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Abstract. The classical power sum and alternating power sum identities can be stated as

m
1
(1) = B, 1) = Bu41),
D0 ()= g B 004 1) = B

Y 15,0

S ()"E, (n+ 1)+ E,),
i=0

where s, (x) = x" is the simplest possible Appell polynomial for the Sheffer pair (1,¢). The impetus for this

research starts from the question that what if we replace s, (x) = x" by any Appell polynomial. In this paper,
we give a generalization of power and alternating power sums to any Appell polynomials.

1. Introduction

As is well known, the Bernoulli polynomials are defined by the generating function

t Xt _ . ﬂ
a1° _;B"(x)n!' (see [3-11]).

(1.1)
When x = 0, B, = B,, (0) are called the Bernoulli numbers.

The ordinary Euler polynomials are also given by the generating function
2 4 v "
e Gl Z:a Ei() ., (see[1,17,20]).

(1.2)
When x =0, E,, = E,, (0) are called the Euler numbers.

There have been numerous investigations on Bernoulli and Euler polynomials and their related ones.
Some interesting generalizations of these polynomials were obtained in the recent papers [13, 14, 18]. For
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their connections to many interesting integrals and series associated with zeta functions, one is referred
to the detailed and systematic treatment in [19];for explicit computations of the related numbers, one may
want to see [15].

Let ¥ be the set of all formal power series in the variable ¢:

= {f(t) iﬂkk—k,

k=0

ay € C} (1.3)

For IP = C [x], let P* be the vector space of all linear functionals on IP. {L|p (x)) denotes the action of the
linear functional L on p (x) which satisfies (L + M|p (x)) = {L|p (x)) + {M]|p (x)), and {cL|p (x)) = c(L|p (x)),

where c is a complex constant. The linear functional < f (t)| > on PP is defined by

(fO]x)=a, n=0), (1.4)

where f (t) € ¥, (see [16]).
From (1.3) and (1.4), we have

<tk| x"> =nldur, (n,k=0), (1.5)

where 0, is the Kronecker’s symbol.

Let us set fi () = £y 224 Then, by (1.4), we get ( fi ()] x") = (LIx"). So, the map L > fi (t) is a
vector space 1somorph15m from IP* onto F. Henceforth, # denotes both the algebra of formal power series
in t and the vector space of all linear functionals on [P, and so an element f (t) of ¥ will be thought of as
both a formal power series and a linear functional. We call ¥ the umbral algebra and the umbral calculus
is the study of umbral algebra.

The order o (f () of a power series f () # 0 is the smallest integer k for which the coefficient of t* does
not vanish (see [16]). If the order of f (t) (# 0) is zero, then f (t) is called an invertible series; if the order of
f (t)is one, then f (f) is called a delta series. For f (t),g (t) € ¥ witho(f (#)) = 1and o(g () = 0, there exists a
unique sequence s, (x) (degs, (x) = n) such that < gt f (t)k| Sy (x)> = n!d,x, fork > 0. Such a sequence s, (x) is
called the Sheffer sequence for (g (t), f (t)) which is denoted by s, (x) ~ (g (t), f (t)). Also, s, (x) ~ (g (t), f ()
if and only if

mdfﬂ” =Y. S"k—(,y)tk, (yeC), (see[l6]), (1.6)
k=0 ’

where f () is the compositional inverse of f (t) with f(f (t)) = f ( f (t)) =t

In particular, if s, (x) ~ (g (t),t), then s, (x) is called the Appell sequence for g (t) ;if s, (x) ~ (1, f (t)), then
sy (x) is called the associated sequence for f (t) (see [16]).

For f(t) € ¥ and p (x) € IP, we have

o

Fo=Y (rol) . pw= Y (Hpw) (17)

k=0 k=0

By (1.7), we get

dk
tp=p @ =D @ = pery). 8)
From (1.8), we note that

(e"]p ) =p(y). (1.9)
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The classical power sum and alternating power sum identities can be respectively stated as

;%< e (B (1) = By), (1.10)
Y Vi) = 5 (V" Exn+ D+ E), (€ Zao), (L1

where s, (x) ~ (1,1) is the simplest possible Appell polynomial. Here we would like to mention that, as
a refinement of (1.10), some problem related with power sums along arithmetic progressions had been
treated in [2].

The impetus for this research starts from the question that what if we replace s, (x) = x" by any Appell
polynomial.

In this paper, we will introduce Barnes” multiple Bernoulli and Appell mixed-type polynomials, and
Barnes’ multiple Euler and Appell mixed-type polynomials. Then we will establish one main identity for
each of them connecting a sum for the Appell polynomial and that for the mixed-type polynomial. As a
consequence, the direct generalization of the identities in (1.10) and (1.11) will follow from these as special
simple cases.

2. A Generalization of Power and Alternating Power Sums to any Appell Polynomials

Assume thats, (x) ~ (g (t), ), 7, (x) ~ (h(t), t) are Appell sequences. Then we denote the Appell sequence
for g (t) h (t) by sr, (x) which are called s, (x) and r, (x) mixed-type polynomials. That is,

sta (1) ~ (g (O (D), 1), (2.1)

From (1.6) and (2.1), we have

(o)

1 o "
me = ; STy (X) E (22)
Thus, by (2.2), we get
1
sty (x) = g(t)h(t) = g( ) n (x) = h(t)sn (x), (2.3)
and
tsr, (x) = nsr,_1 (x), (m>1). (2.4)

The following facts will be used frequently: for any polynomial p (x), we have

b xX+y
¢ t L f p (1) du, 2.5)
eyt _ x]/
< >:f p(u)du, (2.6)
0
e(mﬂ)m 7 p(x) Zp(x+az 2.7)

m+1)at
<"et—‘ > zp(al), 28)
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(_1)"1 e(m+1)at +1
et +1

P =Y (<D'px+ai,
i=0

and

(_1)?11 e(m+1)ut +1
et +1

p <x>> =Y (-1 pai).

i=0

Lemma 1. Let s, (x) be the Appell sequence for g (t), namely s, (x) ~ (g () ,t). For my, my, ...,

C, we have
e(m,+1)a,t -1 e(ml+1)ﬂ1t -1
— X oo X — Sy (%)
T Z( D a0 (3] O+ D, .., (i + 1)),
1
where

() =n(-1)-(-1+1)=Y S @]
=0

Spi (xlx1, ..., x1) = Z s,,(x+x]), 0<ix<),

e
JI=i

LO=0,2..1, adx=) x

i€l
Proof. By induction on [, we prove Lemma 1. For/ = 1, we have

e(m1+1)/11t -1 x+(m+1)a;
5 (x) = f s, (1) du
x

= ﬁ (Sn+1 (x + (m1 + 1) @) — sp41 (1))

1
- (n+1) ; (D) sppri (2 (my + D))

Assume that, for [ > 1, the following holds:

e+t _q elm+lmt _ 1
f X R X f Sn (x)

1

mZ( 1 s (6 (my + Vg, .., (1 + 1) agy)

Then the LHS of (2.11) is

(n+l— Z( 1)111

X Syl u(xl (m1 +Day, ..., (m—1 +1)aq)

(n+l Z‘( 1)[11

e(m1+1)a/t 1

my Ezzo,al,...

144

2.9)

(2.10)

,a; €

(2.11)

(2.12)

(2.13)

(2.14)
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x+(my+1)a;
X f Spri-1,i (Ul (m1 + V) ay, ..., (m—y + 1) a_1) du
X

-1
G S
i=0

X+ (my+1)a;
xL Z Spal-1 [u+2(mj+1)aj]du

Jel1,l-1] jel
=i
= '
:(n D Z (-1 Z Spit | x + Z (m]- + 1)11]- +(m+1a
120 JCIL-1] i€
=i
- Z Spal| X + Z(m] + 1)&1]-
Jel1) il
l
1
=m {spar (x + (my + ay + -+ + (my + 1) ay)
I
-1 ‘
+ Z (-1 Z Spal | x + Z (mj + 1)a]' +mm+1Da
i=1 JelLi-1] je]
Ji=i-1
-1 4
+ Z (-1 Z Spal | X + Z (mj + 1)11j + (=) s, (%)
i=1 Jc[1,1-1] j€l
J1=i
I
1 »
:—(n n l) Z (—1)l ! Z Sp+l | X + Z (m]- + 1)11]'
120 JCIL i€
=i

Z( D S0 (0l (1 + 1) an, ., (m + 1) ).

(n+l

O

Theorem 1. Let s, (x) be the Appell sequence for g (t), namely s, (x) ~ (g (t),t). Then, for any integers my, ..., m;
withmy,...,my >1,a1,...,a; # 0, we have

my m

Z-~-an(x+a1i1+---+alil) (2.15)

!
=(n+l)l DT B @ @) (ol 1+ D, (4 1)
i=0

Here B(ay,...,a1), (x) = B, (x|a, ..., a;) is the Barnes” multiple Bernoulli polynomial whose generating function is

given by
=ZB vl a)

] 1 (e“/
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(B(a1,...,a1)s), (x)is the B(ay, ..., a1), (x) and s, (x) mixed-type polynomial and

(Bay, ..., a1)8)yqpi (xlxa, ..., x1)
= Z (B(alr . ral)s)n+l<x+x])’ (OSZSZ)

]c[ll
J1=i

Proof. The result follows by computing the following in two different ways:

(m1+1)u1t _ (m1+1)a1t _
e 1 e 1
(W) X(W)Sn (X) (216)
On one hand, (2.16) is
(my+Dagt _ (my+1)ast _ 1711
e 1 e 1 .
(—e“lf—l )><...><(—eazt_1 );sn (x +a1ip) (2.17)
=
3 m,+1)n,t e(m3+1)u3t -1 e(m2+1)112t -1 ]
Z e el ECRRRRl s T (x + mip)
11 =0
elm+Dart _ ema+Dast _ 1\ [ & ) .
—Z( - )><-~-><(—ea$t_1 )(an(x+a111+azzz)
1= =0 12=0
LSS} e(m1+1)a;t -1 e(m3+1)u3t -1
_ZZ( o )x"'x(—eﬂsf—l )sn(x+a111+a212).
=0 12_0

Continuing in this fashion, we get the expression on the LHS of (2.15).
On the other hand, (2.16) is

(my+1)agt _ 1 (my+1)ast _ 1 i’l
(E—) S one X (e ) s (%) (2.18)
t t Hj:l (ell]t - 1)
(m+Dat _ (my+1)art _
e 1 e 1
:(f) X oo X (f)(B (ay,...,a)s), (x).

Now, the expression on the RHS of (2.15) can be derived from the Lemma 1. [
Corollary 1. Let my,my, ..., m; € Z withmy, my, ..., m; > 1and ] € IN. Then we have

(a)

111 KL
Z"'an(ﬂlil + ot a)
i1=0 i1=0

I
=(n+l)l Z (D7 B @, ..., 0)8)u; (m1+1)ay, ..., (m + )y,
i=0

where

(B(ay, ..., a1)8)4; (x1,...,%1)

=Y, By m)aly), ©0<i<h.
Jen
JI=i



D. S. Kim, T. Kim / Filomat 31:1 (2017), 141-157

(b)

Z Sy (x +ip+ - +1p)

il =0 11=0

1

1 I-i (p()

(n+1) Z;‘ =D (B S),,Hli (xlmy +1,...,m+1),
i=

where BY (x) are the Bernoulli polynomials of order | given by the generating function

Y N )
(ef—l)e _ZB" (x)ﬁ‘

n=0
(c)
Z...an(il ++11)
i1:0 i/:O
1
= (n _1|_ l)l ZO (_1)l_i (B(l)s)n+l,i (Iﬂ1 +1,...,m+ 1) .
(d)
Z Sp(x+ip+---+1)
i1 =0
= 1 l 1-i ! 0 )
U ;(—1) 1. (B S)n+z (x+m+1)i).
(e)

147

Lemma 2. Let s, (x) be the Appell sequence for g (t), namely s, (x) ~ (g(t),t). Then, for any my,...,m; € Zsy,

am,a,...,a € C,andl € N, we have

((_1)m1 plm+Dat | 1) . ((_1)m1 plm+hart | 1) 5y ()
/
=) 50i Gl Om + Dy, ., 1+ 1)a).
i=0

Here, for I € N,

500 (¢l (m1 + 1) ar, . (m+ Da) = Y (=1)"s, (x+ ((m + 1)a)y),

Je[Ln
=i

(2.19)

(2.20)
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and

my = ij, (m+1)a), = Z(m] + l)aj.

jel jel

Proof. We prove Lemma 2 by induction on /.
Forl =1, we have

(D)™ elm Dt 4 1)s,, () = (<1)" s (2 + (m1 + 1) 1) + 5, (4)
1

= Zg"’i (x| (my + 1) ar).

i=0
Assume that, for [ > 1, the following holds:
((_1)mH elma+Daat 1) L ((_1)m1 plm+mt 1)Sn (x)

-1
= Z 8ni (x| (m1 + V) ay, ..., (Mg +1)aiq).

i=

(=}

Then the LHS of (2.19) is

-1
((—1)m’ elmrat . 1)§n,i (x| (m + Dy, ..., (1 + 1) a)

=Y (et Dat g 1) N (1) s, (x + ((m + D))
i=0 ]c‘[ﬁ,:ljl]

Y 0" s, (x+ (O + D))

Jc[1,1-1]
=i
=(=1)"04s, (x + ((m + D a)yy )
-1
)Y s (x (G + D a)y + (o + D)
i=1 Jc[1,]-1]
[JI=i-1
-1
)Y s (x4 (m+ D)) + 50 ()
i=1 Jc[1,1-1]
[JI=i

= (=1)" s, (x + (Om + 1) @)y, )

-1
+ Z Z (=1)"'s, (x + ((m + 1)a),) +5, (%)

i=1 Jc[1,]]
[JI=i

148

(2.21)

(2.22)
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1

Z Z (=1)" sy (x + ((m + 1) a),)

i=0 ]cl

Spi (x| (M + Day, ..., (m +1)ay).

O

Theorem 2. Let s, (x) be the Appell sequence for g (t), namely s, (x) ~ (g (t),t). Then, for any integers my, ..., m;
withmy, mo,...,my>1,a4,...,a4; # 0, we have

Uil " . .
Z e Z (1) sy (x + agiy + -+ + ariy) (2.23)
i1=0 i[=0

!
=2 Z (E (a1, .. .,a,)s)m, (x|(my +Day,...,m+1a),

where E(ay,...,a1), (x) = E, (xlay, ..., &) is the Barnes’” multiple Euler polynomial whose generating function is

given by

l o0
H( ut+1) Xt:Z‘En(le,...,az);—:, (see [12]),
n=0 :

=1

(E(a1,...,a1)8), (x)is the E (a1, ..., a1), (x) and s, (x) mixed-type polynomial and

(E(ay, ..., a1)8),; (x| (my + 1) ay, ..., (m +1)ay)
= Z (=1 (E (ay, . ..,al)s)n(x+((m+1)a)]).

Jc[1,1]

[JI=i

Proof. Now, we compute the following in two different ways:

(_1)7111 e(m,+1)a,t +1 (_1)"11 e(m1+1)a1t +1
( T X+ X T Sy (x). (2.24)
n one hang, (<. 1S
O hand, (2.24) i
(_1)"11 e(m1+1)a1t +1 (_1)"12 e(m2+1)a2t +1
( et +1 XX ent +1 @29)
L
X Y (=15, (x + arin)
i1=0
11 my (my+1)at _1\M3 ,(m3+1)ast
—Z(l)ll (=1)™e +1 o x (-=1)™e +1
et +1 est +1
—1)™ e(m2+1)u2t +1 )
X (( ) T Sn (X + ayiq)
LG . 1y ,(my+1)at _1\M3 ,(m3+1)ast
=Z(—1)h (-D™e +1 NI (-1)™é +1
ent +1 ent +1

il =0
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112
X Z (—1)12 Sn (X +aqi; + Clziz) .
=0

Continuing in this manner, we obtain the expression on the LHS of (2.23).
On the other hand, (2.24) is

I
2
-1 (m+1)at (my+1)ast
27 ()" D 1) (1) e +1)H(m)5" )

=27 (=)™ et 4 1) (1) D 4 1) (E @y, - 01)9), ().
Now, the expression on the RHS of (2.23) follows from Lemma 2. [J
Corollary 2. Formy,...,m € Z withmy,my,...,m >1,1€ Nanday,az,...,a; # 0, we have

(a)

m m
Z o Z (=) sy (ariy + -+ agdy)
h=0 020

!
=2 Z (E (@1,...,m) S)n/i ((m+Damq,...,m+Day),
i=0
where
(E (ar,...,a) S)n,z' ((my + V) ay, ..., (m+1)ay)

=Y (D" (E@,...,a)s), ((m+1)a)), ©=<i<).

Jelii
JI=i
(b)
my m . ‘
Y Y D (e e )
i1=0 f1=0

!
=2 Z (E(l)s)n,i (xmy +1,...,m+1),
i=0

where EY (x) are the Euler polynomials of order | given by the generating funciton

2 N a N0
(ef+1)e _ZSE” 0 o
n=|

©
m m; ‘ ]
IR I GRS h
i1 =0 i1=0

!
=2 Z (E(l)s)m, (m+1,...,m+1).
i=0
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(d)

m

Y DT s iy )
1
:2421(9(—DM%EQQHU%FM1+1ﬁ)
i=0

(e)

Z (=) sy (i + -+ )

11—0
l

z’}l() (=1 (EVs) ((m+1)i).

3. Examples on Theorem 1

1. From Corollary 1 (e) with s, (x) = x" ~ (1,t) and | = 1, we can derive the classical power sum identity as
follows:

m
) it =
i=0

However, it is instructive to repeat our proof for this simplest possible case:

n+1 (TH + 1) - Bn+1) .

Zm (Buy1 (m +1) = Byy1) .

More generally, from Corollary 1 (c), we have

m m
Z(Zl +"'+i1)n
i1=0 =0
+

my+--+m

= pi(ma, ..., my)i"

Il
o

l
lzB(l

n+l,i

(Wll+1 ml+1),
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where

Pi (ml/"'/m])
=#{(i1,..., 1) € Z|0<ij <my A< <), iy +-+ip =]

=the coefficient of ' in the expansion of
1-— tm1+1 1-— tm1+1
— XX .
(e (55

2. Apply Theorem 1 to s, (x) = B, (x|b1,...,bx) = B(b1, ..., bx), (x). Then we have

My mp
Z--~ZB,,(x+a1i1 + o agilby, ..., by
i1=0 i[=0

1

!
=m 2 -1)""B(@,...,a,by,... b (X (my + D) ag, ..., (my + 1) ap)

Z( 7Y B, by, b (x+ (O + 1))

(n+l)l =

[JI=i
I-i

n+l)lz( 1) Z Busi (x + (Om + Da)ylar, ..., a,by, ..., be),
Jeln
IJ1=i

where
(m+1)a), = Z (mj + 1)aj

Jel

3. Applying Theorem 1 to the poly-Bernoulli polynomial of index k

Sp (X) = ]quk) (x) ~ (1_—64_, t)/

Liy (1 —e7t)
we obtain
my m
Z---Z]B,(f)(x+a1i1 +"'+Hlil)
i1=0 i1=0

!
=G Jlr B Z‘O‘ )" (B(@ay,...,a) BY) ., @m +Day,..., (m+1)a)

)
:(n+l)l Z (—1)1—1‘ Z S::lfl) (x +(m+1) a)] lai, ... ,llz).
i=0

Je[ny
JI=i

Here S (xlay, ..., a)) are the Barnes’ multiple Bernoulli and poly-Bernoulli mixed-type polynomials
studied in [4] whose generating function is given by

o e -E o

Hj:l (e""=1)
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In the special case of a1 =a, =---=a;=1,and m; = --- = m; = m, we get

m

Z BY (x +iy + - +1))

n+z)12( l() 09 (x + (m + 1)),

where 5™ (x) is the higher-order Bernoulli and poly-Bernoulli mixed-type polynomials studied in [7]
whose generating function is given by

t \Li(1-e) ot a8 (
(ef—l) 1-et ZS

Forl =1 and x = 0, we have

3B ) = (00 0n e 1) - S0,

n [9], it is known that

n n—1 n—j-l 4
BY (v) = (”) Ls (n—1j)t
2\ ]Z: Geor o

where S (1, 1) is the Stirling number of the second kind. Thus, we get

n n=l 1)n I- ]
Z( ) Z (]+1)| 5a( l]) (Bl+1 (m+1) = Biy1)

— (LK) (1k)
Vl +1 {Sn+1 (m + 1) Sn+1}

. We now apply Theorem 1 to the generalized Barnes’ multiple Frobenius-Euler polynomial

Su (X) = Hy (xIb; A; 1)
= H?’l (xlbll"’le;All' "/ASI.,LIl/' . -/Hs)

S . i
E=aRl
Ll 1=

Then, we obtain

Z"'ZH"(JC"‘alil+"'+{11i1|b;)\;‘u)

i1=0 i,—o

(”+l)1 Z( )" (BH (4365 ; 1)), 47, (x1 (my + Dy, ..., (g + 1) )
an( 1) Y BHy (x + (o + D) las b A; )

]c[ll
J1=i
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where

BH (a;b; A; ), (x)
=BH, (x|a; b; A; 1)
ZBHn (x|alr .. ‘ral;blr' . '/bS;All .. .,As;‘Ul,. . 'IHS)

are given by the generating function

1 1)

BH,, (x|a; b; A; y)

el =

1l
o

n

and are called the Barnes” multiple Bernoulli and generalized Barnes” multiple Frobenius-Euler mixed-
type polynomials. These are studied in [8].

5. We apply Theorem 1 to the Hermite polynomial s, (x) = H,(f) (x) ~ (e%, t) . Then we have

m m
Z-~-ZH,(4V)(x+a1i1+--~+a,i,)

11_

Tl n l)[ Z (- 1)l i BH(V) (m,.. al))n+l,i (x|(m1+Daq,...,m +1)a)

I-i (v)
(n T Z( 17 Y BHY (x+ (n+ D)oy, . a1).
Jc[1,1]
=i
Here BHY) (ay, ..., a), (x) = BH,(f) (xla1, ..., a;) are given by the generating function to be

Lot
H (e”ff -

=1

n

Vi . t
et St
n=0 .

and are called the Barnes” multiple Bernoulli and Hermite mixed-type polynomials. These mixed-type
polynomials are studied in [10].

As a very special case, we have

m

1
Wy = = ™) v
;zo H,’ (i) = 7 (BH L m+1) - Hn+1)

where BHY () are the polynomials given by

t 2 — "
—— T = Z BHY (x) o
n=0

et -1
An explicit expression for the Hermite polynomials is given in [16] by

2]
Hw =Y (-2 ])!21 -

=0

Nl
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Thus, we see that

I
2j 1
Z( ) ]']n—2j+1 (BHI‘“ (m+1)—Bn72]-+1)

]

=0
1 )
= BH
n+1(

n+1

@
(m+1)—BH") ).

4. Examples on Theorem 2

1. From Corollary 2 (e) with s, (x) = x* ~ (1,t) and I = 1, we have the classical alternating power sum
identitiy:

Y 1= % (-1)" E, (m +1) + Ey).
i=0

But it is instructive to go over our proof in this simplest possible case.

Zm: (_1)1' in
i=0

(=1)"elm+Dt 41|
B S
G |
a 2 et+1
1 me(m+1)t +1

(el )

1

5(( D"E,(m+1)+E,).

More generally, from Corollary 2 (c), we can derive

my
Z 2(1)n+ RICET Rk

my+--+my

Z pi (ml, e, my) (_1)1' i
i=0

1
=2 Z EO (my+1,...,m +1)

=2- ZZ( )" ED ((m +1),).

i=0 Jc[1,]]
=i

2. Applying Theorem 2 to the poly-Bernoulli polynomial of index k

-t
sn (X) = ]quk) (x) ~ (ﬁl t),
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we have
m m
Z o Z (=)' HBY (¢ + ayiy + -+ + ayiy)
=0 =0
1
=27 (E ]B(k)) i(xl (my+1aq,...,(m+1)a)

!

=27 Z Z (_1)m1 T,(f'k) (.’X + ((m + 1)5[)] las, ... ,al) ,

i=0 Jc[L1]
=i
where Tg’k) (xlai,...,a) = Tff’k) (xlaq,...,a;,-1,...,-1) are the special A; = --- = A; = —1 case of the Barnes’

multiple Frobenius-Euler and poly-Bernoulli mixed-type polynomials T (@, ... a5 A4, ..., Ay) studied
in [11] whose generating function is given by

(el—/\ )L1k(1—e o

at 7)) 1-et

e -

1k t"
T )(X|611,---,ﬂ1;/\1,---,/\1)E-

n=0
In the special case of 1y = --- =my=mand a; =--- =a; = 1, we have
m
Y OB (i i)
i1,y =0

Z )i (I)T(lk (x+ (m+1)9),

where T(l’k) (x) = T(l’k) (x| — 1) are the special A = —1 case of the higher-order Frobenius-Euler and poly-
Bernoulli mixed-type polynomials T® (x|A) studied in [6] whose generating function is defined by

(1—/\) Lix(1—-e™) ot ZT(lk)( |/\)

et —et

For/=1and x = 0, we get

m

Y 1 BE G = 2 ()" T 1)+ T8O

i=0

Again, using

n— l
BYY (x) = Z() Z( DU sz(n Lj) o

we obtain
5 [ 0 )
5211 5 (V)" E(m+1) +E
IZ(Z) JZ‘ Gery b D D R GmE+E)

1
=5 {(—1)’" T (m + 1) + Tff’k)} :
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3. Wenow apply Theorem 2 to the Barnes’ multiple Euler polynomials, (x) = E, (x|by, ..., bx) = E(by, ..., by), (x).
Then, we obtain

mq m
Z o Z (=) E, (x + ayiy + -+ agiglby, . .., by)
=0 =0

1
=27 Y Eay,... a, b, b (2 (m + Dan, ., G+ 1) a)
i=0

1
=27Y" Y (0B (x+ (n+ Da)ylar, .. by, by).
i=0 Jc[1,1]
JI=i
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