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Carathéodory’s Approximate Solution to Stochastic
Differential Delay Equation

Young-Ho Kima

aDepartment of Mathematics, Changwon National University, Changwon 641–773, Republic of Korea

Abstract. The main aim of this paper is to discuss Carathéodory’s and Euler-Maruyama’s approximate
solutions to stochastic differential delay equation. To make the theory more understandable, we impose
the non-uniform Lipschitz condition and non-linear growth condition.

1. Introduction

In 2007, Mao [7] considered the following an estimate on difference between the Carathéodory’s ap-
proximate solution xn(t) and the unique solution x(t) to the stochastic differential delay equation:

Theorem 1.1. Let uniform Lipschitz condition and linear growth condition hold. That is there exists a constant K
such that for all t ∈ [t0,T], and all x, y, x, y ∈ Rd

|F(x, y, t) − F(x, y, t)|2 ∨ |G(x, y, t) − G(x, y, t)|2 ≤ K(|x − x|2 + |y − y|2);

and there is moreover a K > 0 such that for all (x, y, t) ∈ Rd
× Rd

× [t0,T],

|F(x, y, t)|2 ∨ |G(x, y, t)|2 ≤ K(1 + |x|2 + |y|2).

Then

E
(

sup
t0≤t≤T

|x(t) − xn(t)|2
)
≤ 4c3 exp(5c3(T − t0))

×

(6c1 + Tc2

n
+ 2c1µ{t ∈ [t0, t0 + τ] : 0 < δ(t) < 1/n}

)
where c1 = (1/2 + 4E‖ξ‖2) exp(6K(T − t0 + 4)(T − t0)), c2 = 4K(1 + 2c1), and c3 = 4K(T − t0 + 4) and µ stands for
Lebesgue measure on R.
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For results related to the stochastic differential delay equation, see [2]-[4], [6]-[10], [12], [13], and refer-
ences therein for details.

In the recent paper [9], by employing non-Lipschitz condition and non-linear growth condition, Ren
and Xia established the following results for d-dimensional stochastic functional differential equation.

Theorem 1.2. Assume that there exists a constant K and a concave function κ such that
(i) (non-Lipschitz condition) For any ϕ,ψ ∈ BC((−∞, 0]; Rd) and t ∈ [t0,T], it follows that

| f (ϕ, t) − f (ψ, t)|2 ∨ |1(ϕ, t) − 1(ψ, t)|2 ≤ κ(‖ϕ − ψ‖2),

where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) = 0, κ(u) > 0 for u > 0 and∫
0+

du/κ(u) = ∞.

(ii) (non-linear growth condition) f (0, t), 1(0, t) ∈ L2 and for all t ∈ [t0,T], it follows that s

| f (0, t)|2 ∨ |1(0, t)|2 ≤ K,

where K > 0 is a constant. Then, there exist a unique solution to the equation

dx(t) = f (xt, t)dt + 1(xt, t)dB(t) on t0 ≤ t ≤ T,

with initial data.

For various related results, see [1], [5], [7], [11], and references therein for details.

Motivated by above results, we establish in this paper more estimate on difference between the approx-
imate solutions and the unique solution to stochastic differential delay equation that can be obtained from
non-uniform Lipschitz condition and non-linear growth condition. When we try to carry over this proce-
dure to the this delay equation, we used Carathéodory and Euler-Maruyama approximation procedure.

2. Preliminary

Let (Ω,F ,P), throughout this paper unless otherwise specified, be a complete probability space with a
filtration {Ft}t≥t0 satisfying the usual conditions (i.e. it is right continuous and Ft0 contains all P-null sets).
Let | · | denote Euclidean norm in Rn. If A is a vector or a matrix, its transpose is denoted by AT; if A is a
matrix, its trace norm is represented by |A| =

√
trace(ATA).Assume that B(t) is an m-dimensional Brownian

motion defined on complete probability space, that is B(t) = (B1(t),B2(t), ...,Bm(t))T.

Let BC((−∞, 0]; Rd) denote the family of bounded continuous Rd-valued functions ϕ defined on (−∞, 0]
with norm ‖ϕ‖ = sup

−∞<θ≤0 |ϕ|. LetM2((−∞, 0]; Rd) denote the family of Ft0 -measurable, Rd-valued process

ϕ(t) = ϕ(t, ω), t ∈ (−∞, 0] such that E
∫ 0

∞
|ϕ(t)|2dt < ∞.

In [9], considered following d-dimensional stochastic functional differential equations

dx(t) = f (xt, t)dt + 1(xt, t)dB(t) on t0 ≤ t ≤ T, (1)

where xt = {x(t + θ) : −∞ < θ ≤ 0} can be regarded as a BC((−∞, 0]; Rd)-value stochastic process, where
f : BC((−∞, 0]; Rd) × [t0,T] → Rd and 1 : BC((−∞, 0]; Rd) × [t0,T] → Rd×m be Borel measurable. Moreover,
the initial value is followed:

xt0 = ξ = {ξ(θ) : −∞ ≤ θ ≤ 0} is anFt0 −measurable
BC([−∞, 0]; Rd) − value random variable such that ξ ∈ M2((−∞, 0]; Rd). (2)



Y.-H. Kim / Filomat 30:7 (2016), 2019–2028 2021

A special but important class of stochastic functional differential equations is the stochastic differential
delay equations. Let us begin with the discussion of the following stochastic differential delay equation

dx(t) = F(x(t), x(t − δ(t)), t)dt + G(x(t), x(t − δ(t)), t)dB(t) (3)

on t ∈ [t0,T] with initial data (2), where δ : [t0,T]→ [0,∞), F : Rd
×Rd
×[t0,T]→ Rd and G : Rd

×Rd
×[t0,T]→

Rd×m be Borel measurable.

If we define

f (ϕ, t) = F(ϕ(0), ϕ(−δ(t)), t) and 1(ϕ, t) = G(ϕ(0), ϕ(−δ(t)), t)

for (ϕ, t) ∈ BC((−∞, 0]; Rd) × [t0,T], then equation (3) can be written as equation (1) so one can apply the
existence-and-uniqueness theorem established in the previous section to the delay equation (3).

On the other hand, we impose the non-uniform Lipschitz condition and weakened linear growth
condition. That is such that for all t ∈ [t0,T], and all x, y, x, y ∈ Rd

|F(x, y, t) − F(x, y, t)|2 ∨ |G(x, y, t) − G(x, y, t)|2 ≤ κ(|x − x|2 + |y − y|2); (4)

where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) = 0, κ(u) > 0 for u > 0 and∫
0+

du/κ(u) = ∞, and there is a K > 0 such that for all (x, y, t) ∈ Rd
× Rd

× [t0,T],

|F(0, 0, t)|2 ∨ |G(0, 0, t)|2 ≤ K. (5)

Let us now prepare a few lemmas in order to show the main result.

Lemma 2.1. (Doob’s martingale inequality) [7] Let {X(t)}t≥0 be an Rd-valued martingale and let [a, b] be a bounded
interval on R+. If p > 1 and X(t) ∈ Lp(Ω,Rd), then

E
(
sup
a≤t≤b
|X(t)|p

)
≤

(
p

p − 1

)p

E(|X(b)|p).

In particular, E(supa≤t≤b |X(t)|2) ≤ 4E(|X(b)|2) when p = 2.

Lemma 2.2. (Moment inequality) [7] If p ≥ 2, 1 ∈ M2([0,T]; Rd×m) such that E
∫ T

0 |1(s)|p ds < ∞, then

E
∣∣∣∣∣∫ T

0
1(s) dB(s)

∣∣∣∣∣p ≤ (p(p − 1)
2

) p
2

T
p−2

2 E
∫ T

0
|1(s)|p ds.

In particular, E|
∫ T

0 1(s) dB(s)|2 ≤ E
∫ T

0 |1(s)|2 ds when p = 2.

3. Approximate Solutions

Let us first discuss the Carathéodory approximation procedure. Consider the stochastic differential
delay equation (3) with initial data (2). It is in this spirit we define the Carathéodory approximation as
follows: For each integer n ≥ 1, define xn(t) on (−∞,T] by

xn(t0 + θ) = ξ(θ) for −∞ < θ ≤ 0
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and

xn(t) = ξ(0) +

∫ t

t0

IDc
n F(xn(s − 1/n), xn(s − δ(s)), s)ds (6)

+

∫ t

t0

IDn F(xn(s − 1/n), xn(s − δ(s) − 1/n), s)ds

+

∫ t

t0

IDc
n G(xn(s − 1/n), xn(s − δ(s)), s)dB(s)

+

∫ t

t0

IDn G(xn(s − 1/n), xn(s − δ(s) − 1/n), s)dB(s)

for t0 ≤ t ≤ T, where

Dn = {t ∈ [t0,T] : δ(t) < 1/n} for Dc
n = [t0,T] −Dn.

Since our goal is to study exponential estimates on difference between the approximate solutions and the
uniqueness solutons, we assume that there exists a unique solution x(t) to equation (3) under non Lipschitz
condition and non-linear growth condition. We also assume that all the Lebesgue and Itô integrals employed
further are well defined.

We start with following an exponential estimate.

Lemma 3.1. Let (4) and (5) hold. Then, for all n ≥ 1, we have

E
(

sup
−∞<s≤t

|xn(s)|2
)
≤

(1
2

+ 6E‖ξ‖2 + KC1(T − t0)
)

e2aC1(t−t0) (7)

for all t ≥ t0, where C1 = 10(T − t0 + 4).

Proof. By Hölder’s inequality, Doob’s martingale inequality and Lemma 2.2, we can derive from (6) that for t0 ≤ t ≤ T,

E
(

sup
t0≤s≤t

|xn(s)|2
)

≤ 5E|ξ(0)|2 + 5(T − t0)E
∫ t

t0

IDc
n (s)|F(xn(s − 1/n), xn(s − δ(s)), s)|2ds

+5(T − t0)E
∫ t

t0

IDn (s)|F(xn(s − 1/n), xn(s − δ(s) − 1/n), s)|2ds

+5 · 4E
∫ t

t0

IDc
n (s)|G(xn(s − 1/n), xn(s − δ(s)), s)|2ds

+5 · 4E
∫ t

t0

IDn (s)|G(xn(s − 1/n), xn(s − δ(s) − 1/n), s)|2ds.

By the condition (4) and (5), we obtain

E
(

sup
t0≤s≤t

|xn(s)|2
)

≤ 5E|ξ(0)|2 + C1

∫ t

t0

IDc
n (s)[κ(|xn(s − 1/n)|2 + |xn(s − δ(s))|2) + K]ds

+C1

∫ t

t0

IDn (s)[κ(|xn(s − 1/n)|2 + |xn(s − δ(s) − 1/n)|2) + K]ds,
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where C1 = 10(T − t0 + 4). Given that κ(·) is concave and κ(0) = 0, we can find a positive constants a such that
κ(u) ≤ a(1 + u) for all u ≥ 0. Therefore

E
(

sup
t0≤s≤t

|xn(s)|2
)

≤ 5E‖ξ‖2 + KC1(T − t0) + aC1

∫ t

t0

(
1 + 2E

(
sup
−∞<r≤s

|xn(r)|2
))

ds.

Note that

1
2

+ E
(

sup
−∞<s≤t

|xn(s)|2
)

≤
1
2

+ 6E‖ξ‖2 + KC1(T − t0) + 2aC1

∫ t

t0

(
1
2

+ E
(

sup
−∞<r≤s

|xn(r)|2
))

ds.

An application of the Gronwall inequality implies that

1
2

+ E
(

sup
−∞<s≤t

|xn(s)|2
)
≤

(1
2

+ 6E‖ξ‖2 + KC1(T − t0)
)

e2aC1(t−t0),

and the desired inequality follows immediately. The proof is complete.

In other words, the estimate for E|xn(t)|2 can be done via the estimate for the second moment. For
instance, we have the following lemma.

Lemma 3.2. Let (4) and (5) hold. Then, we have

E
(

sup
−∞<s≤t

|x(s)|2
)

(8)

≤ C2 :=
(1

2
+ 4E‖ξ‖2 + 6K(T − t0 + 4)(T − t0)

)
e12a(T−t0+4)(t−t0)

for all t ≥ t0. Moreover, for any t0 ≤ s < t ≤ T with t − s < 1,

E|x(t) − x(s)|2 ≤ C3(t − s), (9)

where C3 = 8(K + a(1 + 2C2)).

Proof. The proof of (8) is similar to that of Lemma 3.1. By Hölder’s inequality, Doob’s martingale inequality and
Lemma 2.2, we can derive that

E
(

sup
t0≤s≤t

|x(s)|2
)

≤ 3E|ξ(0)|2 + 6(T − t0 + 4)
∫ t

t0

[κ(|x(s)|2 + |x(s − δ(s))|2) + K]ds.

By the definition of κ(·), we can find a positive constants a such that κ(u) ≤ a(1 + u) for all u ≥ 0. Therefore

E
(

sup
t0≤s≤t

|x(s)|2
)

≤ C4 + 6a(T − t0 + 4)
∫ t

t0

(
1 + 2E

(
sup
−∞<r≤s

|x(r)|2
))

ds,
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where C4 = 3E‖ξ‖2 + 6K(T − t0 + 4)(T − t0). Note that

1
2

+ E
(

sup
−∞<s≤t

|x(s)|2
)

≤
1
2

+ E‖ξ‖2 + C4 + 12a(T − t0 + 4)
∫ t

t0

(
1
2

+ E
(

sup
−∞<r≤s

|x(r)|2
))

ds.

An application of the Gronwall inequality implies that

1
2

+ E
(

sup
−∞<s≤t

|x(s)|2
)

≤

(1
2

+ 4E‖ξ‖2 + 6K(T − t0 + 4)(T − t0)
)

e12a(T−t0+4)(t−t0),

and the desired inequality follows immediately. We need to show (9) but this is straightforward:

E|x(t) − x(s)|2

≤ 4K(t − s + 1)(t − s) + 4a(t − s + 1)E
∫ t

s
[1 + 2C2]ds

≤ 8[K + a(1 + 2C2)](t − s).

The proof is complete.

We can now prove one of the main results in this paper.

Theorem 3.3. Let (4) and (5) hold. Then, we have

E
(

sup
t0≤t≤T

|x(t) − xn(t)|2
)
≤

(
aC5(T − t0) + Ĵ1 + Ĵ2

)
e5aC5(T−t0) (10)

where

Ĵ1 = 2aC5[4C2 + TC3]
1
n
,

Ĵ2 = 4aC5

(
[2C2 + TC3]

1
n

+ 2C2µ{t ∈ [t0, t0 + 1 + 1/n] : 0 < δ(t) < 1/n}
)
,

C2,C3 are defined in Lemma 3.2, C5 = 4(T − t0 + 4) an µ stands for the Lebesque measure on R.

Proof. By Hölder’s inequality, Doob’s martingale inequality and Lemma 2.2, we can derive that

E
(

sup
t0≤s≤t

|x(s) − xn(s)|2
)

≤ 4(T − t0)E
∫ t

t0

IDc
n (s)|Fx(s) − Fxn (s)|2ds

+4(T − t0)E
∫ t

t0

IDn (s)|Fx(s) − F̂xn (s)|2ds

+4 · 4E
∫ t

t0

IDc
n (s)|Gx(s) − Gxn (s)|2ds

+4 · 4E
∫ t

t0

IDn (s)|Gx(s) − Ĝxn (s)|2ds,
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where Fx(s) = F(x(s), x(s−δ(s)), s),Fxn (s) = F(xn(s−1/n), xn(s−δ(s)), s), F̂xn (s) = F(xn(s−1/n), xn(s−δ(s)−1/n), s),
Gx(s) = G(x(s), x(s−δ(s)), s),Gxn (s) = G(xn(s−1/n), xn(s−δ(s)), s), and Ĝxn (s) = G(xn(s−1/n), xn(s−δ(s)−1/n), s).
By the condition (4), (5) and the definition of κ(·), we obtain

E
(

sup
t0≤s≤t

|x(s) − xn(s)|2
)

≤ aC5(T − t0) + 5aC5

∫ t

t0

E
(

sup
t0≤r≤s

|x(r) − xn(r)|2
)
ds + J1 + J2,

where

J1 = 2aC5

∫ T

t0

E|x(s) − x(s − 1/n)|2ds

and

J2 = 2aC5

∫ T

t0

IDn (s)E|x(s − δ(s)) − xn(s − δ(s) − 1/n)|2ds.

An application of the Gronwall inequality implies that

E
(

sup
t0≤s≤t

|x(s) − xn(s)|2
)
≤ (aC5(T − t0) + J1 + J2) e5aC5(T−t0). (11)

But, using Lemma 3.2, we can estimate

J1 ≤ 8aC2C5
1
n

+ 2aC3C5T
1
n

= 2aC5[4C2 + TC3]
1
n
. (12)

Also, setting D0 = {t ∈ [t0,T] : δ(t) = 0},

J2 ≤ 4aC5

(
[2C2 + TC3]

1
n

+ 2C2µ{[t0, t0 + 1 + 1/n] ∩ (Dn −D0)}
)
. (13)

Substituting (12) and (13) into (11) yields the required result (10). The proof is complete.

Let us now turn to the Euler-Maruyama approximation procedure. We first give the definition of the
Euler-Maruyama approximation sequence. For each integer n ≥ 1, define xn(t) on (−∞,T] by

xn(t0 + θ) = ξ(θ) for −∞ < θ ≤ 0

and

xn(t) = xn(t0 + k/n) (14)

+

∫ t

t0+k/n
F(xn(t0 + k/n), xn(t0 + k/n − δ(s)), s)ds

+

∫ t

t0+k/n
G(xn(t0 + k/n), xn(t0 + k/n − δ(s)), s)dB(s)

for t0 +k/n < t ≤ [t0 + (k+1)/n]∧T, k = 0, 1, 2, · · · .Moreover, if we define x̂n(t0) = xn(t0), x̃n(t0) = xn(t0−δ(t0)),

x̂n(t) = xn(t0 + k/n), and x̃n(t) = xn(t0 + k/n − δ(t))

for t0 + k/n < t ≤ [t0 + (k + 1)/n] ∧ T, k = 0, 1, 2, · · · , it then follows from (14) that

xn(t) = ξ(0) +

∫ t

t0

F(̂xn(s), x̃n(s), s)ds +

∫ t

t0

G(̂xn(s), x̃n(s), s)dB(s) (15)

In the sequel of this section xn(t) always means the Euler-Maruyama approximation rather than the
Carathéodory one. The following lemma shows that the Euler-Maruyama approximation sequence is
bounded in L2.
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Lemma 3.4. Let (4) and (5) hold. Then, for all n ≥ 1, we have

E
(

sup
−∞<s≤t

|xn(s)|2
)
≤

(1
2

+ 4E‖ξ‖2 + KC6(T − t0)
)

e2aC6(T−t0) (16)

for all t ≥ t0, where C6 = 6(T − t0 + 4).

Proof. It is easy to see from (15) that for t0 ≤ t ≤ T,

E
(

sup
t0≤s≤t

|xn(s)|2
)

≤ 3E|ξ(0)|2 + C6E
∫ t

t0

[κ(|̂xn(s)|2 + |̃xn(s)|2) + K]ds,

where C6 = 6(T − t0 + 4). Recalling the definition of κ(·), x̂n(s), and x̃n(s), we then see that

E
(

sup
t0≤s≤t

|xn(s)|2
)

≤ 3E‖ξ‖2 + KC6(T − t0) + aC6

∫ t

t0

(
1 + 2E

(
sup
−∞<r≤s

|xn(r)|2
))

ds.

Consequently

1
2

+ E
(

sup
−∞<s≤t

|xn(s)|2
)

≤
1
2

+ 4E‖ξ‖2 + KC6(T − t0) + 2aC6

∫ t

t0

(
1
2

+ E
(

sup
−∞<r≤s

|xn(r)|2
))

ds.

An application of the Gronwall inequality implies that

1
2

+ E
(

sup
−∞<s≤t

|xn(s)|2
)
≤

(1
2

+ 4E‖ξ‖2 + KC6(T − t0)
)

e2aC6(t−t0),

and the desired inequality follows immediately. The proof is complete.

The following theorem shows that the Euler-Maruyama approximate solution converges to the unique
solution of equation (3) and gives and estimate for the difference between the approximate solution xn(t)
and the accurate solution x(t).

Theorem 3.5. Let (4) and (5) hold. Then, the difference between the Euler-Maruyama approximate solution xn(t)
and the accurate solution x(t) of equation (3) can be estimate as

E
(

sup
t0≤t≤T

|x(t) − xn(t)|2
)
≤

(1
2

aC5(T − t0) + Ĵ3 + Ĵ4

)
e2aC5(T−t0) (17)

where

Ĵ3 = aC3C5[T − t0]
1
n
, Ĵ4 = 4aC2C5[T − t0],

C2,C3, and C5 are defined in Lemma 3.2 and Theorem 3.3.
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Proof. By Hölder’s inequality, Doob’s martingale inequality and Lemma 2.2, we can derive that

E
(

sup
t0≤s≤t

|x(s) − xn(s)|2
)

≤ 2(T − t0)E
∫ t

t0

|F(x(s), x(s − δ(s), s) − F(̂xn(s), x̃n(s), s)|2ds

+2 · 4E
∫ t

t0

|G(x(s), x(s − δ(s)), s) − G(̂xn(s), x̃n(s), s)|2ds,

By the condition (4), (5), and κ(·), we then see that

E
(

sup
t0≤s≤t

|x(s) − xn(s)|2
)
≤ 2a(T − t0)(T − t0 + 4)

+2a(T − t0 + 4)
∫ t

t0

E|x(s) − x̂n(s)|2 + E|x(s − δ(s)) − x̃n(s)|2ds. (18)

Define x̂(t0) = x(t0), x̃(t0) = x(t0 − δ(t0)),

x̂(t) = x(t0 + k/n), and x̃(t) = x(t0 + k/n − δ(t))

for t0 + k/n < t ≤ [t0 + (k + 1)/n] ∧ T, k = 0, 1, 2, · · · , it then follows from (18) that

E
(

sup
t0≤s≤t

|x(s) − xn(s)|2
)

≤
1
2

aC5(T − t0) + 2aC5

∫ t

t0

E
(

sup
t0≤r≤s

|x(r) − xn(r)|2
)
ds + J3 + J4,

where

J3 = aC5

∫ T

t0

E|x(s) − x̂(s)|2ds

and

J4 = aC5

∫ T

t0

E|x(s − δ(s)) − x̃(s)|2ds.

An application of the Gronwall inequality implies that

E
(

sup
t0≤s≤t

|x(s) − xn(s)|2
)
≤ (aC5(T − t0)/2 + J3 + J4) e2aC5(T−t0). (19)

But, using Lemma 3.2, we can estimate

J2 = aC5

∑
k≥0

∫ [t0+(k+1)/n]∧T

t0+k/n
E|x(s) − x(t0 + k/n)|2ds (20)

≤ aC3C5
1
n

[T − t0].

Also,

J4 = aC5

∫ T

t0

E|x(s − δ(s)) − x(t0 + k/n − δ(s))|2ds (21)

≤ 4aC2C5[T − t0].

Substituting (20) and (21) into (19) yields the required result (17). The proof is complete.
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