 = (1 − α)2

‖Tx − x‖2. It follows from (ii) of Lemma 2.3 that ‖Tαx − q‖2 ≤
‖x − q‖2 − α

1−α‖Tαx − x‖2, which implies that Tα is firmly quasi-nonexpansive when α = 1
2 . On the other hand, if T̂

is a firmly quasi-nonexpansive mapping, we can obtain T̂ = 1
2 I + 1

2 T, where T is quasi-nonexpansive. This is proved
by the following inequalities.
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For all x ∈ H and q ∈ F(T̂) = F(T),

‖Tx − q‖2 = ‖(2T̂ − I)x − q‖2 = ‖(T̂x − q) + (T̂x − x)‖2

= ‖T̂x − q‖2 + ‖T̂x − x‖2 + 2〈T̂x − q, T̂x − x〉

= ‖T̂x − q‖2 + ‖T̂x − x‖2 + ‖T̂x − q‖2 + ‖T̂x − x‖2 − ‖x − q‖2

= 2‖T̂x − q‖2 + 2‖T̂x − x‖2 − ‖x − q‖2

≤ 2‖x − q‖2 − 2‖T̂x − x‖2 + 2‖T̂x − x‖2 − ‖x − q‖2

= ‖x − q‖2,

where T̂ is firmly quasi-nonexpansive mapping.

Lemma 2.5. ([24]) Let R > 0. If E is uniformly convex then there exists a continuous, strictly increasing and convex
function 1 : [0,∞)→ [0,∞) with 1(0) = 0, such that for all x, y ∈ BR(0) := {x ∈ E : ‖x‖ ≤ R} and for any α ∈ [0, 1],
we have

‖αx + (1 − α)y‖2 ≤ α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)1(‖x − y‖).

Lemma 2.6. ([27], Lemma 2.10) Let E be a uniformly convex Banach space and BR(0) be a closed ball of E. Then
there exists a continuous strictly increasing convex function 1 : [0,∞)→ [0,∞) with 1(0) = 0 such that

‖α0x0 + α1x1 + α2x2 + α3x3 + · · · + αrxr‖
2
≤

r∑
i=0

αi‖xi‖
2
− αsαt1(‖xs − xt‖),

for any s, t ∈ {0, 1, 2, · · · , r} and for xi ∈ BR(0) := {x ∈ E : ‖xk‖ ≤ R}, i = 0, 1, 2, · · · , r with α0 + α1 + · · · + αr = 1
and 0 ≤ αi ≤ 1.

Lemma 2.7. ([16]) Let H be a real Hilbert space. Then for all t ∈ [0, 1] and x, y ∈ H,

‖tx + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x − y‖2.

Similar to technology from Lemma 2.5 to Lemma 2.6, we can get the following result from Lemma 2.7.

Lemma 2.8. Let H be a real Hilbert space. Then

‖α0x0 + α1x1 + α2x2 + α3x3 + · · · + αrxr‖
2
≤

r∑
i=0

αi‖xi‖
2
− αsαt‖xs − xt‖

2,

for any s, t ∈ {0, 1, 2, · · · , r} and for xi ∈ H, i = 0, 1, 2, · · · , r with α0 + α1 + · · · + αr = 1 and 0 ≤ αi ≤ 1.

3. Algorithms without Prior Knowledge of Operator Norms

Firstly, we propose simultaneous parallel and cyclic algorithms for solving the general MSCFP (14) of
quasi-nonexpansive mappings where the stepsizes don’t depend on the operator norms ‖A‖ and ‖B‖ and
prove the weak convergence of the proposed algorithms. Let p, r ≥ 1 be integers and H1, H2, H3 be real
Hilbert spaces. Given two bounded linear operators A : H1 → H3, B : H2 → H3, let Ui : H1 → H1 (1 ≤ i ≤ p)
and T j : H2 → H2 (1 ≤ j ≤ r) be quasi-nonexpansive mappings.



J. Zhao, S. He / Filomat 31:3 (2017), 559–573 565

3.1. Parallel Algorithms
Let x0 ∈ H1, y0 ∈ H2 be arbitrary. Let the sequences {αi

k}
∞

k=1, {β
j
k}
∞

k=1, {s
l
k}
∞

k=1 ⊂ [0, 1], (0 ≤ i ≤ p, 0 ≤ j ≤
r, 1 ≤ l ≤ r) such that Σ

p
i=0α

i
k = 1, Σr

j=0β
j
k = 1, α0

k + Σr
l=1sl

k = 1 for every k ≥ 0. Assume that the kth iterate
xk ∈ H1, yk ∈ H2 has been constructed and Axk − Byk , 0; then we calculate the (k + 1)th iterate (xk+1, yk+1)
via the formula: 

uk = xk − γkA∗(Axk − Byk),
xk+1 = α0

kuk + α1
kU1(uk) + · · · + αp

kUp(uk),
vk = yk + γkB∗(Axk − Byk),
yk+1 = β0

kvk + β1
kT1(vk) + · · · + βr

kTr(vk)

(Parallel Al1orithm 1)

or 
uk = xk − γkA∗(Axk − Byk),
xk+1 = α0

kxk + α1
kU1(uk) + · · · + αp

kUp(uk),
vk = yk + γkB∗(Axk − Byk),
yk+1 = α0

k yk + s1
kT1(vk) + · · · + sr

kTr(vk).

(Parallel Al1orithm 2)

The stepsize γk is chosen in such a way that

γk ∈
(
ε,

2‖Axk − Byk‖
2

‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2
− ε

)
, k ∈ Ω (17)

for small enough ε > 0, otherwise, γk = γ (γ being any nonnegative value), where the set of indexes
Ω = {k : Axk − Byk , 0}. If Axk − Byk = 0, then we take uk = xk, vk = yk andxk+1 = α0

kxk + α1
kU1(xk) + · · · + αp

kUp(xk),
yk+1 = β0

k yk + β1
kT1(yk) + · · · + βr

kTr(yk).

3.2. Cyclic Algorithms
Let x0 ∈ H1, y0 ∈ H2 be arbitrary. Let the sequences {αk}, {βk} ⊂ [0, 1], i(k) = k(mod p) + 1 and

j(k) = k(mod r) + 1. Assume that the kth iterate xk ∈ H1, yk ∈ H2 has been constructed and Axk − Byk , 0;
then we calculate the (k + 1)th iterate (xk+1, yk+1) via the formula:

uk = xk − γkA∗(Axk − Byk),
xk+1 = αkuk + (1 − αk)Ui(k)(uk),
vk = yk + γkB∗(Axk − Byk),
yk+1 = βkvk + (1 − βk)T j(k)(vk)

(Cyclic Al1orithm 1)

or 
uk = xk − γkA∗(Axk − Byk),
xk+1 = αkxk + (1 − αk)Ui(k)(uk),
vk = yk + γkB∗(Axk − Byk),
yk+1 = αkyk + (1 − αk)T j(k)(vk).

(Cyclic Al1orithm 2)

The stepsize γk is chosen in such a way that

γk ∈
(
ε,

2‖Axk − Byk‖
2

‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2
− ε

)
k ∈ Ω,

for small enough ε > 0, otherwise, γk = γ (γ being any nonnegative value), where the set of indexes
Ω = {k : Axk − Byk , 0}. If Axk − Byk = 0, then we take uk = xk, vk = yk andxk+1 = αkxk + (1 − αk)Ui(k)(xk),

yk+1 = βkyk + (1 − βk)T j(k)(yk).
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Lemma 3.1. Assume the solution set Γ of (14) is nonempty. Then γk defined by (17) is well-defined.

Proof. Taking (x, y) ∈ Γ, i.e., x ∈ ∩p
i=1F(Ui), y ∈ ∩r

j=1F(T j) and Ax = By, we have

〈A∗(Axk − Byk), xk − x〉 = 〈Axk − Byk,Axk − Ax〉

and
〈B∗(Axk − Byk), y − yk〉 = 〈Axk − Byk,By − Byk〉.

By adding the two above equalities and by taking into account the fact that Ax = By, we obtain

‖Axk − Byk‖
2 = 〈A∗(Axk − Byk), xk − x〉 + 〈B∗(Axk − Byk), y − yk〉

≤ ‖A∗(Axk − Byk)‖ · ‖xk − x‖ + ‖B∗(Axk − Byk)‖ · ‖y − yk‖.

Consequently, for k ∈ Ω, that is, ‖Axk − Byk‖ > 0, we have ‖A∗(Axk − Byk)‖ , 0 or ‖B∗(Axk − Byk)‖ , 0. This
leads that γk is well-defined.

Remark 3.2. Note that in (17) the choice of the stepsize γk is independent of the norms ‖A‖ and ‖B‖. The value of γ
does not influence the considered algorithm, but it was introduced just for the sake of clarity.

Theorem 3.3. Assume that Ui − I (1 ≤ i ≤ p), T j − I (1 ≤ j ≤ r) are demiclosed at origin and the solution set Γ
of (14) is nonempty. Then, the sequence {(xk, yk)} generated by Parallel Algorithm 1 weakly converges to a solution
(x∗, y∗) of (14), provided that lim infk→∞ α0

kα
i
k > 0, ∀1 ≤ i ≤ p and lim infk→∞ β0

kβ
j
k > 0, ∀1 ≤ j ≤ r.

Moreover ‖Axk − Byk‖ → 0, ‖xk+1 − xk‖ → 0 and ‖yk+1 − yk‖ → 0 as k→∞.

Proof. From the condition on γk, we have

inf
k∈Ω

{ 2‖Axk − Byk‖
2

‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2
− γk

}
> 0.

It follows that supk∈Ω γk < +∞ and {γk}k≥1 is bounded.
Taking (x, y) ∈ Γ, i.e., x ∈ ∩p

i=1F(Ui); y ∈ ∩r
j=1F(T j) and Ax = By. We have

‖uk − x‖2 = ‖xk − γkA∗(Axk − Byk) − x‖2 (18)
= ‖xk − x‖2 − 2γk〈xk − x,A∗(Axk − Byk)〉 + γ2

k‖A
∗(Axk − Byk)‖2.

Using the equality (16), we have

−2〈xk − x,A∗(Axk − Byk)〉 = −2〈Axk − Ax,Axk − Byk〉 (19)
= −‖Axk − Ax‖2 − ‖Axk − Byk‖

2 + ‖Byk − Ax‖2.

By (18) and (19) we obtain

‖uk − x‖2 = ‖xk − x‖2 − γk‖Axk − Ax‖2 − γk‖Axk − Byk‖
2 (20)

+ γk‖Byk − Ax‖2 + γ2
k‖A

∗(Axk − Byk)‖2.

Similarly, we have

‖vk − y‖2 = ‖yk − y‖2 − γk‖Byk − By‖2 − γk‖Axk − Byk‖
2 (21)

+ γk‖Axk − By‖2 + γ2
k‖B

∗(Axk − Byk)‖2.

By adding the two last equalities and the fact that Ax = By, we obtain

‖uk−x‖2 +‖vk− y‖2 = ‖xk−x‖2 +‖yk− y‖2−γk[2‖Axk−Byk‖
2
−γk(‖A∗(Axk−Byk)‖2 +‖B∗(Axk−Byk)‖2)]. (22)
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Using the fact that Ui is quasi-nonexpansive mapping and x ∈ F(Ui) for every 1 ≤ i ≤ p, it follows from
Lemma 3.1 that

‖xk+1 − x‖2 ≤ α0
k‖uk − x‖2 + α1

k‖U1(uk) − x‖2 + · · · + αp
k‖Up(uk) − x‖2 − α0

kα
1
k‖U1(uk) − uk‖

2

≤ α0
k‖uk − x‖2 + α1

k‖uk − x‖2 + · · · + αp
k‖uk − x‖2 − α0

kα
1
k‖U1(uk) − uk‖

2 (23)

= ‖uk − x‖2 − α0
kα

1
k‖U1(uk) − uk‖

2.

Similarly, we have

‖yk+1 − y‖2 ≤ ‖vk − y‖2 − β0
kβ

1
k‖T1(vk) − vk‖

2. (24)

So, by (22) we have

‖xk+1 − x‖2 + ‖yk+1 − y‖2 ≤ ‖xk − x‖2 + ‖yk − y‖2 − α0
kα

1
k‖U1(uk) − uk‖

2
− β0

kβ
1
k‖T1(vk) − vk‖

2

− γk[2‖Axk − Byk‖
2
− γk(‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2)]. (25)

Now, by setting ρk(x, y) := ‖xk − x‖2 + ‖yk − y‖2, we obtain the following inequality

ρk+1(x, y) ≤ ρk(x, y) − α0
kα

1
k‖U1(uk) − uk‖

2
− β0

kβ
1
k‖T1(vk) − vk‖

2

phantomρk+1(x, y) ≤ − γk[2‖Axk − Byk‖
2
− γk(‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2)]. (26)

By (17) we see the sequence {ρk(x, y)} being decreasing and lower bounded by 0, consequently it converges
to some finite limit, says ρ(x, y). So the sequences {xk} and {yk} are bounded.

Again from (26) we have

ρk+1(x, y) ≤ ρk(x, y) − γk[2‖Axk − Byk‖
2
− γk(‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2)]

and hence
lim
k→∞
‖Axk − Byk‖ = 0

by the assumption on {γk}. Similarly, by the conditions on {αi
k} (0 ≤ i ≤ p) and {β j

k} (0 ≤ j ≤ r) we obtain

lim
k→∞
‖U1(uk) − uk‖ = lim

k→∞
‖T1(vk) − vk‖ = 0.

Since
‖uk − xk‖ = γk‖A∗(Axk − Byk)‖

and the fact that {γk} is bounded, we have limk→∞ ‖uk − xk‖ = 0. Similarly, limk→∞ ‖vk − yk‖ = 0. Repeating
the above proof, for 2 ≤ i ≤ p and 2 ≤ j ≤ r we can obtain that

lim
k→∞
‖Ui(uk) − uk‖ = lim

k→∞
‖T j(vk) − vk‖ = 0.

Taking (x∗, y∗) ∈ ωw(xk, yk), from limk→∞ ‖uk − xk‖ = 0 and limk→∞ ‖vk − yk‖ = 0 we have (x∗, y∗) ∈ ωw(uk, vk).
For any 1 ≤ i ≤ p and 1 ≤ j ≤ r, combined with the demiclosednesses of Ui − I and T j − I at 0,

lim
k→∞
‖Ui(uk) − uk‖ = lim

k→∞
‖T j(vk) − vk‖ = 0

yields Ui(x∗) = x∗ and T j(y∗) = y∗. So x∗ ∈ ∩p
i=1F(Ui) and y∗ ∈ ∩r

j=1F(T j). On the other hand, Ax∗ − By∗ ∈
ωw(Axk − Byk) and weakly lower semicontinuity of the norm imply

‖Ax∗ − By∗‖ ≤ lim inf
k→∞

‖Axk − Byk‖ = 0,

hence (x∗, y∗) ∈ Γ. Moreover, it follows from ‖Ui(uk)−uk‖ → 0 and ‖uk−xk‖ → 0 as k→∞ that ‖Ui(uk)−xk‖ → 0
for all 1 ≤ i ≤ p. So

‖xk+1 − xk‖ ≤ α
0
k‖uk − xk‖ + α1

k‖U1(uk) − xk‖ + · · · + αp
k‖Up(uk) − xk‖ → 0
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as k → ∞, which infer that {xk} is asymptotically regular, namely limk→∞ ‖xk+1 − xk‖ = 0. Similarly, {yk} is
asymptotically regular too.

Next, we will show the uniqueness of the weak cluster points of {(xk, yk)}. Indeed, let (x̄, ȳ) be other
weak cluster points of {(xk, yk)}, then (x̄, ȳ) ∈ Γ. From the definition of ρk(x, y) we have

ρk(x∗, y∗) = ‖xk − x̄‖2 + ‖x̄ − x∗‖2 + 2〈xk − x̄, x̄ − x∗〉 + ‖yk − ȳ‖2 + ‖ȳ − y∗‖2 + 2〈yk − ȳ, ȳ − y∗〉
= ρk(x̄, ȳ) + ‖x̄ − x∗‖2 + ‖ȳ − y∗‖2 + 2〈xk − x̄, x̄ − x∗〉 + 2〈yk − ȳ, ȳ − y∗〉. (27)

Without of generality, we may assume that xk ⇀ x̄ and yk ⇀ ȳ. By passing to the limit in the relation (3.11),
we obtain

ρ(x∗, y∗) = ρ(x̄, ȳ) + ‖x̄ − x∗‖2 + ‖ȳ − y∗‖2.

Reversing the role of (x∗, y∗) and (x̄, ȳ), we also have

ρ(x̄, ȳ) = ρ(x∗, y∗) + ‖x∗ − x̄‖2 + ‖y∗ − ȳ‖2.

By adding the two last equalities, we obtain x∗ = x̄ and y∗ = ȳ, which implies that the whole sequence
{(xk, yk)}weakly converges to a solutions of problem (14). This completes the proof.

Theorem 3.4. Assume that Ui − I (1 ≤ i ≤ p), T j − I (1 ≤ j ≤ r) are demiclosed at origin and the solution set Γ of
(1.13) is nonempty. Then, the sequence {(xk, yk)} generated by Parallel Algorithm 2 weakly converges to a solution
(x∗, y∗) of (14), provided that lim infk→∞ α0

kα
i
k > 0, ∀1 ≤ i ≤ p and lim infk→∞ α0

ksl
k > 0, ∀1 ≤ l ≤ r. Moreover

‖Axk − Byk‖ → 0, ‖xk+1 − xk‖ → 0 and ‖yk+1 − yk‖ → 0 as k→∞.

Proof. Taking (x, y) ∈ Γ, i.e., x ∈ ∩p
i=1F(Ui); y ∈ ∩r

j=1F(T j) and Ax = By. By repeating the proof of Theorem
3.3, we have (22) is true.

Using the fact that Ui (1 ≤ i ≤ p) and T j (1 ≤ j ≤ r) are quasi-nonexpansive mappings, it follows from
Lemma 3.1 that

‖xk+1 − x‖2 ≤ α0
k‖xk − x‖2 + α1

k‖U1(uk) − x‖2 + · · · + αp
k‖Up(uk) − x‖2 − α0

kα
1
k‖U1(uk) − xk‖

2

≤ α0
k‖xk − x‖2 + α1

k‖uk − x‖2 + · · · + αp
k‖uk − x‖2 − α0

kα
1
k‖U1(uk) − xk‖

2 (28)

= α0
k‖xk − x‖2 + (1 − α0

k)‖uk − x‖2 − α0
kα

1
k‖U1(uk) − xk‖

2

and
‖yk+1 − y‖2 ≤ α0

k‖yk − y‖2 + (1 − α0
k)‖vk − y‖2 − α0

ks1
k‖T1(vk) − yk‖

2.

So, by (22) we have

‖xk+1 − x‖2 + ‖yk+1 − y‖2 ≤ ‖xk − x‖2 + ‖yk − y‖2 − α0
kα

1
k‖U1(uk) − xk‖

2
− α0

ks1
k‖T1(vk) − yk‖

2 (29)

− (1 − α0
k)γk[2‖Axk − Byk‖

2
− γk(‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2)].

Now, by setting ρk(x, y) := ‖xk − x‖2 + ‖yk − y‖2, we obtain the following inequality

ρk+1(x, y) ≤ ρk(x, y) − α0
kα

1
k‖U1(uk) − xk‖

2
− α0

ks1
k‖T1(vk) − yk‖

2 (30)

− (1 − α0
k)γk[2‖Axk − Byk‖

2
− γk(‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2)].

Following the lines of the proof of Theorem 3.3, by the conditions on {γk}, {αi
k} (0 ≤ i ≤ p) and {sl

k} (1 ≤ l ≤ r)
we have that the sequence {ρk(x, y)} converges to some finite limit, say ρ(x, y). Furthermore, we obtain

lim
k→∞
‖Axk − Byk‖ = lim

k→∞
‖U1(uk) − xk‖ = lim

k→∞
‖T1(vk) − yk‖ = 0.

Similarly, for 2 ≤ i ≤ p and 2 ≤ l ≤ r, we have

lim
k→∞
‖Ui(uk) − xk‖ = lim

k→∞
‖Tl(vk) − yk‖ = 0.
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It follows that

‖xk+1 − xk‖ ≤ α
1
k‖U1(uk) − xk‖ + α2

k‖U2(uk) − xk‖ + · · · + αp
k‖Up(uk) − xk‖ → 0

as k→∞. So, {xk} is asymptotically regular. Since

‖uk − xk‖ = γk‖A∗(Axk − Byk)‖

and the fact that {γk} is bounded, we have limk→∞ ‖uk − xk‖ = 0. Hence

lim
k→∞
‖Ui(uk) − uk‖ = 0, ∀1 ≤ i ≤ p.

Similarly, limk→∞ ‖vk − yk‖ = 0, limk→∞ ‖Tl(vk) − vk‖ = 0 (∀1 ≤ l ≤ r) and {yk} is asymptotically regular too.
The rest of the proof is analogous to that of Theorem 3.3

Theorem 3.5. Assume that Ui− I (1 ≤ i ≤ p), T j− I (1 ≤ j ≤ r) are demiclosed at origin and the solution set Γ of (14)
is nonempty. Then, the sequence {(xk, yk)} generated by Cyclic Algorithm 1 weakly converges to a solution (x∗, y∗) of
(14), provided that {αk} ⊂ (δ, 1 − δ) and {βk} ⊂ (σ, 1 − σ) for small enough δ, σ > 0. Moreover ‖Axk − Byk‖ → 0,
‖xk+1 − xk‖ → 0 and ‖yk+1 − yk‖ → 0 as k→∞.

Proof. Taking (x, y) ∈ Γ, i.e., x ∈ ∩p
i=1F(Ui); y ∈ ∩r

j=1F(T j) and Ax = By. By repeating the proof of Theorem
3.3, we have (3.6) is true.

Using the fact that Ui (1 ≤ i ≤ p) and T j (1 ≤ j ≤ r) are quasi-nonexpansive mappings, it follows from
the property (ii) of Lemma 2.3 that

‖xk+1 − x‖2 ≤ ‖uk − x‖2 − αk(1 − αk)‖Ui(k)(uk) − uk‖
2

and
‖yk+1 − y‖2 ≤ ‖vk − y‖2 − βk(1 − βk)‖T j(k)(vk) − vk‖

2.

So, by (22) we have

‖xk+1 − x‖2 + ‖yk+1 − y‖2 ≤ ‖xk − x‖2 + ‖yk − y‖2 − αk(1 − αk)‖Ui(k)(uk) − uk‖
2
− βk(1 − βk)‖T j(k)(vk) − vk‖

2

− γk[2‖Axk − Byk‖
2
− γk(‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2)]. (31)

Now, by setting ρk(x, y) := ‖xk − x‖2 + ‖yk − y‖2, we obtain the following inequality

ρk+1(x, y) ≤ ρk(x, y) − αk(1 − αk)‖Ui(k)(uk) − uk‖
2
− βk(1 − βk)‖T j(k)(vk) − vk‖

2 (32)

− γk[2‖Axk − Byk‖
2
− γk(‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2)].

We see the sequence {ρk(x, y)} being decreasing and lower bounded by 0, consequently it converges to some
finite limit, says ρ(x, y). So the sequences {xk} and {yk} are bounded. Again from (32) we have

ρk+1(x, y) ≤ ρk(x, y) − γk[2‖Axk − Byk‖
2
− γk(‖A∗(Axk − Byk)‖2 + ‖B∗(Axk − Byk)‖2)]

and hence
lim
k→∞
‖Axk − Byk‖ = 0

by the assumption on {γk}. Similarly, by the conditions on {αk} and {βk}we obtain

lim
k→∞
‖Ui(k)(uk) − uk‖ = lim

k→∞
‖T j(k)vk − vk‖ = 0.

Since
‖uk − xk‖ = γk‖A∗(Axk − Byk)‖
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and the fact that {γk} is bounded, we have limk→∞ ‖uk − xk‖ = 0. It follows from limk→∞ ‖Ui(k)(uk) − uk‖ = 0
that limk→∞ ‖Ui(k)(uk) − xk‖ = 0. So

‖xk+1 − xk‖ ≤ αk‖uk − xk‖ + (1 − αk)‖Ui(k)(uk) − xk‖ → 0

as n→∞, which infers that {xk} is asymptotically regular, namely limk→∞ ‖xk+1 − xk‖ = 0. It follows that

‖uk+1 − uk‖ ≤ ‖uk+1 − xk+1‖ + ‖xk+1 − xk‖ + ‖xk − uk‖ → 0

as k→∞, which implies that

lim
k→∞
‖uk+i − uk‖ = 0, ∀1 ≤ i ≤ p. (33)

Similarly, limk→∞ ‖vk − yk‖ = 0, {yk} is asymptotically regular too and

lim
k→∞
‖vk+ j − vk‖ = 0, ∀1 ≤ j ≤ r. (34)

Taking (x∗, y∗) ∈ ωw(xk, yk), from limk→∞ ‖uk−xk‖ = 0 and limk→∞ ‖vk−yk‖ = 0 we have (x∗, y∗) ∈ ωw(uk, vk).
Let an index i ∈ {1, 2, · · · , p} be fixed. Noticing that the pool of indexes is finite, from (33) we can find a
subsequence {ukm } of {uk} such that ukm ⇀ x∗ as m→∞ and i(km) = i for all m. It turns out that

lim
m→∞

‖Ui(ukm ) − ukm‖ = lim
m→∞

‖Ui(km)(ukm ) − ukm‖ = 0.

Combined with the demiclosednesses of Ui−I at 0, we get Ui(x∗) = x∗. So, x∗ ∈ F(Ui) and hence x∗ ∈ ∩p
i=1F(Ui).

Similarly, we have y∗ ∈ ∩r
j=1F(T j).

The rest of the proof is analogous to that of Theorem 3.3.

By Lemma 3.1, similar to technology from Theorem 3.3 to Theorem 3.4, we can get the following result
from Theorem 3.5.

Theorem 3.6. Assume that Ui − I (1 ≤ i ≤ p), T j − I (1 ≤ j ≤ r) are demiclosed at origin and the solution set Γ
of (1.13) is nonempty. Then, the sequence {(xk, yk)} generated by Cyclic Algorithm 2 weakly converges to a solution
(x∗, y∗) of (1.13), provided that {αk} ⊂ (δ, 1− δ) for small enough δ > 0. Moreover ‖Axk −Byk‖ → 0, ‖xk+1 − xk‖ → 0
and ‖yk+1 − yk‖ → 0 as k→∞.

Remark 3.7. (Relationship to Moudafi’s work) In [19], A. Moudafi considered the multiple-set split common fixed-
point problem (6) on bounded linear operator A. In this paper, we consider the general multiple-set split common
fixed-point problem (14) on bounded linear operator A and B. When H2 = H3 and B = I, (14) becomes (6). In his
algorithms, the determination of the stepsize γ depends on the operator (matrix) norm ‖A‖(or the largest eigenvalues
of A∗A). In order to implement the above algorithms, one needs to know the operator norm of A(or, at least, estimate),
which is in general not an easy work in practice. In this paper, we introduce a new choice of the stepsize which does
not need any prior information about the operator norm of A and B, and still convergence is guaranteed.

Remark 3.8. In general, to get strong convergence we use Halpern-type iterative process or projection-type iterative
process. But Halpern-type iterative process converges slowly to solution and projection-type iterative process is not
easily be realized. On the other hand, there are better properties for operators after parallel iteration, see Lemma 2.3.
It would be future works to propose fast iterative algorithms for the general MSCFP (14) to get strong convergence
result.

We now turn our attention to apply the proposed algorithms to the general MSCFP (14) governed by
firmly quasi-nonexpansive mappings. Since ΦFQ ⊂ ΦQ, we can straightly get Parallel Algorithm 1, 2 and
Cyclic Algorithm 1, 2 for solving the general MSCFP (14) of firmly quasi-nonexpansive mappings. Noticing
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Remarks 3.2 and 3.8, we know that any firmly quasi-nonexpansive mapping can be expressed be the 1
2 -

relaxed operator of quasi-nonexpansive mapping. For any positive numbers 0 < λi < 1 (1 ≤ i ≤ p) and
0 < µ j < 1 (1 ≤ j ≤ r), setting

α0
k =

λ1 + · · · + λp

2
, α1

k =
λ1

2
, · · · , αp

k =
λp

2
,

β0
k =

µ1 + · · · + µr

2
, β1

k =
µ1

2
, · · · , βr

k =
µr

2
,

Parallel Algorithm 1 take the following equivalent form for solving the general MSCFP (14) of firmly
quasi-nonexpansive mappings {Ui} (1 ≤ i ≤ p) and {T j} (1 ≤ j ≤ r):

uk = xk − γkA∗(Axk − Byk),
xk+1 = λ1U1(uk) + · · · + λpUp(uk),
vk = yk + γkB∗(Axk − Byk),
yk+1 = µ1T1(vk) + · · · + µrTr(vk),

(35)

where the stepsize γk is chosen by (3.1). Setting αk ≡ βk ≡
1
2 for all k ≥ 0, Cyclic Algorithm 1 take the

following equivalent form for solving the general MSCFP (1.13) of firmly quasi-nonexpansive mappings
{Ui} (1 ≤ i ≤ p) and {T j} (1 ≤ j ≤ r): 

uk = xk − γkA∗(Axk − Byk),
xk+1 = Ui(k)(uk),
vk = yk + γkB∗(Axk − Byk),
yk+1 = T j(k)(vk),

(36)

where the stepsize γk is chosen by (18). Finally, we apply our algorithms to the MSFP (13). Taking Ui = PCi

(1 ≤ i ≤ p) and T j = PQ j (1 ≤ j ≤ r), we have the following simultaneous parallel and cyclic iterative
algorithms: 

uk = xk − γkA∗(Axk − Byk),
xk+1 = λ1PC1 (uk) + · · · + λpPCp (uk),
vk = yk + γkB∗(Axk − Byk),
yk+1 = µ1PQ1 (vk) + · · · + µrPQr (vk)

(37)

and 
uk = xk − γkA∗(Axk − Byk),
xk+1 = PCi(k) (uk),
vk = yk + γkB∗(Axk − Byk),
yk+1 = PQ j(k) (vk)

(38)

where the stepsize γk is chosen by (18).

Remark 3.9. For the particular case p = r = 1, our algorithm (36) and (38) solve the two-sets of SCFP (7) governed
by firmly quasi-nonexpansive mappings and the split equality problems (10) without prior knowledge of operator
norms, respectively.

Next we apply our results to variational problems by resolvent mappings. Given a maximal monotone
operator M : H1 → 2H1 , it is well-known that its associated resolvent mapping, JM

µ (x) := (I + µM)−1, is
quasi-nonexpansive and 0 ∈ M(x) ⇔ x = JM

µ (x). In other words zeroes of M are exactly fixed-points of its
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resolvent mapping. For 1 ≤ i ≤ p and 1 ≤ j ≤ r, by taking Ui = JMi
µi

, T j = JS j
ν j

, where Mi : H1 → 2H1 and
N j : H2 → 2H2 are another maximal monotone operator, the problem under consideration is nothing but to

find x∗ ∈
p⋂

i=1

M−1
i (0), y∗ ∈

r⋂
j=1

N−1
j (0) such thatAx∗ = By∗, (35)

and the algorithms take the following equivalent form.
Parallel Algorithms 

uk = xk − γkA∗(Axk − Byk),
xk+1 = α0

kuk + α1
k JM1
µ1

(uk) + · · · + αp
k JMp
µp

(uk),
vk = yk + γkB∗(Axk − Byk),
yk+1 = β0

kvk + β1
k JS1
ν1

(vk) + · · · + βr
k JSr
νr

(vk)

or 
uk = xk − γkA∗(Axk − Byk),
xk+1 = α0

kxk + α1
k JM1
µ1

(uk) + · · · + αp
k JMp
µp

(uk),
vk = yk + γkB∗(Axk − Byk),
yk+1 = α0

k yk + s1
k JS1
ν1

(vk) + · · · + sr
k JSr
νr

(vk).

Cyclic Algorithms 
uk = xk − γkA∗(Axk − Byk),
xk+1 = αkuk + (1 − αk)JMi(k)

µi(k)
(uk),

vk = yk + γkB∗(Axk − Byk),

yk+1 = βkvk + (1 − βk)JS j(k)
ν j(k)

(vk)

or 
uk = xk − γkA∗(Axk − Byk),
xk+1 = αkxk + (1 − αk)JMi(k)

µi(k)
(uk),

vk = yk + γkB∗(Axk − Byk),

yk+1 = αkyk + (1 − αk)JS j(k)
ν j(k)

(vk).
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