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Additive Difference Scheme for Two-Dimensional Fractional
in Time Diffusion Equation

Sandra Hodzi¢-Zivanovié?, Bosko S. Jovanovié®

*University of Belgrade, Faculty of Mathematics

Abstract. An additive finite-difference scheme for numerical approximation of initial-boundary value
problem for two-dimensional fractional in time diffusion equation is proposed. Its stability is investigated
and a convergence rate estimate is obtained.

1. Introduction

There has been increasing interest in the description of physical and chemical processes by means of
equations involving fractional derivatives and integrals over the last decade. Fractional partial differential
equations are used for the description of large classes processes that occur in media with fractal geometry,
disordered materials, viscoelastic media as well as in the mathematical modeling of economic, biological
and social phenomena (see [8, 12, 13]).

The time fractional diffusion equation is obtained from the classical diffusion equation by replacing the
first order time derivative by a fractional derivative of order @ with 0 < a < 1. It represents anomalous sub-
diffusion which has been investigated by many authors. In this article we consider the first initial-boundary
value problem for two-dimensional fractional in time diffusion equation. The problem is approximated
by additive finite difference scheme. Contrary to explicit scheme, which is unstable, and implicit scheme
[16], which is not numerically efficient, additive scheme is absolutely stable and efficient. Locally one-
dimensional difference schemes for the fractional order diffusion equation are investigated in [3, 9].

The paper is organized as follows. In Section 2 we introduce Riemann-Liouville fractional derivative.
In Section 3 we define some function spaces containing functions with fractional derivatives. In Section 4
we expose the problem and prove existence and uniqueness of its weak solution. In Section 5 we define
additive difference scheme approximating considered problem and prove its stability. In Section 6 we
investigate the convergence of proposed difference scheme. One numerical example is presented in Section

7.
2. Fractional Derivatives

There are two most popular ways to express fractional derivative: Caputo and Riemann-Liouville
definitions. We will use the Riemann-Liouville definition through the paper.

2010 Mathematics Subject Classification. Primary 35R11, 65N12, 65N15

Keywords. fractional derivative, finite differences, additive scheme, stability, convergence rate

Received: 20 November 2014; Accepted: 14 April 2015

Communicated by Dragan S. Djordjevié

Research supported by Ministry of Education, Science and Technological Development of Republic of Serbia under project 174015.
Email addresses: sandra@matf.bg.ac.rs (Sandra HodZi¢-Zivanovi¢), bosko@matf.bg.ac.rs (Bosko S. Jovanovi¢)



S. HodZi¢-Zivanovi¢, B.S. Jovanovié / Filomat 31:2 (2017), 217-226 218

Let u be a function that suppu C [4,b] and k —1 < a < k, k € N. Then the left Riemann-Liouville
fractional derivative of order « is defined to be

1
Do) = 1= dtk (t a+1 e @
and the right Riemann-Liouville fractional derivative is defined analogously
" —1)F _ou(t)
Dyult) = F(k o) dtk (= oyt 1T @

where the I'(-) denotes the Gamma function. Notice that if function u(t) has k-order continuous derivative
in [a,b], then as &« — k or @ — k — 1, the left (right) Riemann-Liouville derivative becomes a standard k- or
(k — 1)-order derivative of u(t).

Because of the integral in the definition of the fractional order derivatives, it is apparent that these
derivatives are nonlocal operators.

For the functions of many variables, the partial Riemann-Liouville fractional derivatives are defined in
an analogous manner, for example

ta+

1 o u(x, 7)
u(x, t) = T(k—a)ﬁf(t—r)a“—kd@ k—-1l<a<k kelN.

3. Some Function Spaces

We define some function spaces, norms and inner products that we will use thereafter. Let Q) be an
open domain in R". With C(Q2) and C*(Q2) we denote the spaces of k-fold differentiable functions in Q and
Q, respectively. In particular, C*(Q2) = C3°(Q) stand for the space of infinitely differentiable functions with
compact support in Q). As usual, the space of measurable functions whose square is Lebesgue integrable in
Q is denoted by L?*(Q). The inner product and norm in that space are defined by

(1,90 = (1, D)2 = f wdQ,  lulla =l = (o, 102,
Q

We also use H*(Q) and H*(Q) = HE(€) to denote the usual Sobolev spaces [11] whose norms are denoted

by |lullre(0-
For non-integer @ > 0 we set

lulcafap) = 1Dy ullcrap, [ulcerap = ID;_ullcrap,

1/2
2 2
lellczgaps = (Il + 40eeian)
[ulpe @y = 1D wlli20,p), [ulre o5) = ID;_ullr2a,p)
and

By 1/2
etz oy = (1lorg gy + o) -

where [a] denotes the largest integer < a. Then we define C[4,b] as the space of functions u € Cl%[q, D]
with the finite norm [[ul|cs[45). The space H{(a, b) is defined analogously, while the space H{(a, b) is defined
as the closure of C*(a, b) with respect to the norm ||+ ||z (4,5. Because for a = k € N U {0} fractional derivative
reduces to standard k-th derivative, we set C’; [a,b] = CF[a,b] and HX (a,b) = H*(a, b).

Lemma 3.1. (See [10]) Let 0 < a <1, u € H%(a,b) and v € H*(a, b). Then

(D1, 0)12apy = (4, Dy_0) 20,1
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Lemma 3.2. (See [6]) Let & > 0, u € C*°(R) and supp u C (a, b). Then

2

(Dg, 1, Dyy_ )12,y = cos ma|IDg ull, -

Fora>0,a#n+1/2, n €N, we set

1/2
1/2 2 2
julie = (D%, DY iz, Ml = (el + Iilye)

Lemma 3.3. (See [10]) For a > 0, & # k + 1/2, k € N, the spaces H%(a, b), H%(a, b), H%(a, b) and H%(a, b) are equal
and their seminorms as well as norms are equivalent.

For the vector valued functions mapping real interval (0, T) (or [0, T]) into Banach space X we introduce
the spaces Ck([0, T, X), k € N U {0} and H*((0, T), X), @ > 0, in the usual way [11]. In analogous manner we
define the spaces C$([0, T], X) and H5((0, T), X).

Through the paper by C we will denote positive generic constant which not depend on the solution of
the problem and discretization parameters.

4. Problem Formulation

Let0 <a<1,Q=1(0,1)x(0,1) and Q = Q x (0, T). We shall consider the time fractional diffusion
equation

D;fOJru - g%l - 3271;[ = f(x,y,t), (xyt)eQ, 3)
subject to homogeneous initial and boundary conditions

ulx,y,t)=0, (x,y)edQ, te(©T) 4)

u(x,y,0)=0, (x,y)€Q 5)

Initial-boundary value problem (3)-(5) is often called sub-diffusion problem.

Taking inner product of equation (3) with test function v and using Lemma 1 and properties of fractional
derivatives one obtains the following weak formulation of the problem (3)-(5) (see [10]): find u € H'*/2(Q)
such that

a(u,v) = 1(v), VYve H"?Q), (6)
where
H"2(Q) = L*((0, T), H'(Q)) N H**((0, T), L*(Y)),

the bilinear form a(:, ) is defined by

a(u,v) = (D“/2 u, DZ/TZ_U)Q + (

t,0+

Ju dv Jdu Jdv
a3t Gy e

and the linear functional I(*) is given by
I(v) = (f,v)q-

Now, from lemmas 3.1-3.3 and the Lax-Milgram lemma, we immediately obtain the following result
(see [10]):

Theorem 4.1. For all a € (0,1), and f € L*(Q), the problem (6) is well posed and its solution satisfies a priori
estimate

||u||Hl,tY/2(Q) < C”f”LZ(Q)
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5. Finite Difference Approximation

In the area Q = [0,1] x [0,1] % [0, T], we define the uniform mesh Qy, = @), X @., where &), = {(x;, yj) =
(ih, jm)1i,j =0,1,..,n; h = 1/n} and @, = {tx = kt|k = 0,1,...,2m; T = T/2m}. We also define w, = @, N Q,
Yh = @y \ wy, wy, = @ N (0,11 X (0,1), wy, = @, N (0,1) X (0,1], w; = @ N (0, T), w; = W N [0,T) and
w} = @ N (0, T]. We will use standard notation from the theory of the finite difference schemes (see [14]):

v=u(x,yt), O=v(xyt+1), o= o,y k), (x,Yy) € dp,

U(x + h/ Y, t) - U(x, Y, t) U(x, Y, t) - U(x - hr Y, t)
Oy = 7 Oz = 7
h h
o(x,y +h,t)—o(x,y,1) v(x, y,t) —ov(x,y —h,t)
'Uy = h 7 ’Uy = h .

For a function u defined on Q which satisfies zero initial condition, we approximate the left Riemann-
Liouville fractional derivative Df‘o Lu(x, y, ty) by (see [5]):

(At 0s. Tu)k 1—-(2 a) Z(tl a _ tl a 1)”1‘

We approximate the initial-boundary value problem (3)-(5) with the following additive finite difference
scheme:

(Afg, ) =208 = N () ewy, k=1,2,...,m, )

(A, 0 =20% = %, (y ean, k=12,...,m, (8)
subject to zero boundary and initial conditions:

v,y ) =0, (xyt)€ynXay, ©)

o, y,00=0, (xy) € oy (10)

When the right-hand side f is continuous function, we set f = f, otherwise we must use some averaged
value, for example f = T1 T, f, where T7 and T) are Steklov averaging operators:

1/2 1/2
Tif(x,y,t) = ff(x+hs,y,t)ds, Tof(x,y,t) = ff(x,y+hs,t)ds
-1/2 -1/2

Notice that on each time level the finite difference scheme (7)-(10) is one-dimensional problem, which
reduces to n independent linear systems with three-diagonal matrices. On the other hand, the solution v
on time level t; explicitly depends on the solutions at all previous time levels. Thus, numerical effort is
O(n*m>).

We define the following discrete inner products and norms:

1/2
0w = @0y =H Y vw, ol = ol = ©0);%,
(x,y)Ewy
1/2 .
0 = @ W@y =1 Y, vw, ol = ol = @))%, =12,
(xry)ewzh
2m 1/2
loll2(q,.) =( vafuﬁ) :
j=1

2m 1/2

k
lollg@, [TZ ([ RS N TZ(A?M(HUHi))]

m
k=1 k=1
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Lemma 5.1. ([1]; see also generalized result in [2]) For 0 < a < 1 and any function v(t) defined on mesh @, one has
equality

1 _ k-1
(A, 0 = E(A;YOH(UZ)) 2F(2 ) Z 4l —a (wk)2+a11(wk)2 (11)

I=1
where a; = 1'% — (1 = 1)'=* and

wizfc a0, 1=1,2,...,k

Lemma 5.2. For 0 < o < 1 and any function v(t) defined on mesh @, the following inequality is valid

@ kol 20\ (- (1-27) k 1y2
(At 0+,7 ) 2 (At 0+, r( )) T(2-a) )" (12)
Proof. For k > 2, using Lemma 5.1 and obvious inequality a;}; > a;!, we obtain
KA 1 2 (N 1 1Y (1Y 4 g1 (o
(A, 0 - ( T )) —m (“ —ay!) (w} ) +a; (wk)

= 2r(72_i a) [(2l—a1 1 1) () + (i + 705_1)2]

- w1 2
[( k +1 21—a—1vf-1] +2(1 - 27972 (“)}

Q- || Va1
whereby it follows result. For k = 1 result is obvious because the sum on the right-hand side of (11) reduces
toa;! (wh)? = @))% O
Lemma 5.3. (See [5]) For every function v(t) defined on the mesh @, which satisfies v(0) = 0 the following equality
is valid

2m

TZ( t0+r(7]2) )Z SN t;m“k)(vk)z.

k=1
In particular, from Lemma 5.3 follows that the norm [[v]|gi.02(q, ) is well defined.

Theorem 5.4. Let o € (0,1). Then the finite difference scheme (7)-(10) is absolutely stable and its solution satisfies
the following a priori estimate:

l0llgrar(g,,) < C||f_||L2(Qh,) (13)

2k—1

Proof. Taking inner products of equations (7) and (8) with v*~! and v, respectively, we obtain

2k-1
2k—1 a 2k-1 . 2k-1\ _ ( 2k-1 _2k-1
( (At0+7 ) )h_z(vxx /v )h - (f 4 )h’

( (A?O+T )2 ) - 2( Oyys Zk)h - ( i UZk)

Using Lemma 5.1, partial summation, Cauchy-Schwarz and ¢ inequalities we further obtain

1 2k-1
O () R e A el 4 s
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1 2% 1
5 (850, (101R))” + 2[5, < e o + 2 11

Using inequalities |[0]? < § ||vs]l?, and [[o]l? < § llogl12, (see [14]), we have

N () I Ol P T

(850, (10I)) + (4= 2 )25, < oz 1P

Now, for suitable ¢, multiplying the last inequalities by T and summing for k = 1, ..., m we obtain the a priori
estimate (13). O

Lemma 5.5. (See [15]) Suppose that v € C?[0,], t € w}. Then

DS v — AY

t,0+ t,0+,rv| =T

_ - 24
7 oo g (27| maxer)l

1 1 |1-a 22-a
1-«

6. Convergence of the Difference Scheme

Let u be the solution of the initial-boundary-value problem (3)-(5) and v the solution of the difference
problem (7)-(10) with f = T1T,f. The error z = u — v is defined on the mesh @), X @,. Putting v = —z + u into
(7)-(10) it follows that error satisfies

(Aifm,TZ)Zk_l 22 =y, (y)ewn, k=12,...,m, (14)

(Agmﬂz)Zk - 22% = ék, vy ewy, k=1,2,...,m, (15)

z=0, (x,y)€yy tE€wy, (16)

2= z(x,4,0) =0, (x,y) € wp, 17)
where

t,0+,T

2k-1
%k—l — (Aa T/l) _ zuiﬂ%—l _ Tl T2f2k—1

= (ay

t,0+,T

k-1 821,[ 2k-1 azu 321/[ 2k-1 ~ - 3
u-— T1T2fo0+u) + 2(T1TQW - uxx) +T1T, (a—y2 — ﬁ) - EZk 14 T[%k 1, sz 1

and

2k
% = (A, u) - 202 - Ty T,

t,0+,7
2k 2% 2%
_ Pu Pu _ Pu _ 2% 2k 2k
= (A8, u = TiT:D% u) +2(TiTo 3% —uyg) —TiTo (54 - %) = %+ - )%
Further, using properties of Steklov averaging operators, we obtain

m =Gy, 2= Cay,

where

Gyt = Z(ng—Z(x “ /2,9, 8) — us(x, t)), G, b = 2(T1§—;(x, Y= 1/2,8) - ug(x, y, t)).
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Lemma 6.1. The finite difference scheme (14)-(17) is absolutely stable and the following a priori estimate holds:

2m 1/2

Izl /Z(Qh)<c( ZuéknhHZnGk 1||1h+TZ||c§k||2h+r an%" 1||,1+T““Z||x2k||i) . )

k=1

Proof. Taking inner products of (14) and (15) with zZ*! and z%, respectively, and performing summation by
part, we obtain

2k-1
2%-1 (pa 2k-1 2k-1 2k-1) _ (g2k-1 2k-1) _ (r2k=1 ,2k-1 2%k-1 2k-1
( (At 0+,7 ) )h +2 “Z th (lpl 'Z )h B ((E /% )h (Cl 123 )m * (X ’Z )h

and

( (A?OH )2k) +2“ 2kH2h (wék sz) _ (Ezk/ Zk) (Czk Zk) (XZk’ZZk)h‘

By summing the last two equalities and using (12) it follows that

1 291 = 27%)
5 (A0, <l 2R) <o

2k-1 2k-1 2k 2k 2k-1 2k-1 2k 2k 2k 2k-1 2k-1 2k 2k 2k—1
< (&%) # (&, 2%), - (B, - (88 ), — (-2, - (0 2 -2

Next, we estimate the terms at the right-hand side:

Ao (-2

25+ 220+ 5 (A CI=IR) + m—_a

3 22

=

(20, 20) | < 12+ o €l = 2 1+ 5 e
(2,2, < 5 10+ 5 uazknh_mn S I
(@2, < 5120, + 5 18,

(@ %l <5105+ ||c§kuih,

(o2 = e 2 < el e 5
(ka %) L= (%, 2 | < SR + T

For c = F(Z—a) ) and sufficiently small ¢, from previous inequalities one obtains

(A5, (HIR)) "+ (A5, o (1)) + 2, + (124,

< (e + e+ N, + N, + 2 e + == o).
Result follows after summation fork=1,2,...,m. [

In such a way, to obtain the error bound of finite difference scheme (7)-(10) it is sufficient to estimate the
right-hand side terms in (18).

Theorem 6.2. Let the solution u of initial-boundary value problem (3)-(5) belongs to the space C*([0,T],C(Q)) N
CY([0, T1, H*(Q2))NC([0, T, H*(Q)). Then the solution v of finite difference scheme (7)-(10) with f = T, T f converges
to u and the following convergence rate estimate holds:

llu = Vllprar g,y = O + /).
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Proof. Letusset & =& + &, where
&1 = A(t)fm- U Dt o+H4 &2 = Dzo+” - TlTZngu - t0+(u T1Tou).

From Lemma 5.5 immediately follows

1/2

2m
(T z ||5]{|Iﬁ) < CT lullex oy -

k=1

From integral representation

1 x+h/2 y+h/2 X Y 8211
u(x, ) - T T M(X, ) = —f f (f f (x/// /l)d //dx//
/ v Y W2 Jynp y—h/2 v Jy 9xdy yay

Y
—_ f a 2( //// y )dx///dx// f 8 2 (x ylll) dyllldyll) dyldx
x/ x” v
one easily obtains
2m 1/2 2m 1/2
(T Z ||5}§||ﬁ) < Cl’lz(’[ Z IDF, u(, fk)||H2(Q)) < CI? llulles o1y 2(0)-
k=1 k=1

Using Bramble-Hilbert lemma [4] and methodology presented in [7] one obtains

1/2

m
(2||c2k "R, + 2||c§k||§h) < I ulleqormy (-

k=1 k=1
Term x can be estimated directly: [|x(-,-, Hllx < Cllu(:, -, t)llgq), Whereby it follows that

1/2

m m
(THD‘Z ||X2k||i) < Ct? |[ulleqo 20 and ( Z [l 1||h) < Ct|ullerqo,11,12(0))-

k=1
Result follows from (18)-(22). O
7. Numerical Example

We considered initial-boundary value problem (3)-(5) with

224

(19)

(20)

(21)

(22)

whose exact solution is u = sin(nx) sin(ry)#>. For different values of «, the problem is solved by using

additive difference scheme (7)-(10).

The errors and convergence rates, in space and time directions, in L? and B*/2 norm, are presented in
Tables 1-4. The obtained results suggests that the convergence in  direction is even faster than predicted

O(z*/?). This will be subject of our future investigations.
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Table 1: The error and convergence rate in space direction with fixed T = 272 (in L? norm)

Tl
af Bl el | 108 E
05[22 9.07810-1072 2.03
273 | 222514103 2.01

274 | 55361010~ 2.00

25| 1.38200-10* no data

09| 22 | 854922-107 2.02
273 | 210267 - 1073 2.00

274 | 525980 - 10~ 1.97

275 | 1.33970-10* no data

Table 2: The error and convergence rate in time direction with fixed & = 27! (in L? norm)

al T lzlli2(,.) | log, m&
i L2Quy /)

0.5 [ 273 ] 757410-107* 1.47
274 | 2.74110-107* 1.47

2751 9.90400 - 107° 1.47

276 | 3.56710-107° no data

09 [ 23] 3.68682-107° 1.12
274 | 1.70209 - 1073 1.11

275 | 7.90220-107* 1.10

276 | 3.67880-107* no data

Table 3: The error and convergence rate in space direction with fixed 7 = 2712 (in B¥*/2 norm)

Mell1.ar2(q,

o h ”Z”BLMZ(Q,,,.[) IOgZ W
0.5 ] 272 [ 3.15568 - 1072 2.01
273 | 7.85253-1073 2.00

274 | 1.96106 - 1073 2.00

275 | 4.90300-107* no data

0.9 [ 272 [ 3.35193 - 1072 2.01
273 | 8.33999 - 1073 2.00

2741 2.09138-1073 1.98

275 | 5.32060 - 10~* no data

Table 4: The error and convergence rate in time direction with fixed & = 271 (in BY*/2 norm)

al| T l12llrerq, ) | 10g, le‘]HBWZ(QW
" BLY2(Q), 1 /0)

0.5 [ 2732585621073 1.46
2741 9.37210-10~* 147

275 | 3.38800-107* 147

276 | 1.22040-107* no data

0.9 [ 273 ] 1.29852 - 1072 1.11
2741 6.03312-1073 1.11

275 | 2.80974 - 1073 1.10

276 | 1.31002 - 1073 no data
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14

12

X: 05313
Y: 05156
2:0.9954

Fig.1 Numerical solution at time level t=1, witha = 0.9, h =27, 7 =27¢
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