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A New Note on Absolute Riezs Summability.I

Hüseyin Bora

aP. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract. In [6], we proved a theorem dealing with absolute Riesz summability. In this paper, we prove
that result under more weaker conditions. This theorem also includes some new results.

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive increasing
sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). Let

∑
an be a given

infinite series with the sequence of partial sums (sn). We denote by un and tn the nth (C, 1) means of the
sequences (sn) and (nan), respectively. The series

∑
an is said to be summable | C, 1 |k, k ≥ 1, if (see [7])

∞∑
n=1

nk−1
| un − un−1 |

k=

∞∑
n=1

| tn |
k

n
< ∞. (1)

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (2)

The sequence-to-sequence transformation

Rn =
1

Pn

n∑
v=0

pvsv (3)

defines the sequence (Rn) of the Riesz mean or simply the (N̄, pn) mean of the sequence (sn), generated by
the sequence of coefficients (pn) (see [8]). Let (θn) be any sequence of positive constants. The series

∑
an is

said to be summable | N̄, pn, θn |k, k ≥ 1, if (see [10])
∞∑

n=1

θk−1
n | Rn − Rn−1 |

k< ∞. (4)
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If we take θn = Pn
pn

, then | N̄, pn, θn |k summability reduces to | N̄, pn |k summability ( see [2]). In the special
case pn = 1 for all values of n, | N̄, pn |k summability reduces to | C, 1 |k summability. Also, if we take θn = n
and pn = 1 for all values of n, then we get | C, 1 |k summability. Furthermore, if we take θn = n, then
| N̄, pn, θn |k summability reduces to | R, pn |k (see [4]) summability.

2. The Known Result

In [6], we proved the following main theorem dealing with | N̄, pn |k summability factors of infinite series.

Theorem A. Let (Xn) be an almost increasing sequence and let (θnpn

Pn
) be a non-increasing sequence. Suppose

also that there exists sequences (βn) and (λn) such that

| ∆λn |≤ βn, (5)

βn → 0 as n→∞, (6)

∞∑
n=1

n | ∆βn | Xn < ∞, (7)

| λn | Xn = O(1). (8)

If

m∑
n=1

θk−1
n
| tn |

k

nk
= O(Xm) as m→∞ (9)

and (pn) is a sequence such that

Pn = O(npn), (10)

Pn∆pn = O(pnpn+1), (11)

then the series
∑
∞

n=1 an
Pnλn
npn

is summable | N̄, pn, θn |k,k ≥ 1.

If we take θn = Pn
pn

and consider (10), then we get a result dealing with | N̄, pn |k summability factors of infi-

nite series (see [5]). In this case, the condition ” (θnpn

Pn
) is a non-increasing sequence ” is automatically satisfied.

3. The Main Result

The aim of this paper is to prove Theorem A under more weaker conditions. Now we shall prove the
following theorem.

Theorem . Let (Xn) be an almost increasing sequence and let
(
θnpn

Pn

)
be a non-increasing sequence. If the

conditions (5)-(8), (10)-(11) and

m∑
n=1

θk−1
n
| tn |

k

nkXk−1
n

= O(Xm) as m→∞ (12)

are satisfied , then the series
∞∑

n=1
an

Pnλn

npn
is summable | N̄, pn, θn |k, k ≥ 1.
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Remark 1. It should be noted that condition (12) is reduced to the condition (9) when k=1 . When k > 1,
the condition (12) is weaker than the condition (9), but the converse is not true. As in [12] we can show that
if (9) is satisfied, then we get that

m∑
n=1

θk−1
n
| tn |

k

nkXk−1
n

= O(
1

Xk−1
1

)
m∑

n=1

θk−1
n
| tn |

k

nk
= O(Xm).

If (12) is satisfied, then for k > 1 we obtain that
m∑

n=1

θk−1
n
| tn |

k

nk
=

m∑
n=1

θk−1
n Xk−1

n
| tn |

k

nkXk−1
n

= O(Xk−1
m )

m∑
n=1

θk−1
n
| tn |

k

nkXk−1
n

= O(Xk
m) , O(Xm).

Remark 2. It should be noted that under the conditions on the sequence (λn) we have that; (λn) is bounded
and ∆λn = O(1/n) (see [3]).
We require the following lemmas for the proof of the theorem.

Lemma 1 ([9]). If (Xn) is an almost increasing sequence, then under the conditions of the Theorem we have
that

nXnβn = O(1), (13)

∞∑
n=1

βnXn < ∞. (14)

Lemma 2 ([3]). If the conditions (10) and (11) are satisfied, then ∆(Pn/pnn2) = O(1/n2).

5. Proof of the Theorem

Let (Tn) be the sequence of (N̄, pn) mean of the series
∑
∞

n=1
anPnλn

npn
. Then, by definition, we have

Tn =
1

Pn

n∑
v=1

pv

v∑
r=1

arPrλr

rpr
=

1
Pn

n∑
v=1

(Pn − Pv−1)
avPvλv

vpv
. (15)

Then for n ≥ 1

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1Pvavλv

vpv
=

pn

PnPn−1

n∑
v=1

Pv−1Pvavvλv

v2pv
.

Using Abel’s transformation, we get

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

∆

(
Pv−1Pvλv

v2pv

) v∑
r=1

rar +
λn

n2

n∑
v=1

vav

=
pn

PnPn−1

n−1∑
v=1

Pv

pv
(v + 1)tvpv

λv

v2

+
pn

PnPn−1

n−1∑
v=1

PvPv∆λv(v + 1)
tv

v2pv

−
pn

PnPn−1

n−1∑
v=1

Pvλv+1(v + 1)tv∆(Pv/v2pv)

+ λntn(n + 1)/n2

= Tn,1 + Tn,2 + Tn,3 + Tn,4.
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To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

θk−1
n | Tn,r |

k< ∞, f or r = 1, 2, 3, 4. (16)

Now, applying Hölder’s inequality, we have that

m+1∑
n=2

θk−1
n | Tn,1 |

k = O(1)
m+1∑
n=2

θk−1
n

( pn

Pn

)k 1
Pk

n−1

n−1∑
v=1

Pv

pv
pv | tv || λv |

1
v


k

= O(1)
m+1∑
n=2

θk−1
n

( pn

Pn

)k 1
Pn−1

n−1∑
v=1

(
Pv

pv

)k

pv | tv |
k
| λv |

k 1
vk

×

 1
Pn−1

n−1∑
v=1

pv


k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

pv | tv |
k
| λv |

k 1
vk

m+1∑
n=v+1

(
θnpn

Pn

)k−1 pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

pv

)k

pv | tv |
k
| λv |

k 1
vk

(
θvpv

Pv

)k−1 m+1∑
n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

pv

)k

| λv |
k−1
| λv | pv | tv |

k 1
Pv

1
vk

(
θvpv

Pv

)k−1

= O(1)
m∑

v=1

(
Pv

pv

)k−1

| λv |
| tv |

k

vkXv
k−1

θk−1
v

( pv

Pv

)k−1

= O(1)
m∑

v=1

θk−1
v
| tv |

k

vkXv
k−1
| λv |

= O(1)
m−1∑
v=1

∆ | λv |

v∑
r=1

θk−1
r
| tr |

k

rkXr
k−1

+ O(1) | λm |

m∑
v=1

θk−1
v
| tv |

k

vkXv
k−1

= O(1)
m−1∑
v=1

| ∆λv | Xv + O(1) | λm | Xm

= O(1)
m−1∑
v=1

βvXv + O(1) | λm | Xm = O(1)

as m→∞, by virtue of the hypotheses of the theorem and Lemma 1. By using (10), we have that

m+1∑
n=2

θk−1
n | Tn,2 |

k = O(1)
m+1∑
n=2

θk−1
n

( pn

Pn

)k 1
Pk

n−1

n−1∑
v=1

Pv

pv
| ∆λv | pv | tv |


k

= O(1)
m+1∑
n=2

θk−1
n

( pn

Pn

)k 1
Pn−1

n−1∑
v=1

(
Pv

pv

)k

| ∆λv |
k
| tv |

k pv


×

 1
Pn−1

n−1∑
v=1

pv


k−1
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= O(1)
m∑

v=1

(
Pv

pv

)k

| ∆λv |
k
| tv |

k pv

m+1∑
n=v+1

(
θnpn

Pn

)k pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

pv

)k−1

| ∆λv |
k
| tv |

k θk−1
v

( pv

Pv

)k−1

= O(1)
m∑

v=1

| ∆λv |
k−1
| ∆λv || tv |

k θk−1
v

= O(1)
m∑

v=1

βv
k−1βv | tv |

k θk−1
v

= O(1)
m∑

v=1

( 1
vXv

)k−1

βv | tv |
k θk−1

v

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

θk−1
r
| tr |

k

rkXr
k−1

+ O(1)mβm

m∑
v=1

θk−1
v
| tv |

k

vkXv
k−1

= O(1)
m−1∑
v=1

| ∆(vβv) | Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

| (v + 1)∆βv − βv | Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

v | ∆βv | Xv + O(1)
m−1∑
v=1

βvXv + O(1)mβmXm

= O(1) as m→∞,

in view of the hypotheses of the theorem and Lemma 1. By using Lemma 2, we have that

m+1∑
n=2

θk−1
n | Tn,3 |

k = O(1)
m+1∑
n=2

θk−1
n

( pn

Pn

)k 1
Pk

n−1

n−1∑
v=1

Pv | λv+1 || tv |
1
v

v + 1
v


k

= O(1)
m+1∑
n=2

θk−1
n

( pn

Pn

)k 1
Pk

n−1

n−1∑
v=1

Pv

pv
pv | λv+1 |

1
v
| tv |


k

= O(1)
m+1∑
n=2

θk−1
n

( pn

Pn

)k 1
Pk

n−1

n−1∑
v=1

(
Pv

pv

)k

pv
1
vk
| λv+1 |

k
| tv |

k


×

 1
Pn−1

n−1∑
v=1

pv


k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

pv
1
vk
| λv+1 |

k−1
| λv+1 || tv |

k

×

 m+1∑
n=v+1

(
θnpn

Pn

)k−1 pn

PnPn−1


= O(1)

m∑
v=1

(
Pv

pv

)k−1 1
vk

( 1
Xv

)k−1

| λv+1 || tv |
k θk−1

v

( pv

Pv

)k−1
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= O(1)
m∑

v=1

| λv+1 | θ
k−1
v
| tv |

k

vkXv
k−1

= O(1)
m−1∑
v=1

∆ | λv+1 |

v∑
r=1

θk−1
r
| tr |

k

rkXr
k−1

+ O(1) | λm+1 |

m∑
v=1

θk−1
v
| tv |

k

vkXv
k−1

= O(1)
m−1∑
v=1

| ∆λv+1 | Xv+1 + O(1) | λm+1 | Xm+1

= O(1)
m∑

v=2

| ∆λv | Xv + O(1) | λm+1 | Xm+1

= O(1)
m∑

v=1

βvXv + O(1) | λm+1 | Xm+1

= O(1) as m→∞,

by virtue of the hypotheses of the theorem and Lemma 1. Finally, as in Tn,3, we have that

m∑
n=1

θk−1
n | Tn,4 |

k = O(1)
m∑

n=1

θk−1
n

(n + 1
n

)k 1
nk
| λn |

k
| tn |

k

= O(1)
m∑

n=1

θk−1
n

1
nk
| λn |

k−1
| λn || tn |

k

= O(1)
m∑

n=1

θk−1
n

1
nk

( 1
Xn

)k−1

| λn || tn |
k

= O(1)
m∑

n=1

| λn | θ
k−1
n
| tn |

k

nkXn
k−1

= O(1) as m→∞.

This completes the proof of the theorem. If we take pn = 1 for all values of n, then we get a new result
concerning the | C, 1, θn |k summability. Also, if we take θn = n, then we have another new result dealing
with | R, pn |k summability. Finally, if we take θn = n and pn = 1 for all values of n, then we get a result
concerning the | C, 1 |k summability.
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