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Abstract. Closed form formulas for well-defined solutions of the next difference equation

Xn—2Xn—k-2

Xy = ’
xn—k(an + bnxn—an—k—Z)

n € Ny,

where k € IN, (44)nen,, (Dn)nen,, and initial values x_;, i = 1,k + 2 are real numbers, are given. Long-term
behavior of well-defined solutions of the equation when (a,),en, and (by)nen, are constant sequences is
described in detail by using the formulas. We also describe the domain of undefinable solutions of the
equation. Our results explain and considerably improve some recent results in the literature.

1. Introduction and Preliminaries

Studying nonlinear difference equations is an area of a great recent interest (see, e.g. [1]-[45] and the
references therein). Since the publication of paper [24], which explains closed form solution to the second-
order difference equation in [9], have appeared considerable number of papers on solvable difference
equations (see, e.g., [1]-[4], [7], [8], [10], [22], [25], [27], [28], [30]-[45] and the related references therein).
Some classical methods for solving difference equations and systems can be found in [19]. Using a method
similar to the one in [24], in [44] were found the closed form formulas for well-defined solutions to the
following difference equation

XnXn—k
xn—k+l(a + bxnxn—k),

Xns1 = n € No, )

where k € N, 4, b € R, and initial values x_;, i = ﬂ are real numbers, and studied behavior of its well-

defined solutions. In [42], among others, was noted that the following generalization of equation (1) can be
solved similarly

XnXn—k
7
xn—k+1(an + bnxnxn—k)

Xn+l =

ne NO/ (2)

where k € IN, and sequences (a,)neN,, (bn)nen,, as well as initial values x_;, i = 0, k are real numbers.
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A natural problem is to study difference equations related to equation (2). The problem is not so
technically easy, since the behavior of solutions to the equations heavily depends on delays and the initial
values, and formulas are represented in a complicated way.

We will consider here the following class of difference equations

_ Xn—2Xn—k-2
- 7
Xn—k(@n + buXn-2Xy—k-2)

X n € Ny, 3)
where k € IN, which is an extension of the equation in [10]. Our results theoretically explain and considerably
improve the results in [10].

Assume first that k is even, that is, k = 2k; for some k; € IN. Since every n € INp can be written in the
form n = 2m + i for some m € Ny and i € {0, 1}, we see that for such k, equation (3) can be written as follows

X2(m—1)+iX2(m—ky—1)+i

Xomai = m € No, 4)

7
X2(m—ky)+i(@2m+i + D2miX2(m—1)4iX20m—k ~1)+i)

i € {0,1}, which means that the sequences (xou+i)men,, I € {0,1}, are respectively solutions to the following
two difference equations

Zm-1Zm—ky -1

Zm = 7 me NO/ (5)

Zin—ky (ﬁin + blmzm—lzm—kl—l)
where @i, = a4, Ein = bom+i, 1 € {0, 1}. However, two equations in (5) are special cases of equation (2), which
implies that the long-term behavior of their solutions essentially follows from the corresponding one of
equation (2).

Hence, from now on we will assume that k is an odd positive number, that is, k = 2f + 1 for some f € INp.
Solution (xy,)x>-s, s € IN, of the difference equation

xn = f(xn—ll e rxn—s)/ ne ]NOI (6)
where f: R®* - Rand s € N, is called eventually periodic with period p, if there is an n; > —s such that
Xnip = Xp, for n2mny.

It is called periodic with period p, if n; = —s. For some results in this area see, e.g. [6, 12, 16-18, 20, 21, 26, 29]
and the references therein.

We now formulate an auxiliary result which will be used frequently throughout the paper. Since the
statements in it are well-known we will not prove them.

Lemma 1. Let I € Ny, (a,)n> be a real sequence such that a, # 0, n > 1, and

n

PnZHa]‘, n>L

j=1
Then the following statements are true.
(@) Iflimsup,_, la,| <1, then P, — 0asn — +oo.
(b) Ifliminf,_« la,| > 1, then |P,| — +coas n — +oo.
(c) Iflql < 1and
a, =1+ 0(@4")

for sufficiently large n, then the sequence (Py)ns; is convergent.

(d) If

c 1
a, =1+ - +O(n1+5)
for some O > 0 and sufficiently large n, then:
1) ifc <0, then P, = 0asn — +oo;
2) ifc >0, then |Py| = +o0asn — +oo;
3) if c = 0, then the sequence (Py),» is convergent.
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2. Solutions to Equation (3)

If x_; =0 forsomei € {1,2,...,k+2}, then from (3) we see that x,,_; is or not defined or equal to zero.
If the later holds then (3) shows that xp47_; is not defined. On the other hand, if x,, = 0 for some 7y € INj,
and x,, are defined and different from zero for 0 < n < ny — 1, then by using again (3) we have that x,,—» =0
or Xy,-k-2 = 0, which along with the choice of number 1y implies 1y —2 < 0 or g — k — 2 < 0 respectively,
thatis, x_; = 0 for some i € {1,2,...,k + 2}. This fact along with the previous consideration implies that the
solution is not defined.

Hence, from now on in this section, we may assume that x_; # 0 for every i € {1,2,...,k + 2}, which is
equivalent to

x, 20 for n>—-(k+2).
Thus we can use the change of variables
1

= . on>-2, 7
I e @)

and transform equation (3) into the following nonhomogeneous linear second-order difference equation
Yn = AnlYn— + by, 1 €Np. (8)
Since for n > -2 we have n = 2m + i, for some m > —1 and i € {0, 1}, equation (8) can be written as
Yomsi = QomsiY2m-1)+i + bamsi, m € Np, )
where i € {0,1}.
Thus, (Yom+i)ms-1, i € {0,1}, are respectively solutions to the next linear first-order equations

Zm = A2m+iZm-1 T b2m+i/ m € Ny, (10)

forie {0,1}.
Equations in (10) are solvable. Using the formulas for their solutions it is easy to see that the general
solutions to the equations in (9) are

m m

m
Yom+i = Viz2 Hﬂz]‘+i + Y by H azjvi, m € Ny, (11)
=0 1=0 =141
ief0,1).
From (7) it follows that
1 Yn—k
Xn = = Xn—2k,
YnXn—k Yn
for n > k — 2, and consequently
m
Yej-1k+i
Xomri = Xicawe | | ———, (12)
=0 Yojk+i

formeNpandie{k-2,k-1,...,3k—-3}.
Hence, if k = 2t + 1 we have

m
Yo(jt+1)+s—t-1)+1
X2(2t+1)ym+2s = X25-2(2t+1) e (13)
=0 Y2(jt+1)+s)

formeNyand2sel{k—-2,k—-1,...,3k— 3}, and

m
Yo(jt+1)+s-1)
X2t 1ym+25+1 = X25-2(24+1)+1 H —_— (14)

=0
formeNpand2s+1e{k-2k-1,...,3k—-3}.

Yo(j2t+1)+s)+1 ’
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Employing (11) into (13) and (14) we obtain

pt+1)+s—t— 1 pQt+1)+s—t— 1 pt+1)+s—t-1
H Z 21+1 H

a2j+1 + j=1+1 B2j+1
X22t+1)ym+2s = X25-2(2t+1) H ’
p(2t+1) +s ; p 2t+1)+s p 2t+1)+s ;
p=0 y H + b H] 1+1

formeNpand2se{k—2,k—-1,...,3k—3}, and

p2t+1)+s— t pt+1)+s—t pRt+1)+s—t
y2 1.5 i+ X1 bu Il @

2t+1)+s (2t+1)+s (2t+1)+s ’
Y-1 Hp Mjy1 t+ Zp HI; 1 A2

X22t+1)ym+2s+1 = X25-2(2t+1)+1 H

formeNpand2s+1e{k-2,k-1,...,3k-3}.

3. Case of Constant Coefficients
In this section we study equation (3) for the case when
a, =a, bn=b, n € Ny,

where a4 and b are some real constants.
In this case equation (3) becomes
Xpn-2Xn—k-2

X, = , 1 € Np.
Xp—k(@ + bXy_2Xp_k—2)

From (15) and (16) we have

Yo Hp(2t+1)+s -1 a4+ Zp (2t4+1)+s—t— 1pr(2t+1)+s t— 1a

j=1+1
X22t+1)ym+2s = X25-2(2t+1) H
p(2t+1)+ p(2t+1)+s p(2t+1) +s
R | Pt D Wil 3 ) Ui

"oy P+t | ) ZP 2t+1)+s—t—1 Pt +s—t-1-1
- =0

= Xos_
25-2(2t+1) 0 y zap(2t+1)+s+1 + b 27(2t+1)+s ap(2t+1)+5—l
= - =0
forme Npand2s e {k-2,k—1,...,3k— 3}, and

Hp (2t+1)+s—t a+ p2t+l)+s t Hp(2t+1)+s t

m y

_ j=l+1
X22t+1)ym+2s5+1 = X25-2(2t+1)+1 H perDes p(Zt s @D
p=0 - H H] I+1

m y 2a;g(Zt+1)+s—i.‘+1 + bzp(2f+1)+5—f PRt+1)+s—t-1
B 1=0

= X25-2(2t+1)+1
p=0

formeNpand2s+1e{k-2,k-1,...,3k—3}.
Case a # 1. We have

y 1aP@i+D+s+1 L ) Z’;’(Zt+1)+s ap@t+1)+s—1
_ 0

_1/—1(1 - g)ap(2t+1)+5_t + b(l _ ap(2t+l)+s—t)
n ]/—2(1 — a)ap(2t+1)+5+1 + b(l _ ap(2t+1)+s+1)’

X22t+1)ym+2s = X25-2(2t+1)

formeNyand2sel{k—-2,k—-1,...,3k—3}, and

m y_2(1 _ a)ap(2t+1)+s—t+1 + b(l _ up(2t+1)+s—t+1)
]/—1(1 — a)ap(2t+1)+s+1 + b(l _ ap(2t+1)+s+1)

X22t+1)ym+25+1 = X25-2(2t+1)+1
p=0

formeNpand2s+1e{k-2,k-1,...,3k—-3}.

4

464

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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Case a = 1. We have

y-1 +b(p2t+1)+s—1t)

m
X22t+1)ym+2s = X25-2(2t+1) H

, 22
bt V-2 +b(pt+1)+s+1) @2)
forme Ngpand2s e {k-2,k—1,...,3k— 3}, and
Ty +b(pRt+1) +s—t+1)
X22t+1)ym+2s+1 = X25-2(2t+1)+1 H yyz_l n Z(p(Zt T +s+1) ’ (23)

p=0

formeNpand2s+1e{k-2,k-1,...,3k—3}.

4. Long-Term Behavior of Solutions to Equation (17)

Long-term behavior of well-defined solutions to equation (17) will be presented here, in terms of
parameters a, b, k and some initial values. Before we formulate our first result we introduce the following
notation

(1—a)(xqx 1) =D

Lo = ,
07 k21 (1 = a)(xpx_4_p)~1 = b)
L. = (1—a)(x_px_42) ' = b
T AR P((1 = a) (e x 1)t = b))
Moo = (vo1x_k1) ' = (voxj2) ' = b[k/2] - b
k,O - 7
bk
Mo = (X_ax_j2) ™t = (xo1x) ™ — blk/2]
k1= bk '

Now we formulate and prove the main results in this section. For the brevity, we will write y_, and y_;
instead of (x_px_x_») ™ and (x_1x_4—1)"}, and will also use the following notation t = [k/2].

4.1. Casea+ -1,b+0
Our first result considers the casea # —1, b # 0.

Theorem 1. Assume that a # =1, b # 0, k is an odd natural number, and (xXy)y>—k—2 is a well-defined solution to
equation (17). Then the following statements are true.

(@) Iflal > Land|Ly;| < 1, for somei € {0, 1}, then Xpgm2s+i — 0asm — +oo, for every 2s+i € {k—2,k-1,...,3k—3}.

(b) If la| > 1 and |Ly;| > 1, for some i € {0,1}, then |Xoxmizs+il = +00 as m — +oo, for every 2s +i € {k — 2,k —
1,...,3k-3}.

(c) Iflal > 1and y_1 = b/(1 — a) # y_a, then Xopu+2s — 0as m — +oo, for every 2s € (k—2,k—1,...,3k — 3}, and
[Xokm+2s+1] = +00 asm — +oo, forevery2s+1 € {k-2,k—1,...,3k - 3}.

(d) Iflal > 1and y_» = b/(1 —a) # y_1, then Xogms2s41 — 0as m — +oo, forevery2s+1 e {k—2,k—-1,...,3k—3}
and |Xogm+2s] = +00 as m — +oo, for every 2s € (k—2,k—1,...,3k = 3}.

(e) If lal > 1 and Ly; = 1, for some i € (0,1}, then the sequences (Xoum+2s+i)m>—1 are constant, for every 2s + i €
{(k—2,k—1,...,3k-3}.

() If lal > 1 and Ly; = =1, for some i € {0,1}, then the sequences (Xam+2s+i)meN, ANA (Xakm+2k+25+i)mz—-1 are
convergent, for every 2s +ie {k—-2,k—-1,...,3k - 3}.

(g) If lal <1, then the sequences (Xokm+j)m=-1, j € tk—2,k—1,...,3k — 3}, are convergent.
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(h) Ifa=1and My; <O, for somei € {0, 1}, then Xopy12s4i — 0as m — +oo, for every 2s+i € {k—2,k—-1,...,3k-3}.

(i) Ifa =1and My; > 0, for some i € {0,1}, then |Xoxmi2s+il — +00 as m — +oo, for every 2s +i € {k -2,k —
1,...,3k—3.

G) If a = 1 and My,; = 0, for some i € {0,1}, then the sequence (Xpkm+2s+i)m>—1 is constant, for every 2s + i €
{(k-2,k-1,...,3k-3}.

(k) If y_1 = b/(1 —a) = y_o, then the sequence (xX,)y>_k—2 is 2k-periodic.

Proof. (a), (b) Let

t2s _ (]/71(1 — Ll) — b)gm(2t+1)+s—t +b
"o (]/_2(1 — a) — b)am(2t+1)+s+l +b

(24)

for2selk-2,k-1,...,3k—3},

paor1_ (Y-2(1 = a) = b)a"CHDsL 4
! - (y—l(l - ll) - b)am(2f+1)+s+1 +b’

(25)

for2s+1e{k-2,k-1,...,3k-3}.
By using the condition |a| > 1, we have

_1(1— Cl) -b)+ ﬁ
lim p’? = lim Al )+ ”b = Lio (26)
m—+0co m—+0o (]/—2(1 _ a) _ b)at+1 + T

for2se{k—-2,k—1,...,3k— 3}, and

2541 _ ) (y—2(1—a)—-b) + m
m—+00 m—+eo (y_y(1—a) — byat + b

am@t+1)+s—t+1

= Lk,lr (27)

for2s+1e{k-2,k-1,...,3k-3}.

From (20), (21), (26), (27), and by using statements (a) and (b) in Lemma 1, these two statements easily
follow.

(c) First, note that in this case

b
t2s _
Pm = (y-2(1 — @) — b)am@i+Dts+l 4 b o)

for2sef{k-2,k-1,...,3k-3},

£2041 (]/—2(1 _ {1) _ b)am(2t+1)+s—t+1 +b

pm - b 7 (29)

for2s+1e{k-2,k-1,...,3k—3}.
From (28), (29), and the conditions |a| > 1 and y_, # b/(1 —a), we have

b
. t2s _ 1: _
i P = m (Y—2(1 — a) — byam@+D+s+l 4 0 (30)

for2selk-2,k—-1,...,3k—3},and

(1 — —b m(2t+1)+s—t+1+b
lim 2= fim Y220 200

m—+0oo m—+oo b

= 400, (31)

for2s+1e{k-2,k-1,...,3k—-3}.
From (20), (21), (30), (31), and by using statements (a) and (b) in Lemma 1, the result easily follows.
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(d) First, note that in this case
$25 _ (y71(1 _ Ll) _ b)am(2t+1)+s—t +b

32
i ; : (32)
for2selk-2,k-1,...,3k—3},
b
t,25+1
25+1 _ 33
P (y-1(1 _ a) _ b)anz(2t+1)+s+l +b ( )
for2s+1e{k-2,k-1,...,3k—3}
From (32), (33), and the conditions |a| > 1 and y_ # b/(1 — a), we have
(1 - —-b m(2t+1)+s—t +b
lim pi2|= lim |20 D700 = +oo (34)
m—+co M—+00 b
for2selk-2,k-1,...,3k—3},and
b
. t2s+1 _ q: =
mll}’{loo pm - mll}’{loo (y_l(l — a) - b)a"1(2t+1)+5+1 +b - OI (35)
for2s+1e{k-2,k-1,...,3k-3}.
From (20), (21), (34), (35), and by using statements (a) and (b) in Lemma 1, the result easily follows.
(e) In this case, we have that
(1 - —-b m2t+1)+s—t +b
2o _(ya(l=0) - b L 56
(]/—2(1 _ a) _ b)am(2t+1)+s+1 +b
foreverym e Npif2s e {k—2,k—-1,...,3k — 3}, and
511 z(y_z(l — ) — b)) 4 g 1 (37)
(y—l(l _ LI) _ b)am(2t+1)+s+1 +b
everyme Noif2s+1ef{k-2,k-1,...,3k-3}.
From (20), (21), (36) and (37) the result easily follows.
(f) By using the asymptotic relation
1+x)=1-x+0(x?), (38)

when x is in a neighborhood of zero, we have that

t2s _ —(y—2(1 —a) - b)am(2t+1)+5+1 +b
mo (y_2(1 - a) - b)am(2t+l)+s+1 +b

=—(1 b 1 b 0] !
- ( - am@ED sy (1 —a) — b) )( - am@EHD sy (1 —a) — b) + (a2m(2t+1) ))

2b 1
=T (1 - am@eD) s (y (1 —a) — b) + O(a2m(2t+1) ))’ (39)

for sufficiently large m if 2s € {k—2,k—-1,...,3k - 3}, and

p2ss1 _ —(y-1(1 —a) = D)am@Drs+l 4
" - (]/_1(1 —a)— b)am(2f+1)+s+1 +b

=-(1 ’ 1- ! +0 gy )
- ( - am @S (y_ (1 —a) — b) )( @@ (y_ (1 —a) — b) 22m(2H+1)

2b 1
- (1 T e (y (1 —a) - b) + O(a2m(2t+1) ))’ (40)
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for sufficiently large mif 2s + 1 e {k—2,k—-1,...,3k - 3}.
From (20), (21), (39), (40), the assumption |a| > 1, and by using statement (c) in Lemma 1, the result easily
follows.
(g) By using (38), we have
$25 _ 1+ (y71 (1 _ a) _ b)am(2t+1)+s—t/b
" T 14 (yo(1 — a) — byamCHD+sHL

syt (=11 = 0) =) = (y2(1 = a) = b)a'*))

=1+a b + 0?20y, a
for sufficiently large m, if 25 € (k— 2,k — 1,....,3k - 3},
bas+l _ 1+ (y_o(1 — a) — b)am@t+s=t+1
m 1+ (y_l(l - lZ) - b)am(2f+l)+s+1/b
=1+ a"*0+((y (1 —a) = b)a~' — (y_1(1 — a) — b)) + O@*"@+V)y, w)

for sufficiently large m, if 2s+1 € {k -2,k -1, ...,3k — 3}. From (20), (21), (41), (42), the assumption |a| < 1,
and by using statement (c) in Lemma 1, the result easily follows.
(h)-() Let

tos  bm2t+ 1) +b(s =) + Yy

I = @+ D+ b+ 1) + yo 43)
for2se{k—-2,k—1,...,3k— 3}, and
b2l _ bm(2t +1)+b(s —t+1) + y— (44)
i bt + 1) +bG+ 1)+ yy
for2s+1e{k-2,k-1,...,3k—3}.
Then by using (38), we have that
b(s—t)+y_1
o 1F B bs—tH+ya\. Dbs+1)+yo 1
L (et o)
" 4 MerDyo bm(2t + 1) bm(2t + 1) m2
bm(2E+1)
e S )1 ol
B e ey s sl (e Rl et vy (45)
for sufficiently large mif 2s € {k—2,k—-1,...,3k — 3}, and
4 b(s—t+1)+y_»
L2541 _ ba)  _ ( N bis—t+1)+y-> )( b+ +ya N O(i))
m b(s+1)+y_ 2
1+ bn:(2t:y1)l bm(2t + 1) bm((2t + 1) m
O Tl Uk (i)) _ 14 M (i)
_(1+ ot + 1) +Om2 =1+ - +Om2, (46)

for sufficiently large mif 2s + 1 € {k—2,k—-1,...,3k - 3}.
From (22), (23), (45), (46), and by using statement (d) in Lemma 1, these three statements easily follow.
(k) From (24), (25) and y-1 = b/(1 — a) = y_», we have that

P =1, (47)
for2selk-2,k-1,...,3k—3},
p]tq,125+1 =1, (48)

for2s+1e{k—-2,k-1,...,3k—3}. From (20), (21), (47), (48), the 2k-periodicity of the sequence (x,);>—-k-2
follows. 0O
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42. Casea=-1,b#0

Now we will consider the case a = -1, b # 0, in detail, by using the following formulas

m (2]/—1 _ b)(_l)p(2t+l)+sft +b
X2Q2t+1)m+2s = X25-2(24+1) L([ Qy_s - b)(—1)P@t+D+s+1 4 b’

(49)

formeNpand2sel{k—-2,k—-1,...,3k— 3}, and

2y_s — b)(=1)PRHDAH1 4y
(2]/—1 - b)(—l)p(2t+1)+s+1 h

m
X22t+1)ym+2s+1 = X25-2(2t+1)+1 H (50)

p=0

formeNpand 2s+1€{k—-2,k—-1,...,3k — 3}, which are obtained from (20) and (21), witha = —-1.
Let
_1(y_1 =0
N=Y 1(y-1-b)

Ty —b)

Theorem 2. Assume that a = =1, b # 0, k is an odd natural number, and (xX)y>—k—2 is a well-defined solution to
equation (17). Then the following statements are true.

(@) If y—1 = b/2 = y_,, then the sequence (xX)y>—-k—2 is 2k-periodic.

() Ify_1 = b/2 # y_o, and (= V2 +1)/2 < y_2/b < (V2 + 1)/2, then |Xoups2s] = +00 as m — +oo, for every
2selk-2,k-1,...,3k—3}.

(© Ify-1=0b/2 # y_p, and y_»/b < (- V2 + 1)/2 or y_»/b > (\/E +1)/2, then Xpmp12s — 0 as m — oo, for every
2selk-2,k-1,...,3k-3}.

(d) Ify-1 =b/2, and y_, = b(— V2 +1)/20r Y- = b( V2 +1)/2, then

i o

Xomkszs = (DU IA F V2(=1)*1) = X2s5-2(2t+1)s (51)
forevery2s e (k—2,k—1,...,3k—-3}.

() Ify.1 = b/2 # yo, and (= V2 +1)/2 < y_o/b < (N2 + 1)/2, then Xoppszes1 — 0 as m — oo, for every
2s+1e{k-2,k-1,...,3k-3}.

) Ify-1 =b/2# y_p, and y_»/b < (—\/§+ 1)/2 or y_o/b > (\/§+ 1)/2, then |Xompr2s41] — 400 as m — oo, for
every2s+1e{k-2,k-1,...,3k—-3}.

(g) Ify-1=b/2,and y_» = b(— V2 +1)/20r Y- = b( V2 +1)/2, then

+(=n™

Xomkszser = (DT (2 V(=11 + 1) 72 X25-2(2t+1)+1, (52)

forevery2s+1elk—-2,k—-1,...,3k—3}.

(h) Ifyq # b/2 = yo, and (=V2 +1)/2 < y_1/b < (V2 + 1)/2, then Xpupios — 0 as m — oo, for every
2selk-2,k-1,...,3k—3}.

@) Ify—o =b/2,and y_1/b < (- V2 + 1)/2 or y_1/b > (\/E +1)/2, then |Xomks2s] — +00 as m — oo, for every
2selk—-2,k—-1,...,3k—-3}.

G) Ify—2=b/2,and y_1 = b(=V2+1)/2 0or y_1 = b(V2 +1)/2, then

m+1 1+

Xomksas = (DU IAF V2=1)7) 77 05 a0041), (53)
forevery2s € (k—2,k—1,...,3k-3}.
k) If y-1 # b/2 = y_p, and (—\/E +1)/2 < y_1/b < (\/5 +1)/2, then |Xams2s1] — +00 as m — oo, for every
2s+1efk—2,k-1,...,3k—-3l
D Ifya1#b/2=yo,and y_1/b < (- V2 + 1)/20r y_1/b > (\/§ +1)/2, then X541 — 0 as m — oo, for every
2s+1etk-2k-1,...,3k—-3}

m+1
[~
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(m) Ify_o =b/2,and y_1 = b(- V2 +1)/2 or y_1 = b(V2 + 1)/2, then
,1+(,1)m+1
Xomksase1 = (DI F V(=1 2 X05—2(2t4+1)+1s (54)

forevery2s+1ei{k—-2,k-1,...,3k-3}.

(m) If y.1 # b/2 # Yy, and |N| < 1, then xpprs2s — 0, as m — oo, for every 2s € tk—2,k—-1,...,3k = 3}, and
[X2mks2s+1] = +00, a5 m — oo, forevery2s +1 e {k—2,k—1,...,3k—3}.

(0) If y_1 #b/2 # y_o, and [N| > 1, then |Xapis2s) — +00, as m — oo, for every 2s € {k—2,k—1,...,3k — 3}, and
Xomk+2s41 — 0, as m — oo, forevery 2s+1 e {k—-2,k—-1,...,3k - 3}.

(p) If y-1 #b/2 # y_p, and N = 1, then the sequence (xX,)n>—k—> is 4k-periodic.

(q) Ify—1 #b/2 # y_, and N = -1, then the sequence (x,,),>—k—2 is 8k-periodic.

m+1
[#5=

Proof. (a) This statement follows directly from (49) and (50), and can be also regarded as a special case
of Theorem 1 (k).
(b) From (49) we have that

m
1
X22t+1)m+2s = X25-2(2t+1) g (2y_2/b — 1)(— L@+ § 1’ (55)
form e Ngand 2s € {k—2,k—1,...,3k — 3}, which implies
2m 1
X4Q2t+1)ym+2s = X25-2(2t+1) g (2y_a/b— D)(—1)p@rDes 4 1
_ X2s—2(2t+1) (56)
(1= Qy-2/b-1)2)"((2y-2/b - )(=1)y*1 + 1)’
and
2m+1
x = oz | | :
4(2t+1)m+4t+2+2s 25-2(2t+1) 13 (2y_2/b — 1)(_1)p(2t+1)+s+1 +1
X25-2(2t+1) (57)

T (0= @ya/b- 12

Now note that conditions, y_, # b/2and (- V2+1)/2 < Y—2/b < ( V2+1)/2are equivalentto0 < (2y_»/b—1) <
2,1.e.
lQy_2/b—-1)* —1| < 1.
From this, (56) and (57), the result easily follows.
(c) Note that the conditions y_, # b/2, and y_,/b < (- V2 + 1)/2 or y—»/b > ( V2 + 1)/2, are equivalent to
(2y-2/b—1)* > 2, that is,
Qy_2/b-1>-1>1.
From this fact, (56) and (57), the result easily follows.
(d) Note that the conditions y_, = b(— V2+1)/2 or Y2 = b( V2 +1)/2, are equivalent to (2y_»/b—1)* = 2.
From this (56) and (57) we have that

X25-2(2t+1)

(~1y"(F V2(=1)1 + 1)

X4t 1)m+2s = (58)

and

X25-2(2t+1)

iy (59)

X4Q2t+1)ym+4t4+2+2s =
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From (58) and (59), formula (51) easily follows.
(e) From (50) we have that

m

X2t 1ym+25+1 = X25-2(2+1)+1 H ((2y—2/ b— 1)(—1)pEDrstl 1),
p=0

formeNoand 2s+1 € {k—-2,k—-1,...,3k — 3}, which implies

2m

X4@t+1)m+2s+1 = X25-2(2t4+1)+1 H ((2]/—2/ b—1)(=1)p@+Drs—t+L 1)
p=0
= 22201 (y-2/b = DD+ 1)(1 - @yoa/b - 1),
and

2m+1

X4Qb+1)m+4t4242541 = X25-2(24+1)+1 H ((Zy—z/ b— 1)(~1)P+Drs—tl 1)
p=0

m+1
= x25—2(2t+1)+1(1 - (y-2/b - 1)2) o

471

(60)

(61)

(62)

According to the proof of (b) we have that [(2y_»/b—1)* — 1| < 1. From this, (61) and (62), the result follows.

(f) In this case we have (2y_,/b — 1) = 1 > 1. From this, (61) and (62) the result follows.
(g) In this case we have (2y_»/b - 1)? =2. Using this in (61) and (62) we get

X4t 1ym+25+1 = X25-2(20+1)+1(F V2(=1y 1 + 1) (=1)",
and

_ m+1
Xa@t+1)ym+dt4242541 = X2s22e+1)+1(=1)"".

From (63) and (64), formula (52) easily follows.
(h) From (49) we have that

m
X2t 1)m+2s = X25-2(2t+1) H ((2]/—1/ b— 1) (-~ 1),
p=0

form € Ngand 25 € {k—2,k—1,...,3k — 3}, which implies

2m
X4Q2t+1)ym+2s = X25-2(2t+1) H ((2]/—1/17 - 1)(—1)p(2t+1)+s_t + l)
p=0

= X2s-20t+1)(1 = Qy-1/b = D?)™((2y_1/b - 1)(-1)°" + 1),
and

2m+1

X4t 1)m+4t42425 = X25-2(24+1) H ((Zy-1/ b—1) (-1t 4 1)
p=0

= Xps-20t+1)(1 = Qy-1/b — 1)%)"*L.

From (66), (67) and since in this case |[(2y-1/b — 1)*> — 1| < 1, the result easily follows.

(i) Since in this case (2y_1/b — 1)*> = 1 > 1. From this (66) and (67), the result easily follows.

(63)

(64)

(65)

(66)

(67)
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(j) In this case we have (2y_1/b — 1)? = 2. From this (66) and (67) we have that
Xa@esmeas = Xas—aeen) (1) (F V2(=177 + 1),

and

_ m+1
X4(2t+1)m+4t+2+2s = X2572(2t+1)(—1) .

From this (68) and (69) formula (53) easily follows.
(k) From (50) we have that

- b
X22t+1)ym+2s+1 = X25-2(2t+1)+1 ’
m+2s s L‘([ (Zy—1 _ b)(_l)p(2t+1)+s+1 +b

forme Noand 2s+1 € {k—-2,k—1,...,3k — 3}, which implies

2m b
X4Q2t+1)ym+25+1 = X25-2(2t+1)+1 H
p=0

(2y71 _ b)(_l)p(2t+1)+s+1 +b
X25—2(2t+1)+1
(2y-1/0 = D=1 + (1 = @y /0~ 1)

and

2m+1

b
g (2y-1 — b)(=1)P@+D+s+1 4 p

X4Q2t+1)ym+4t+2+25+1 = X25-2(2t+1)+1

X25-2(2t+1)+1

(1-@yar/o-17)""

Similar to (b) we have that |(2y_; /b — 1)? — 1| < 1. From this, (71) and (72), the result follows.
(1) In this case we have (2y_1/b — 1)> = 1 > 1. From this, (71) and (72), the result follows.

(m) In this case we have (2y_;/b — 1)*> = 2. Using this in (71) and (72) we get
Y & g

X2s-2(2t+1)+1

(FV2(=1)+1 + 1)(=1)m”

X4Q2t+1)ym+2s+1 =

and

X25-2(2t+1)+1

X4Q2t+1)m+4t42+25+1 = (_1)m+1

From (73) and (74), formula (54) easily follows.
(n), (0) Note that in this case

2m Qy_1 - b)(_l)p(2t+1)+s—t +b
X40t+1)ym+2s = X25-2(2t+1) g Qy_p — b)(—1)p@i+D+s+1 4

(Qy_1 —b)(-1y"+b »
= X25-2(2t+1) (Zy_z _ b)(—l)S“ b 7

472

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)
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and
2m+1 (nyl _ b)(_l)p(2t+1)+s—t +b
X = Xps—
4(2t+1)m+4t+2+2s 25—-2(2t+1) 13 (2]/—2 — b)(—l)p(2t+1)+s+1 +b
= Xos20uyN™,
~ 2m (zy_z _ b)(_1)p(2t+1)+s—t+1 +b
X42t+1)m+2s+1 = X25-2(2t+1)+1 g QY1 - b)(— 1)@+ 4 b
~ Qy_o —b)(=1)"* + b
= X25-2(2t+1)+1 N"(Qy_1 — b)(—1)1 + b’
and

X2s—2(2t+1)+1

X4(2t+1)m+4t+2+25+1 = N

473

(76)

(77)

(78)

Using formulas (75)-(78), and respectively the conditions |N| < 1, that s, IN| > 1, these two statements easily

follow.
(p) Using formulas (75)-(78) and the condition N = 1 we have that

2y —b)(=1y" +b
X42t+1)ym+2s = X25=2(2t+1) (2]/—2 _ b)(—l)”l Iy

X4Q2t+1)ym+4t+2+2s = X25-2(2t+1)/
QY2 —b)(-1"* +b
Qy-1=b)(=1p1 +b’

X4Q2t+1)ym+2s+1 = X25-2(2t+1)+1

X42t+1)m+4t+2+2s+1 = X25-2(2t+1)+1/

from which 4k-periodicity follows.
(q) Using formulas (75)-(78) and the condition N = —1 we have that

(Qy-1— b)(-1)¥"t+b
(Qy—2 = b)(-1)y*1 + b’
X4Q2t+1)ym+4t+2+2s = x25—2(2t+1)(_1)m+1r

2y - b)(-1y 1 +b
Qy-1 = b)(-1yp* +b

Xa@t+1)ym+2s = X2s—226+1)(—=1)"

— m
X4t+1)m+25+1 = X2s—2(2¢+1)+1(—1)

_ m+1
Xa@t+lymratr2+2s+1 = (=1)" Xos—22t41)41-

From these relations we see that the subsequences Xao+1)m+2s, Xa(t+1)m+4t+2+25, Xa(t+1)m+25+1, X4(2t+1)m+4t42+25+1

are 2k-periodic, from which the statement follows. O

4.3. Casea#0,b=0
In this case equation (17) becomes

Xn—2Xn—k-2
Xn = n—n, 1 € Ny,
AXy—k

and from formulas (20)-(23), for the case a # 1, we obtain

1 m+1
X22t+1)m+2s = x25—2(2t+1)(—) ’
y_zu”l

(79)

(80)
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formeNpand2sel{k—-2,k—-1,...,3k— 3}, and

y—Z m+1
X2t 1)m+25+1 = x25—2(2t+1)+1(m) (81)
forme Ngand2s+1€{k—-2,k—1,...,3k — 3}, while for a = 1 we have that
_1/—1 m+1
X22t+1)ym+2s = x25—2(2t+1)(y_) ’ (82)
formeNpand2se{k—2,k—1,...,3k— 3}, and
5 m+1
X2t 1)m254+1 = x25—2(2t+1)+1(;) , (83)

formeNpand2s+1e{k-2,k-1,...,3k-3}.
Employing formulas (80)-(83), the following theorem easily follows. We omit the proof for its simplicity.

Theorem 3. Assume that a # 0, b = 0, k is an odd natural number, and (x,)n>_r—2 is a well-defined solution to
equation (17). Then the following statements are true.

(a) Ifly_l/y_za”ll <1, then x20¢+1ym+2s — 0 as m — +oo, for every 2s € {k—2,k—1,...,3k — 3}.

(b) Ifly-1/y—2a"" > 1, then |xa@ts1ymras) — +00 as m — +oo, for every 2s € k—2,k—1,...,3k — 3}.

(©) Ify-1/y—pa'™ =1, then (X2(2041)ym+25 )meN, are constant sequences, for every 2s € {k—-2,k—-1,...,3k = 3}.

d) Ify-1/ y_zat” = =1, then (Xat+1ym+2s)meN, 15 a two-periodic sequence, for every 2s € (k—2,k—1,...,3k - 3}.
(e) Ifly_z/y_lafl < 1, then xpot+1ym+2s+1 — 0 as m — +oo, for every2s+1 € {k-2,k—-1,...,3k - 3}.

() If ly—2/y-1a'| > 1, then |xoot+1ym+25+1] = +00 as m — +co, for every2s+1 € fk—2,k—1,...,3k - 3}.

(8) If y—2/y-1a" =1, then (Xaots1ym+25+1)meN, IS a constant sequence, for every 2s +1 € {k—2,k—1,...,3k — 3}.
(h) Ify_p/y-1a' = -1, then (X22t+1)m+2s+1)meN, 1S a two-periodic sequence, for every 2s+1 € {k—2,k-1,...,3k—-3}.

5. Domain of Undefinable Solutions

As we have seen in Section 2 if x_; = 0 for some i € {1,2, ...,k + 2}, then such solutions are not defined.
The set of all initial values for which solutions to equation (3) under some natural conditions are not defined,
so called, domain of undefinable solutions of equation (3), is described here. Before we formulate the main
result in this section we will give definition of the notion ([34]).

Definition 1. Consider the difference equation
Xn = f(x‘rl—ll e rxn—srn)r ne NO/ (84)

wheres € N, and x_; € R, i = 1,5. The string of numbers x_, ..., X_1,Xo,..., Xy, Where ny > =1, is called an
undefined solution of equation (84) if

x]- = f(x]-_l, .. .,x]-_s, ])
for 0 < j <ng+1, and xpy 11 is not defined number, that is, the quantity f(xp,, ..., Xny—s+1, Ho + 1) is not defined.

The set of all initial values x_s, ..., x_1 which generate undefined solutions to equation (84) is called domain of
undefinable solutions of the equation.

Now we formulate and prove the main result in this section.
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Theorem 4. Assume that a, # 0, b, # 0, n € Ny. Then the domain of undefinable solutions to equation (3) is the
following set

1 m -1
1 baj+i 1
_ k+2 . ... . _ — ]
U = U U {(x,(kﬂ), co,X21) €E R X X0 = = when ¢, := E - | | * 0}

P
melNy i=0 m =0 g i
k+2

U U {(x_(k+2), .. ,x_1) € Rk+2 X = O}.
j=1

Proof. The consideration at the beginning of Section 2 shows that the set

k+2

U {(x_(k+2), . ,x_l) € ]Rk+2 X = 0}

j=1

belongs to the domain of undefinable solutions to equation (3). Hence, now assume that x_; # 0, i €
{1,...,k+2},ie, thatx, # 0 forn > —(k+2). If such a solution (x;),>_+2) of equation (3) is not defined then
clearly x,_2x,_x—» = —a, /b, for some n € INy. By using the change of variables (7) and the representation of
integers n > -2, in the formn = 2m +i, m > —1,1i € {0, 1}, equation (3) is transformed into the two equations
in (9), which means that a solution x, of difference equation (3) is not defined when youu—1y+i = —bomri/A2m+i
for some m € Ny and i € {0, 1}.
Let
Gom+i(t) == aomeit + bomsi, m € Ny, i € {0,1}.

Then g, () := (t — bow+i)/a2msi, m € Ny, i € {0,1}, and specially

gk (0) = b e N, i€ 0,1), (85)

Aom+i

Note that the equations in (9) can be written in the form yyu+i = gom+i(Youm-1)+i), m = =1, 1 € {0,1}, which
implies that

Yomsi = Gom+i © Gom-1)+i © -+ - © gi(yi—2), m €Ny, i € {0,1}. (86)
From (85) and (86) it follows that y2¢u—1)+i = —bom+i/Aom+i for some m € Ny, i € {0, 1}, if and only if
Yia=g; oo !75(1,%,1)+i(—b2m+i/112m+i), m € Ny, i € {0,1},
that is,
Yia=g;'o---og,t (0), meN, i€f0,1}. (87)

It is not difficult to see (similar to getting the formula for general solution to the linear first order
difference equation) that (87) implies

j-1

ji+i 1
|} ot
j+i a1+

a
JHi]

Yi-2 = — Z

m bz
=0 2

for some m € Ny and i € {0, 1}. From this and since

1

—, 1€{0,1},
Xi—2Xi—k-2

Yi-2 =

the result easily follows. O
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