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A New Note on Absolute Riezs Summability.I
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Abstract. In [6], we proved a theorem dealing with absolute Riesz summability. In this paper, we prove
that result under more weaker conditions. This theorem also includes some new results.

1. Introduction

A positive sequence (b,) is said to be an almost increasing sequence if there exists a positive increasing
sequence (c,) and two positive constants A and B such that Ac, < b, < Bc, (see [1]). Let ) a, be a given

infinite series with the sequence of partial sums (s,). We denote by u, and t, the nth (C, 1) means of the
sequences (s,) and (na,), respectively. The series ) a, is said to be summable | C, 1 |, k > 1, if (see [7])

k-1 o Tt
Zn Iun—un_1|=Z—<oo.
n=1 n

n=1

1)
Let (p,) be a sequence of positive numbers such that

n
Pn=ZPv—>oo as n—oo, (Pi=p;=0,ix1).
v=0

2)
The sequence-to-sequence transformation
1 n
R, = P_n ; PovSv

(©)
defines the sequence (R,) of the Riesz mean or simply the (N, p,) mean of the sequence (s,), generated by
the sequence of coefficients (p,) (see [8]). Let (0,) be any sequence of positive constants. The series }; a, is
said to be summable | N, p,, 0, Ik, k > 1, if (see [10])

Y 051 IRy - Ry < oo,

n=1

(4)

2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99

Keywords. Absolute summability factors; almost increasing sequences; Riesz mean; infinite series; Holder inequality; Minkowski
inequality

Received: 30 June 2013; Accepted: 19 March 2014

Communicated by Dragan S. Djordjevic

Email address: hbor33@gmail.com (Hiiseyin Bor)



Hiiseyin Bor / Filomat 28:7 (2014), 1457-1462 1458

If we take 6, = %, then | N, p, 0, [x summability reduces to | N, p, |, summability ( see [2]). In the special

case p, = 1 for all values of n, | N, p, |, summability reduces to | C,1 | summability. Also, if we take 0, = n
and p, = 1 for all values of n, then we get | C,1 |y summability. Furthermore, if we take 6, = n, then
| N, pn, 6, Ik summability reduces to | R, p, |« (see [4]) summability.

2. The Known Result

In [6], we proved the following main theorem dealing with | N, p, |  summability factors of infinite series.

Theorem A. Let (X)) be an almost increasing sequence and let (eg—f:”) be a non-increasing sequence. Suppose

also that there exists sequences (8,) and (A,) such that

| Ady |< Ba, ®)
pn—0 as n— oo, (6)
Y AR I X < o0, )
n=1
| An | Xy = O(1). 8)
If

m It |k

O = O(X,) s m— oo )

n

n=1

and (p,) is a sequence such that

P, = O(npy), (10)
PnApn = O(pnpn+l)/ (11)
then the series )., ay IZ’;]" is summable | N, p,, 0, |i,k > 1.
If we take 0,, = % and consider (10), then we get a result dealing with | N, vy Ik summability factors of infi-
ann

nite series (see [5]). In this case, the condition ” —5)isanon-increasing sequence ” is automatically satisfied.
3. The Main Result

The aim of this paper is to prove Theorem A under more weaker conditions. Now we shall prove the
following theorem.

ann

n

Theorem . Let (X,;) be an almost increasing sequence and let (

conditions (5)-(8), (10)-(11) and

) be a non-increasing sequence. If the

m

k
Z k-1 'kg’;k|_1 = O(X,) as m— oo (12)
n n

n=1

Py,

are satisfied , then the series ) a, is summable | N, p,, 0, Ix, k > 1.

n=1 NPy
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Remark 1. It should be noted that condition (12) is reduced to the condition (9) when k=1. When k > 1,
the condition (12) is weaker than the condition (9), but the converse is not true. As in [12] we can show that

if (9) is satisfied, then we get that

m

w1 Lt klltlk_
G T T Xk : Ze = O(X).

n=1

If (12) is satisfied, then for k > 1 we obtain that

k1|t| k-1 kll k-1 i1 |t [ K
Ze Z@ k kX“_O(X )Z@ kxkl—O(Xm)iO(Xm).

Remark 2. It should be noted that under the conditions on the sequence (1,) we have that; (1,) is bounded

and AA, = O(1/n) (see [3]).
We require the following lemmas for the proof of the theorem.

Lemma 1 ([9]). If (X,,) is an almost increasing sequence, then under the conditions of the Theorem we have

that

nX,pn = O(1),

iﬁan < 00,
n=1

Lemma 2 ([3]). If the conditions (10) and (11) are satisfied, then A(P,/p,n?) = O(1/n?).
5. Proof of the Theorem

Let (T,) be the sequence of (N, p,) mean of the series ), , “”p A

1 v S a.PA, 1 v a,PyA,
T, = — =— Y (P, - P,q)2=2,
n Pn ;Pv ; T’Pr Pn ;( n v 1) vpv

Then forn > 1

t. Then, by definition, we have

n

n
Pn Z Py_1PyayA, _ Pn Z Py_1P,a,0A,

T,—Ty1 = =
" e PuP, p— UPy P,P, 4 p— UZPv
Using Abel’s transformation, we get
n-1 4 n
P, 1P,A A
T,—T,1 = B ’lg; A(%) ra, + —;Zvav
ntn-1°3 U"Po r=1 n v=1
n—1
p” 14 /\v
= — @+ 1t
PP, L pv( ) oPo 5
p n—1
+ pp” PoPyAdy(v + 1)
nl"n-1 o1 v
n

-1
n 2
PP 0221 PyAyi1(v + Dt, A(Py/07py)

+ Apta(n +1)/n?
= Tn,l + T11,2 + Tn,3 + Tn,4-

(13)

(14)

(15)
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To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

(o)
Z 61;1_1 | T, |k< 0,

n=1

for r=1,2,3,4. (16)

Now, applying Holder’s inequality, we have that

m+1

Y 0Ty

n=2

m+1 P 1 n—lP 1 k
0(1)26“( ) Pk—{Zp—”pvltvllAvlg}
m+1 n-1 k
k1 pn 1 P k 1
0(1)29 ( )PMZ;(pv)pvltllAl =

m k 1 m+1 0 p k-1 p
v k kL npn n
O(”Z(pv) ACLEY =D ( b ) Bp
=1 n=v+1
m k 1 9 P k-1 m+1 P
v k kL v n
o<1)2(pv) po |t 171 Ay | Uk(—Pv) Y .
v=1 n=v+1
m k k-1
Pv 11 vpv
oa — IAI“IAlvltI" ( )
( );(Pv) P U Pv
m k-1 k k=1
o t 1 (Po
omY (5] raci bl e (he)
=1 pv Uka Pz}
m k
1 |t
oM ) 05! =5 1o
v=1 v
m—1 | | |k
o1 AlA, |y 1~ =+ O(1) | Aw | o5 fo
();‘ Zl‘ pxi O Z‘ Xv !
m—1
0() Y 1 Ado | Xy +O(1) | Ay | Xin
v=1

o) iﬁva +O0M) | A | X = O(1)

v=1

as m — oo, by virtue of the hypotheses of the theorem and Lemma 1. By using (10), we have that

m+1

Y O T

n=2

X

m+1 p n—-1 P k
0(1)Ze’< 1(—”) k—{Zp_v|A/\v|Pv|tv I}
n n-1 \o=1 Y

=

m+1 n-1 k
o<1)29" 1( ) 1{2(?) | AAy ] £ |kpv}

w! P
v=1

= k-1
(i 2

~
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m P k m+1 ep k p
fo k k nPn n
O(l);(;?v) | A Tt Fpe Y ( b ) P

n=v+1
m k-1
P k-1
om)y’ (p—) A% 1 1o (22
=1 v v

O() Y | ALy 1 ALy I £, [ 65

v=1

o(1) i BB | £ [F OF7
v=1
0Q1) i (%)kl Bo | to [F 657
v=1 v
m—1
O(1);A(vﬁv Z{ — + O(L)mp,, ZHk ! ,IC;L T

m—1
0(1) Y 1 A@B.) | Xo + O(M)mpXoy
v=1

m—1

OM) Y. 1 @+ DAy = o | Xo + O)mBnXon
v=1

m—1 m—1
O(1) Y 01 Ay | Xo +O(1) Y BuXo + OBy Xon
v=1 v=1

O(1) as m — oo,

in view of the hypotheses of the theorem and Lemma 1. By using Lemma 2, we have that

m+1

Y O T

n=2

m+1 p n-1 1o+1 k
O(l)Z@“(—”) —{Zlm el ] 5= }
=1

n—l v
m+1 k n—1 k
_1(Pn 1 P
o(1) 951(—) —{ |Av+1l—|t I}
; n Pl‘:z—l v=1 p”
m+1 k n-1 k
1 P 1
oa 9“(”—”) L (—) o | Ao L 8o [
()n;n ) m L) pe Ao e
1 n-1 k=1
(=2
m k
omX(—”) Po | Aver ] A Il o |
v=1 pv
m+1 0 p k-1 p
{ng—l( Pn ) Pnpn 1}

m k-1 k=1 k=1
Py 1(1 k gk-1 (P2
oY (5] () raeatn ot (%)
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= oMY A 168 ';,[1
v=1 v
- - k_lly 1t b
- omv;AMwn;er X +O<1>|Am+1|20 T
m—1
= 0() Y 1 Most | Xos1 +O) | At | X
v=1

= 0 ) 1A | Xy + O | Apsr | Xonsa

v=2

m

= 0(1) ) BoXo +O0) | Aer | Xiua
v=1

= 0(1) as m— oo,

by virtue of the hypotheses of the theorem and Lemma 1. Finally, as in T, 3, we have that

- k-1 k - k=1 ”+1)k1 k. ik
T, 1 — | — | ALt

n}ﬂen | Tus | O<>§7 o5 ( =) 1Al

= O(1>§ 6“1 | A 71 A N 8

k—11 1 1 k
- O<1>26n () 1l
Inl"
= Oy |A |9’<1 -=0(1) as m— co.
Z O T

This completes the proof of the theorem. If we take p, = 1 for all values of n, then we get a new result
concerning the | C, 1, 0, |, summability. Also, if we take 0, = n, then we have another new result dealing
with | R, p, |x summability. Finally, if we take 6, = n and p, = 1 for all values of n, then we get a result
concerning the | C, 1 |, summability.
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