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Approximation Properties of Szász Type Operators
Involving Charlier Polynomials
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Abstract. In this paper, we give some approximation properties of Szász type operators involving Charlier
polynomials in the polynomial weighted space and we give the quantitative Voronovskaya- type asymptotic
formula.

1. Introduction

Orthogonal polynomials are important area of mathematical analysis, mathematical and theoretical
physics. Applications to physics, it is interesting to study properties of these polynomials related to
properties of the suitable oscillator-like systems called oscillators ([13], [4]). Some of the most frequently
used polynomials are Hermite, Charlier and etc.

In mathematical analysis and also in the positive approximation processes, the notion of orthogonal
polynomials seldomly appears. Cheney and Sharma [5] established an operator

Pn( f ; x) = (1 − x)n+1 exp
( tx
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f
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)
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where t ≤ 0 and L(n)
k denotes the Laguerre polynomials. For the special case t = 0, the operators given by

(1) reduce to the well-known Meyer-König and Zeller operators [10].
In view of the relation between orthogonal polynomials and positive linear operators have been inves-

tigated by many researchers. One of them is Varma and Tasdelen ’s study. They found positive linear
operators which are the generalization of Szász operators [12]
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They consider positive linear operators including Charlier polynomials which is one of the discrete
orthogonal polynomials. Charlier polynomials [9] have the generating functions of the form
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and the explicit representation
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k∑
r=0

(
k
r

)
(−u)r
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)
r

where (α)k is the Pochhammer’s symbol given by

(α)0 = 1, (α)k = α(α + 1)...(α + k − 1) k = 1, 2, ...

We know that for a > 0 and u ≤ 0, Charlier polynomials are positive. These linear positive operators are
given by

Ln
(

f , x, a
)

= e−1
(
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where a > 1 and x ≥ 0. If we apply respectively a → ∞ and x − 1
n instead of x to the both sides of the

operators, we obtain Szász operators given by (2).
Now we consider the well-known Korovkin theorem which has an important role in approximation

theory has been established for a sequence of positive linear operators. We know that the Korovkin theorem
is valid on C [a, b] . The first example is Bernstein polynomials which uniformly converges to a function on
[0, 1]. This theorem has been extended in several directions.

We know that if we take a function on [0,∞) , then the uniform norm is not valid to evaluate the rate
of convergence for unbounded functions. For this reason, we use a weighted modulus of continuity for
unbounded functions. In [6] and [7] weighted Korovkin type theorems have been proved by Gadjiev et al.
Some weighted Korovkin type theorems can also be found in the space of weighted functions (see [2], [15]
etc.).

The paper is organized as follows. In section 2, we evaluate some moments of Ln
(

f
)
. In section 3, we

give some approximation properties of these operators in the polynomial weighted space and in Section 4,
we give the quantitative Voronovskaya- type asymptotic formula.

2. Auxiliary Results

We first present some results which will be used in the proofs of our theorems.

Lemma 2.1. Let Ln be defined by (3). Then we have

Ln(1; x, a) = 1, (4)

Ln(t; x, a) = x +
1
n
, (5)
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x
n
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)
+

2
n2 , (6)

Ln(t3; x, a) = x3 +
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n
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)
+

x
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)
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5
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Lemma 2.2. For the operator Ln given by (3), we have the following equalities.

Ln((t − x) ; x, a) =
1
n
,
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Ln((t − x)2 ; x, a) =
x
n

(
1 +

1
a − 1

)
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2
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3
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)
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x
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+
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3. Approximation Properties in a Weighted Space

In this section, by using Bohman-Korovkin type theorem proved in [8], we present the direct approxi-
mation property of the operator Ln given by (3).

Let us denote by B2 (R+) the weighted space of real-valued functions f defined onR+ with the property∣∣∣ f (x)
∣∣∣ ≤ M f

(
1 + x2

)
for all x ∈ R+, where M f is a constant depending on the function f . We consider the

weighted subspace C2 (R+) of B2 (R+) given by

C2 (R+) =
{
f ∈ B2 (R+) : f is continuous on R+}

and

C2
2 (R+) =

{
f ∈ C2 (R+) : f ′, f ′′ ∈ C2 (R+)

}
.

We also consider the space of functions

C∗2 (R+) =

{
f ∈ C2 (R+) : lim

x→∞

f (x)
1 + x2 = k ∈ R

}
equipped with the norm

∥∥∥ f
∥∥∥

2
= sup

x∈R+

∣∣∣ f (x)
∣∣∣

1 + x2 .

Theorem A. Let Tn be a sequence of linear positive operators mapping C2 (R+) into B2 (R+) and satisfying
the conditions

lim
n→∞

sup
x∈R+

|Tn (tv, x) − xv
|

1 + x2 = 0, for v = 0, 1, 2.

Then for any f ∈ C∗2 (R+), we have

lim
n→∞

sup
x∈R+

∣∣∣Tn
(

f , x
)
− f (x)

∣∣∣
1 + x2 = 0

and there exists a function f ∗ ∈ C2 (R) \ C∗2 (R) such that

lim
n→∞

sup
x∈R+

∣∣∣Tn
(

f ∗, x
)
− f ∗(x)

∣∣∣
1 + x2 ≥ 1.

For f ∈ C∗2 (R), we will consider the weighted modulus of continuity defined in [15] given by

Ω2
(

f , δ
)

= sup
x∈R+, |h|≤δ

∣∣∣ f (x + h) − f (x)
∣∣∣

(1 + x2) (1 + h2)
.

This function has the following properties:
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1. Ω2
(

f , δ
)
≤ 2

∥∥∥ f
∥∥∥

2
,

2. Ω2
(

f , mδ
)
≤ 2m

(
1 + δ2

)
Ω2

(
f , δ

)
, m ∈N,

3. limδ→0 Ω2
(

f , δ
)

= 0.

Note that, we can not find a rate of convergence in terms of usual first modulus of continuity ω1
(

f , δ
)

of a function f . Because on the infinite interval, the modulus of continuity ω1
(

f ; δ
)

does not tend to zero
as δ tends to zero. For this reason, we consider the weighted modulus of continuity Ω2

(
f , δ

)
.

Remark 3.1. Since any linear and positive operator is monotone, the relations (4) and (6) guarantee that Ln
(

f
)
∈

C2 (R+) for each f ∈ C2 (R+).

Lemma 3.2. There exists a positive constant M1(a) such that∥∥∥Ln(1 + x2; x, a)
∥∥∥

2
≤M1(a), n ∈ N. (9)

Moreover for every f ∈ C2 (R+), we have∥∥∥Ln( f )
∥∥∥

2
≤M1(a)

∥∥∥ f
∥∥∥

2
, n ∈ N. (10)

Thus Ln is a linear positive operator from C2 (R) into C2 (R).

Proof. First we shall prove the inequality (9).

1
1 + x2 Ln(1 + x2; x, a)

=
1

1 + x2

(
1 + x2 +

x
n

(
3 +

1
a − 1

+
2
n2

))
=

1
1 + x2 +

1
1 + x2

(
x2 +

x
n

(
3 +

1
a − 1

+
2
n2

))
≤M1(a), (11)

M1(a) is a positive constant depending on a. On the other hand we have∥∥∥Ln( f )
∥∥∥

2
≤

∥∥∥Ln(1 + x2)
∥∥∥

2

∥∥∥ f
∥∥∥

2

for every f ∈ C2 (R+). By applying (11), we have∥∥∥Ln( f )
∥∥∥

2
≤M1(a)

∥∥∥ f
∥∥∥

2
, n ∈ N.

Thus the proof is completed.

Lemma 3.3. There exists a positive constant M2(a) such that∥∥∥∥Ln

(
(1 + t2) (t − .)2 ; .

)∥∥∥∥ ≤ M2(a)
n

, n ∈ N.

Proof. From the linearity of Ln, we can write

Ln

(
(1 + t2) (t − x)2 ; x, a

)
= Ln

(
(t − x)2 ; x, a

)
+ Ln

(
(t − x)2 t2; x, a

)
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From Lemma 2.2, we can write

1
1 + x2 Ln
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)
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1
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+

1
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15
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=
1

1 + x2

x
n

T2(a),

where T2(a) is a polynomial of degree 2. Therefore we have

1
1 + x2 Ln

(
(t − x)2 t2; x, a

)
≤

x
n

M2(a). (12)

Theorem 3.4. For each f ∈ C∗2 (R+), we have

lim
n→∞

sup
x∈R+

∣∣∣Ln
(

f , x, a
)
− f (x)

∣∣∣
1 + x2 = 0.

Proof. It is easy to see that

lim
n→∞

sup
x∈R+

|Ln (1, x, a) − 1|
1 + x2 = 0.

From Lemma 2.1 we get

lim
n→∞

sup
x∈R+

|Ln (t, x, a) − x|
1 + x2 = lim

n→∞

1
n

= 0.

Also, using Lemma 2.1 again, we can write

sup
x∈R+

∣∣∣∣Ln

(
t2, x, a

)
− x2

∣∣∣∣
1 + x2 ≤ sup

x∈R+

x
1 + x2

1
n

(
3 +

1
a − 1

)
+

2
n2 ,

which implies that for a > 1

lim
n→∞

sup
x∈R+

∣∣∣∣Ln

(
t2, x, a

)
− x2

∣∣∣∣
1 + x2 = 0.

Since the conditions of Theorem A of [15] are satisfied, we obtain for any f ∈ C∗2 (R+)

lim
n→∞

sup
x∈R+

∣∣∣Ln
(

f , x, a
)
− f (x)

∣∣∣
1 + x2 = 0.

So this completes the proof.
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Theorem 3.5. For f ∈ C∗2 (R+), n ∈N we have

sup
x∈R+

∣∣∣Ln
(

f , x, a
)
− f (x)

∣∣∣
1 + x2 ≤ KΩ2

(
f , n−1/2

)
,

where K is a constant that is independent of f and n.

Proof. From the properties of Ω2 it is obvious that for any λ > 0,

Ω2
(

f , λδ
)
≤ 2 (λ + 1)

(
1 + δ2

)
Ω2

(
f , δ

)
.

For δ > 0, if we use the definition of Ω2 and the last inequality with λ = |t−x|
δ we have∣∣∣ f (t) − f (x)

∣∣∣ ≤ (
1 + x2

) (
1 + (t − x)2

)
Ω2

(
f , |t − x|

)
≤ 2

(
1 + x2

) (
1 + (t − x)2

) (
1 + δ2

) (
1 +
|t − x|
δ

)
Ω2

(
f , δ

)
≤ 8

(
1 + x2

) (
1 +

(t − x)4

δ4

)
. (13)

Applying Ln to (13), by the linearity and monotonicity of Ln we obtain∣∣∣Ln
(

f , x, a
)
− f (x)

∣∣∣ ≤ 8
(
1 + x2

)
Ω2

(
f , δ

) (
1 +

1
δ4 Ln

(
(t − x)4 , x, a

))
From Lemma 2.2, we can write for a > 1

Ln

(
(t − x)4 , x, a

)
=

(
x2 + x + 1

)
O

( 1
n2

)
.

If we choose δ = n, we have

sup
x∈R

∣∣∣Ln
(

f , x, a
)
− f (x)

∣∣∣
(1 + x2)3 ≤ KΩ2

(
f , n−1/2

)
.

Theorem 3.6. There exist an absolute constant M3(a) such that

1
1 + x2

∣∣∣Ln( f ; x, a) − f (x)
∣∣∣ ≤ 1

n

(∥∥∥ f ′
∥∥∥

2
+

∥∥∥ f ′′
∥∥∥

2

{
x
(
1 +

1
a − 1

)
+

2
n

+ M2(a)
})

,

where f ∈ C2
2 (R+) and x ∈ [0,∞).

Proof. Using the Taylor formula

f (t) = f (x) + f ′(x)(t − x) +

∫ t

x

∫ s

x
f ′′(u)duds, t > 0,

which implies that

f (t) = f (x) + f ′(x)(t − x) +

∫ t

x
(t − u) f ′′(u)du,
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applying this formula to the operator, we have
Ln( f (t); x, a) = f (x) + f ′(x)Ln((t − x); x, a) + Ln

(∫ t

x (t − u) f ′′(u)du ; x, a
)
. Using the inequality∣∣∣∣∫ t

x (t − u) f ′′(u)du
∣∣∣∣ ≤ 1

2

∥∥∥ f ′′
∥∥∥

2

(
2 + t2 + x2

)
(t − x)2, it follows

1
1 + x2

∣∣∣Ln( f ; x, a) − f (x)
∣∣∣

=

∣∣∣ f ′(x)
∣∣∣

1 + x2 |Ln((t − x); x, a)| +
1

1 + x2

∣∣∣∣∣∣Ln

(∫ t

x

∫ s

x
f ′′(u)duds ; x, a

)∣∣∣∣∣∣
≤

1
n

∥∥∥ f ′
∥∥∥

2
+

1
2 (1 + x2)

∥∥∥ f ′′
∥∥∥

2
Ln

(
(t − x)2

((
2 + t2 + x2

))
; x, a

)

≤
1
n

∥∥∥ f ′
∥∥∥

2
+

1
2

∥∥∥ f ′′
∥∥∥

2
Ln

(
(t − x)2 ; x, a

)
+

1
1 + x2

1
2

∥∥∥ f ′′
∥∥∥

2
Ln

(
(1 + t2) (t − x)2 ; x, a

)
.

From Lemma 3.3, we obtain

1
1 + x2

∣∣∣Ln( f ; x, a) − f (x)
∣∣∣

≤
1
n

∥∥∥ f ′
∥∥∥

2
+

1
2

∥∥∥ f ′′
∥∥∥

2
Ln

(
(t − x)2 ; x, a

)
+

1
1 + x2

1
2

∥∥∥ f ′′
∥∥∥

2
Ln

(
(t − x)2 ; x, a

)
+

1
1 + x2

1
2

∥∥∥ f ′′
∥∥∥

2
Ln

(
(t − x)2 t2; x, a

)

≤
1
n

∥∥∥ f ′
∥∥∥

2
+

1
1 + x2

1
2

∥∥∥ f ′′
∥∥∥

2

{x
n

(
1 +

1
a − 1

)
+

2
n2

}
+

∥∥∥ f ′′
∥∥∥

2

M2(a)
n

≤
1
n

(∥∥∥ f ′
∥∥∥

2
+

∥∥∥ f ′′
∥∥∥

2

{
x
(
1 +

1
a − 1

)
+

2
n

+ M2(a)
})

.

This follows that similar to [11], we apply the Steklov function fh of f ∈ Cp,

fh(x) :=
4
h2

∫ h
2

0

∫ h
2

0

(
2 f (x + s + t

)
− f (x + 2(s + t)))dsdt

for x, h > 0. Let C2,∗ (R+) is the set of real valued function f , continuous on R+and f (x)
1+x2 is uniformly

continuous. It is known [11] that if f ∈ C2,∗ (R+), then∥∥∥ f − fh
∥∥∥

2
≤ ω2( f ; h)

and ∥∥∥ f ′′h
∥∥∥

2
≤ 9h−2ω2( f ; h), h > 0

where

ω2( f ; h) = sup
0<h≤δ

∣∣∣ f (x + 2h) − 2 f (x + h) + f (x)
∣∣∣

1 + x2 .
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Also we consider another type Steklov funcion fk of f ∈ C2,∗ (R+) :

fk (x) =
1
k

k∫
0

f (x + t) dt.

This formula implies that∥∥∥ f − fk
∥∥∥

2
≤ ω( f ; k)

and ∥∥∥ f ′k
∥∥∥

2
≤ k−1ω( f ; k), k > 0.

Using this inequalities, we have the following approximation theorem.

Theorem 3.7. Let f ∈ C2,∗ (R+), the set of real valued function f , continuous onR+and f (x)
1+x2 is uniformly continous

and let x ∈ R+. We have

1
1 + x2

∣∣∣Ln( f ; x, a) − f (x)
∣∣∣ ≤ ω2

(
f ;

1
√

n

) {
x
(
1 +

1
a − 1

)
+

2
n

+ M2(a) + (M1(a) + 1)
}

+
1
√

n
ω

(
f ;

1
√

n

)
.

Proof. For f ∈ C2,∗ (R+) and h > 0,∣∣∣Ln( f ; x, a) − f (x)
∣∣∣ ≤ ∣∣∣Ln(( f − fh; x, a) − ( f − fh)(x))

∣∣∣ +
∣∣∣Ln( fh; x, a) − fh(x)

∣∣∣
and therefore

1
1 + x2

∣∣∣Ln( f ; x, a) − f (x)
∣∣∣

≤

∥∥∥ f − fh
∥∥∥

2

( 1
1 + x2 Ln(1 + t2; x, a) + 1

)
+

1
n

(∥∥∥ f ′h
∥∥∥

2
+

∥∥∥ f ′′h

∥∥∥
2

{
x
(
1 +

1
a − 1

)
+

2
n

+ M2(a)
})

= ω2( f ; h) (M1(a) + 1) +
1
n

(∥∥∥ f ′h
∥∥∥

2
+

∥∥∥ f ′′h

∥∥∥
2

{
x
(
1 +

1
a − 1

)
+

2
n

+ M2(a)
})

= ω2( f ; h)
1

h2n

{
x
(
1 +

1
a − 1

)
+

2
n

+ M2(a) + (M1(a) + 1)
}

+
1

nh
ω( f ; h).

Thus choosing h = 1
√

n
, the proof is completed.

4. Voronovskaya Type Theorem

In this part, we give the Voronovskaya type theorem for the operator Ln given by (3).

Theorem 4.1. Assume that f ′′ exists at a fixed point x ∈ [0,∞) and f , f ′ ∈ C2 (R). Then the following equality
holds

lim
n→∞

n
[
Ln( f ; x, a) − f (x)

]
= f ′(x) + x

(
1 +

1
a − 1

) f ′′(x)
2

for every x ∈ [0,∞).

Proof. Let x ∈ [0,∞) be fixed. By Taylor’s formula we have

f (t) = f (x) + (t − x) f ′(x) + (t − x)2 f ′′(x)
2

+ k(t; x)(t − x)2
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for k(.) ∈ C2 (R+) and lim
t→x

k(t; x) = 0. Applying Ln to Taylor’s formula, we obtain

lim
n→∞

n
[
Ln( f ; x, a) − f (x)

]
= nLn ((t − x); x, a) f ′(x) + nLn

(
(t − x)2; x, a

) f ′′(x)
2

+ nLn

(
k(t; x)(t − x)2; x, a

)
.

By Cauchy-Schwartz inequality, we have

nLn

(
k(t; x)(t − x)2; x, a

)
≤

√
Ln (k2(t; x); x, a)

√
n2Ln ((t − x)4; x, a).

We observe that k2(x; x) = 0. It is known that

lim
n→∞

Ln( f ; x, a) = f (x)

holds from [14]. Therefore

lim
n→∞

Ln

(
k2(t; x); x, a

)
= k2(x; x) = 0.

Moreover, we know that

lim
n→∞

√
n2Ln ((t − x)4; x, a) = lim

n→∞
x
(
3 +

6
a − 1

+
3

(a − 1)2

)1/2

.

So we obtain the following

lim
n→∞

n
[
Ln

(
k(t; x)(t − x)2; x, a

)]
= 0

which completes the proof.
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