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Generalized Baskakov Kantorovich Operators

P. N. Agrawal?, Meenu Goyal®

?Department of Mathematics Indian Institute of Technology Roorkee Roorkee-247667, India

Abstract. In this paper, we construct generalized Baskakov Kantorovich operators. We establish some
direct results and then study weighted approximation, simultaneous approximation and statistical con-
vergence properties for these operators. Finally, we obtain the rate of convergence for functions having a
derivative coinciding almost everywhere with a function of bounded variation for these operators.

1. Introduction

In [27], for f € L1]0, 1] (the class of Lebesgue integrable functions on [0, 1]), Kantorovich introduced the
operators

n 1
K0 = 00D Y pua@) [ wsrfco
k=0 0

where p,, r(x) = (Z)xk (1-x)"*, x € [0, 1] is the Bernstein basis function and Xnk(t)is the characteristic function

of the interval [%, %] Many authors studied the approximation properties of these operators. In [10],
Butzer proved Voronovskaja type theorem for the Kantorovich polynomials, then in [1], Abel derived
the complete asymptotic expansion and studied simultaneous approximation, rate of convergence and
asymptotic expansion for derivatives of these polynomials. Mahmudov and Sabancigil [32] investigated a
g—analogue of the operators K,, and studied the local and global results and a Voronovskaja type theorem
for the case 0 < g < 1.
Besides the applications of g—calculus in approximation theory, the approximation of functions by linear
positive operators using statistical convergence is also an active area of research. The concept of statistical
convergence was introduced by Fast [17]. Gadjiev and Orhan [19] examined it for the first time for linear
positive operators. After that many researchers have investigated the statistical convergence properties for
several sequences and classes of linear positive operators (cf. [6,7, 13,14, 16,19, 23, 26, 29, 31, 34, 36, 38, 39]).
The rate of convergence for functions of bounded variation and for functions with a derivative of
bounded variation is an another important topic of research. Cheng [11] estimated the rate of convergence of
Bernstein polynomials for functions of bounded variation. Guo [20] studied it for the Bernstein-Durrmeyer
polynomials by using Berry Esseen theorem. Srivastava and Gupta [42] introduced a new sequence of linear
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positive operators which includes several well known operators as its special cases and investigated the
rate of convergence of these operators by means of the decomposition technique for functions of bounded
variation. Subsequently, the rate of convergence for functions of bounded variation and for functions with
a derivative of bounded variation was examined for several sequences of linear positive operators. In this
direction, the significant contributions have been made by (cf. [2, 25, 28, 37] and [41] etc.).

Several authors have proposed the Kantorovich-type modification of different linear positive operators
and studied their approximation properties related with the operators. In [22] and [31], researchers intro-
duced the generalizations of the g-Baskakov-Kantorovich operators and studied their weighted statistical
approximation properties.

In 1998, Mihesan [33] introduced the generalized Baskakov operators B;, , defined as

B (fi%) = Z L f(—)

where .
Wi (x) = et B e Py(n,a) = Z (’lf)(n)iak—i, and (n)y = 1,(n); =n(m+1)---(m+i—1), fori > 1. In [15],

(1+x n+k/
i=0

Erencin defined the Durrmeyer type modification of these operators as

n\J s - o nk B(k =+ 1, n) 0 (1 + t);1+k+1 7 Z U,

and discussed some approximation properties. Very recently, Agrawal et al. [4] studied the simultaneous
approximation and approximation of functions having derivatives of bounded variation by these operators.

Later, Agrawal et al. [3] considered a new kind of Durrmeyer type modification of the generalized
Baskakov operators having weights of Szdsz basis function and studied some approximation properties of
these operators.

Motivated by the above work, we consider the Kantorovich modification of generalized Baskakov operators
for the function f defined on C, [0, o0) := {f € C[0, 00) : |f(t)] < M(1 +#),t > 0 for some y > 0} as follows :

k+1
n+1

Ki(f;X)=(n+1)ZW;’,k(x)f f(bdt, a>0. )
=0 :

n+l

As a special case, for a = 0 these operators include the well known Baskakov-Kantorovich operators (see e.g.
[44]). The purpose of this paper is to study some local direct results, degree of approximation for functions
in a Lipschitz type space, approximation of continuous functions with polynomial growth, simultaneous
approximation, statistical convergence and the approximation of absolutely continuous functions having a
derivative coinciding almost everywhere with a function of bounded variation by the operators defined in

).

Throughout this paper, M denotes a constant not necessary the same at each occurrence.

2. Moment Estimates

For r € Ng = IN U {0}, the rth order moment of the generalized Baskakov operators B; , is defined as

Vi, (%) = By (%) = Z ,1k<x>( )

and the central moment of rth order for the operators B; , is defined as

B0 = Bt = 0) = Z ().
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Lemma 2.1. For the function vj, ,(x), we have

1 ax
Uno@) =1, v, () = n+ 1(nx 1T x)

and
x(1+ x)z(v’j,/r(x))’ =+ 11 +x)v) () — @+ n(1 +x))x vy, (x). (2)
Consequently, for each x € [0, 00) and r € N,

vy (X)) = 1"+ n‘l(q,(x, a) + o(1)) 3)

where q,(x, a) is a rational function of x depending on the parameters of a and r.

Proof. The values of v} ,(x),r = 0,1 can be found by a simple computation. Differentiating v}, ,(x) with
respect to x and using the relation

x(1+ x)z( k(x)) ((k —nx)(1+x) - ax)Wfl,k(x),

we can easily get the recurrence relation (2). To prove the last assertion, we note that the equation (3) clearly
holds for r = 1. The rest of the proof follows by using (2) and inductiononr. [J

Lemma 2.2. For the function s, ,(x), we have

. _ a 1 : ax
Hng@) = 1ty () = n+1( xr 1 +x))

and
x(1+ 02, () =

n+1(A+ x)yn 1 () —axps (x) —rx(1 + x)zpn —1(x),r € N. 4)

Consequently,

() w;,,(x) is a rational function of x depending on the parameters a and r;

(ii) for each x € (0,00) and r € Ny, u (x) = O(n~l*+D/2) where [a] denotes the integer part of a.

Proof. Proof of this lemma follows along the lines similar to Lemma 2.1. The consequences (i) and (ii) follow
from (4) by using inductiononr. [

Corollary 2.3. If i, (x) = Z k(x)(——x) then 128, (x) = (n[;]).

Proof. From Lemma 2.2, for each x € [0, c0) we may write

Z ® Ok = nx)’

JTEY)
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Lemma 2.4. For every x € (0,00) and r € Ny, there exist polynomials q; ;(x) in x independent of n and k such that

i ) l. (i,1r(x))
T W) = W, () Z n'(k = nx)y (p](x))r ’

2i+j<r
,j20

where p(x) = x(1 + x)2.

Proof. The proof of this lemma easily follows on proceeding along the lines of the proof of Lemma 4 [40].
Hence the details are omitted. O

Lemma 2.5. For the rth order (r € INo) moment of the operators (1), defined as Ty, ,(x) := Kj(t'; x), we have

. 1 o r+1) 1 .
T = r+1;( j )(n+1)f—fv”ff(x)’

where V7 ,].(x) is the jth order moment of the operators B}, ,.

Consequently, Tho)=1, T} (x) = (nx + 2

n+l 1+x )
" () = 2ax? ) N a’x? N 2ax N 1)
(n 1)2 1+x/ (Q+x?2 1+x 3/
and for each x € (0,00) and r € N, T}, (x) = x" + n7Y(p,(x,a) + 0(1)), where p,(x,a) is a rational function of x
depending on the parameters a and r.

(n2x2 + n(x2 +2x +

Proof. From equation (1), we have

k+1

<n+1>ZW“k<x> [ var

n+1

on+1 (){(k+1)’“ ( k )”1}

B r+14 Wk n+1

1 r+1—j k r+1
n+1) _(n+1) }

(
(= )”1 )
2

T3, (%)

—_

r+1 1 B
) _12( j )W” ©

from which the values of T ,(x),r = 0,1,2 can be found easily. The last assertion follows from equation (5)
by using Lemma 2.1, the required result is immediate. [

Lemma 2.6. For the rth order central moment of K&, defined as
Uy, () := Ky (£ = %) x),

we have
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: — — 1
) 100 = 1,18, () = g —x+ 2+ 1)

1 1
and () = m{nx(x 1) =x(1 -9+ 112 20— 0) + 5

(ii) uj, ,(x) is a rational function of x depending on parameters a and r;
(iii) for each x € (0,00), u}, (x) = O(ﬁ)
Proof. Using equation (1), assertion (i) follows by a simple computation. To prove the assertions (ii) and

(iii), we may write

k+1
n+1

<n+1>Zw 0 [
- Fapmefi ) ()

- el B e ) )
: mi(f“)m:wz ol

o (r+1) 1
= 711 Z( )Wﬂnm (%),

from which assertion (i) follows in view of Lemma 2.2. Also, we get

Uy (%)

r+1

1 1
|unr(x)| < CZ v—1 [r+1 v] Cn[%]'

This completes the proof. [

Let Cg[0, o) denote the space of all real valued bounded and continuous functions on [0, o) endowed
with the norm

I f 1= sup{|f(x)] : x € [0, o)}
For 6 > 0, the K-functional is defined by

Ky(f,0)= inf{ll f=gll+o1lg” II},
geW?

where W2 = {g € Cp[0,) : ¢/, 9" € Cp[0, )}, by [12] there exists an absolute constant C > 0 such that

Ka(f, ) < Canl(f, Vo), (©6)
where
waf, Vo) = sup sup | flx+2h) = 2f(x+h)+ f(x) |

0<h< V5 X€[0,00)

is the second order modulus of smoothness of f. By

w(f,0) = sup sup | f(x+h)—f(x)],

0<h< Vo X€[0,00)
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we denote the usual modulus of continuity of f € Cg[0, o).
Now, for f € Cp[0, o), x > 0 the auxiliary operators are defined as

R/ = Ki(in) = S (e + 15+ ) + £

1+x

Lemma 2.7. Let f € W2. Then for all x > 0, we have

R0 - FI < 4@ 157

where
2

1 1
V() KA ((t — x)% %) + o 1)2( 2y _)

1+x 2
1 242x2 4ax>2 3ax 7
= —_— 2 2 —2 - _}
(n+1)2{(”+ R e P T

Proof. It is clear from the definition of 1?3 that

Kit—xx)=0
Let f € W2, From the Taylor expansion of f, we have

f
ﬂo—ﬂm=a—nﬁ@»(fa—uvwmm.

Hence

Ki(f;2) - f(x)

f’(x)I?ﬁ(t—x;x)+Ez(f(t—u)f" Y x) (f(t—u)f" Y x)

t n+1 (nx+1+x+%) 1 ax 1
a _ 7 X _ Il 7
K”(f,; (t =) f" )du; x) fx (n + 1(nx Tt 2) M)f ()t

and thus

K2(F52) — £l
t
fﬁ—@ﬂ@%u

i (54 3) 1 ax 1
< K% - Il 7/
_K"( x)+ jx‘ (n+1(nx+1+x+2) u)f ()

Since

mﬂwm' =2y

m(nx+m+§) 1 ax 1
+ + = |—ulf’(w)d
fx (n+1(nx 1+x 2) u)f (w)du

it follows from (7) that

<;(_x+£+1)2 ||f// ||
S 2(n+ 12 T+x 2 ’

~ 2
RitFi =l < {Ka =) + s~ e Tz +5) 177

1+x

IA

= AN,

This completes the proof of the lemma. [
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3. Main Results

3.1. Local approximation

6137

Theorem 3.1. Let f be a real valued bounded and uniform continuous function on [0, c0). Then for all x > 0, there

exists a constant C > 0 such that

K5 - 00 < Canl f3 \1AG) + @ f ;11?’ NP

where y7(x) is as defined in Lemma 2.7.

Proof. For f € Cg[0, ) and g € W?, by the definition of the operators gﬁ, we obtain
IKG(f; ) = f()l

ax
1+x

<IKA(f = ;) + |(f — 9)(0)] + [Ko(g; %) — g(x)| + ‘f(ﬁ("x * %)) ~f®

and

KE(f 0 <IfINKEG2) + 21 fII=31 £ 1l

Therefore, we have

K0 = £ <411 f =9 14K = g0 + o i g |-+ 72+ 3 )

Now, using Lemma 2.7, the above inequality reduces to

K0 = F <410 £ =g 1+ 1" 1+ fi g |34 125+ 5]

Thus, taking infimum over all g € W? on the right-hand side of the last inequality and using (6),

we get the required result. [J

Let us now consider the Lipschitz-type space in two parameters [35]:

_xa
mM—= e, oo)}for a1, a5 >0,
(t + @122 + axx)?

Liply (@) 1= { € Csl0, ) : () - f)] <
where M is a positive constant and « € (0, 1].

Theorem 3.2. Let f € Lipg\‘;f'”)(oz). Then, for all x > 0, we have

ui/z(x) )‘2’

(a1x% + aox)

K3 = fl < M(

Proof. First we prove the theorem for the case @ = 1. We may write

+

Ki(£5) - £ <n+1>2 e [, 10— seou

IA

IA

n+1 t —
M(n +1) Z () f S k| N
=0 L\ t+mx? + arx
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Using the fact that L < L and the Cauchy-Schwarz inequality, the above inequality implies

\/t+ﬂ1x2+a2x \/a1x2+azx
that
00 k+1
Mmn+1 n M
Ki(fin - ol < —aet D Y W) f It = xldt < ——————(K%((t - x)%;x))"/2
Varx2 + ax = A Va1 x? + apx

)
- a1x2 + apx )

Thus the result hold for & = 1. Now, let 0 < a < 1, then applying the Holder inequality with p = 1 and
q = 7, we have

k+l

(n+1)Z ey f A~ feoldt

e+l

IK5(f; %) = fx)l

IA

k+1 1

{Z s [ i - o) |

k+1

{ZWW@mhf“ﬂ»fwwf

n+l

IA

IA

IA

n+1 t — a
M{ Wy [ g
k=0 J At ax? + apx

k+1

M W () +1 - dt}
(a1x? + apx)2 {Z (o )fnfl =
M us () %
< —  (KY((t-2)5 "‘/2<M('—).
(@122 + apx)? (Wl = 2)5) (@122 + arx)

Thus, the proof is completed. [J

Next, we obtain the local direct estimate of the operators defined in (1) using the Lipschitz-type maximal
function of order 7 introduced by B. Lenze [30] as

If(H) = f(x)l

, x€][0,00) and 7 € (0,1]. (8)
t#x, te[0,00) It — x|

a’f(f/ x) =

Theorem 3.3. Let f € Cp[0, 00) and 0 < 7 < 1. Then, for all x € [0, oo) we have
K& (f520) = F(0)] < @ (f, %)(udf 5 (x))?.

Proof. From the equation (8), we have
K5 (f; %) = f(OI < @< (f, )Ky(|t — xI%; ).
. . . . . 2 1 1

Applying the Holder’s inequality with p = p and p =1- o we get

IK5(f;%) = OO < @ (f, (K (E = 0)%20F = @r(f, 2)(u5,,(x)) 2.

Thus, the proof is completed. [J
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3.2. Weighted approximation

([5], [21]) Let H>[0, o0) be space of all functions f defined on [0, o) with the property that |f(x)| < Mf(1 +x2),
where My is a constant depending only on f.
By ([0, o), we denote the subspace of all continuous functions belonging to H[0, o). If f € C;[0, o) and
}1_{210 IFO)I(1 + x*) 7! exists, we write f € C,[0, ). The norm on f € C,[0, =) is given by

|f (x)l

0@1+

I fllp:=

In what follows, we consider p(x) = 1 + x2.
On the closed interval [0, b], for any b > 0, we define the usual modulus of continuity of f by

wp(f;0) = sup sup |f(t) — f(x)l.

|t=x]<6 x,te[0,b]

Theorem 3.4. Let f € C5[0, 00) and wyp41(f; 0) be its modulus of continuity on the finite interval
[0,b + 1] € [0, 00) with b > 0. Then for every x € [0, b] and n € IN, we have

IKE(f; ) — ()] < AM(1 + b)uct 5 (x) + 2wb+1( f; uﬁlz(x)).

Proof. From [24], for x € [0,b] and t € [0, o), we have
|t — x|

F(B) = F < AMA(L + BA)(t — x)% + (1 i )a)b+1( £:6),6 > 0.

Applying Ki.(.; x) to the above inequality and then Cauchy-Schwarz inequality to the above inequality, we
obtain

Ki(f5x) = f)l < 4Mg(1+ DKLt — %)% %) + wpaa (f; 5)(1 + %Kﬁ(ﬁ - xl; x))
< AM+ P, () + opa(f; 5)(1 N % /ui’z(x)).

By choosing 6 =  /u’ ,(x), we obtain the desired result. [
Theorem 3.5. For each f € C,[0, 00), we have
lim | K5(f) = f Il,=0.
Proof. From [18], we observe that it is sufficient to verify the following three conditions :
lim || K(#50) = 2 ll,= 0, k=0,1,2. ©)
Since K (1;x) =1, the condition in (9) holds for k = 0. Also, by Lemma 2.5 we have
1 ( O 1)
n+1 1+x 2

N
1 2 14+«

1 X 1
< Z - -
- (( )sup 1+22 * Sog)l+x e SOEO) (1+x)(1+x2))

x€[0,00)

il 3)

I K5 (%) =)l

p

p

IN
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which implies that the condition in (9) holds for k = 1.
Similarly, we can write

2ax? a?x? 2ax 1
(2. 0\ _ A2 2.2 245 1 12 2)
1K (20) - 22 ||, < (n+1)2(n x +n(x o+ 1+x)+ (A e R A S |
x? x?
—_— 1 2 +2 —_
(n+ 1) ((” P Sup TE P SUp T YA S A )
+2a sup R —— sup L + = sup L)
vel0,e0) (1 2)(L + x2) velop) (L H 021 +2%) 3 ooy 1 +32
1 1
m((ﬂ + 1)(2&1 + 1) + (21’1 + 612 + 5)),
which implies that the equation (9) holds for k = 2.
This completes the proof of theorem. [
Let f € C,[0, o). The weighted modulus of continuity is defined as :
|f(x + k) — f(x)|
Q(f,0) = —_—
x>0,0<h<6 1+ (x + h)
Lemma 3.6. [43] Let f € C,[0, 00), then:
(i) Q(f, o) is a monotone increasing function of 5;
(i) Jim Q(f,0) = 0;
(iii) for each m € IN, Q(f, mo) < mQ(f, 0);
(iv) foreach A € [0, 00), Q(f, A8) < (1 + A)CX(f, ).
Theorem 3.7. Let f € C,[0, ), then there exists a positive constant My such that
KSG0 —F ),
xefo,0) (1 +x2)2
Proof. Fort > 0,x € [0,00) and 6 > 0, by the definition of Q(f, ) and Lemma 3.6, we get
FO) = f@I < @+ + x = QS It - x])
< 201 +2)1+(t- x)2)(1 ; 't;fx')g( £,6).
Since K, is linear and positive, we have
t —
IKE(f, %) — F) < 21+ xD)Q(f, 5){1 +KA((F - ), %) + Kg((l (-2 - x',x)}
(10)
Using Lemma 2.6, we have
. ) 1+x? .
KA ((t—x),x) < My , for some positive number M,. (11)

Applying Cauchy-Schwarz inequality to the second term of equation (10), we have

|t — x|

K3+ =252 2) < 5 VRIGE =022 + 5 VKA =207, VR =02

(12)
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By Lemma 2.6 and choosing 6 = there exists a positive constant M3 such that

nli2’

(Kg(t - x)4,x)) < Mz~ (1;# (13)

Combining the estimates of (10)-(13) and taking M; = 2(1 + M, + VM, + M3 VM,), we obtain the required
result. [

3.3. Simultaneous approximation

Theorem 3.8. Let f € C,[0,00). If f©) exists at a point x € (0, o), then we have

lim (LK1 (frw)) = fO00)

w=X

Proof. By our hypothesis, we have

" FW)
f0= Y 00 s g0 -, tel00),
v=0 :

where the function ¢(t,x) — 0 as t — x. From the above equation, we may write

(mser) = YO i) (kw0 - oio)
v=0

wW=X

=: I +I,say.

Now, we estimate I;.

Jenr (Ko

o (i) L2 Y (Yoo oxiwso)

w=X

= I3+ 14, say.
First, we estimate I4.

- TS o) )

]':
= I5+ 1, say.

By using Lemma 2.5, we get
Ig = f(r)(x) + O(l),13 = o(l) and I = o(l)
n n n

Combining the above estimates, for each x € (0, 00) we obtain I; — f ")(x) as n — oo.
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Since (f,x) — 0 as t — x, for a given € > 0 there exists a 0 > 0 such that [ (¢, x)| < e whenever [t — x| < 6.
For |t — x| > 6, |¢(t, x)| < M|t — x|P, for some M, § > 0.
By making use of Lemma 2.4, we have

k+1

I%]r( x)| 1
L <(m+1) W (%) W(t, x)(t — x)"dt.
;}‘ 2;7 )) nil
i,j>0
Ll < (n+1)Z Y ik q‘”( L )( f It = x['dt + M |t—x|f+ﬁdt)
k=0 2i+j<r )) nk |t—x]|<6 [f=x]|>0
i,j=0
= Iy +13, say.
|4, jr( x)l . . .
LetS = (P @) and by applying the Schwarz inequality, Corollary 2.3 and Lemma 2.6, we get
21 <r
1}10
00 k+l 1
lI;] < en+ 1)%52 Z n'lk — anJW" k(x)(f (t- x)zrdt)
%=0 2i+j<r 7
0,20
k+1
< en+Dis Y (Z(k nx 2 k(x) Z W () f x)zfdt
2i+i<r n+l
t-;O
i 5
= €S Z (Z(k nx)ZJW" pLey) ) ((n + 1)2 we k(x)f (t- x)zrdt)
2i+j<r n+1
1;i0
< eS Z O(nzw) ( —r/Z) =€.0(1).
2i+j<r
i,j20

Since € > 0 is arbitrary, I; — 0 as n — oo. Let s(¢ IN) > r + B. Again, by using Schwarz inequality, Corollary
2.3 and Lemma 2.6, we obtain

Is < MS(TI + 1) Z Z nilk — nx|jw:7’ k(x) |i’ _ x|r+ﬁdt
k=0 2i+j<r ’ lt=x[25
i,j>0
k+1
Mm+1 o+
= Enr 3 ) Z Z n'lk = nx|/ Wy k(x)f |t — x[°dt, where MS =M’
0 k=0 2i+j<r &
i,j20
M’ (n +1)V/? kg 172
< (65 r_ﬁ) Z Z n'lk — nx/W* k(x)(f It — XIZSdt)
k=0 2i+j<r P
i,j>0
- .y 1/2 s L , 1/2
65 Ss—r—p Z (Z W:lhk(x)(k — nx) ]) ((1’1 +1) Z Wft,k(x) fk (t —x) Sdt)
2i+j<r k=0 k=0 et
i,j>0
_ M (r=s)
= 657/3 ZTZO(n]/z )O(n s/z)—ésrﬁo(n2 )
2i+j<r

i,j=>0
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which implies that Is — 0, as n — oo.
Now, by combining the estimates of I; and Is, we get I, — 0 as n — oo.
Thus, from the estimates of I; and I, we obtained the required result. [J

3.4. Voronouvskaja type result
Theorem 3.9. Let f € C, [0, c0). If f admits a derivative of order (r + 2) at a fixed point x € (0, ), then we have

r+2

r)(x ) Z QW,ra,x) f(V)

tim nf(Ki(frw) -

W=X
where Q(v, 1, a, x) are certain rational functions of x depending on the parameter a,r,v.

Proof. From the Taylor’s theorem, we have

r+2 f(v

f =3 ~

v=0

(t —x)" + Y(t, )t — x)2, t € [0, ) (14)

where Y(t,x) = 0ast — x and ¢(t,x) = O(t — x)”.
From the equation (14), we have

(ko) - sz O k- @) +(Frkiwene-0%e)
r+2

=X

5205 (o (omain),

(d =K (i (¢, ) (¢t - ) w )w:x =1 + I, say.

Proceeding in a manner to the estimates of I in Theorem 3.8, for each x € (0, o) we get

Jim ”(df; (K (t, )t~ XY”?‘”)) L0

Now, we estimate I;.

ZfV)(x)Z( )( x)’" ](d _KA(; a))) +f(2|(x) ()( Xy~ J(
w=x . =0

Fr@) G (r+1 T
+(r+1)! ;( j )( x) - ](d -Kj, (t; a)))

r—

1(t0))

w=X

wW=X

wW=X

By making use of Lemma 2.5, we have
r+2

= fO@) +n” (Z QW,7,a,x)f (x)+0(1))

Thus, from the estlmates of I and I, the required result follows. This completes the proof.

Corollary 3.10. From the above theorem, we have
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(i) forr=20 ) 1
lim n(KG (f;x) = f(x) = (1{1f 5 x)f’(x) +olr ) f" (x)
(ii) forr=1
Jim ”((iK“ (fiw) = f (x)) ) ) = (— 1+ fx)z )f'(x) + (1 + %)f”(x) + %x(l + ) (%)
O

3.5. Degree of approximation

In this section, we obtain an estimate of the degree of approximation for rth order derivative of K}, for
smooth functions.

Theorem 3.11. Letr < g < r+2, f € C,[0, ) and fD exist and be continuous on (a — 1,b +1),1 > 0. Then, for
sufficiently large n

< Cin U Ro(F@, 1712y + Cy n7,
Cla,b]

Gaca) -2

where C1 = Cy(r) and Cy = Co(r, f).

Proof. By our hypothesis we have

1. £0) , @(xy — £@)
s =Y 5202+ O o + gm0 - 20,

(15)

where ¢ lies between t and x and x(t) is the characteristic function of (@ — 1, b + 1). The function ¢(¢, x) for
t€[0,00)\ (a—1n,b+n)and x € [a,b] is bounded by M|t — x|* for some constants M, x > 0.

d
Operating %Kﬁ(. ; ) on the equality (15) and breaking the right hand side into three parts |, |, and J3, say,

corresponding to the three terms on the right hand side of equation (15) as in the estimate of Ig in Theorem
3.8, it can be easily shown that J; = o(n™!), uniformly in x € [a, b].

Now treating J; in a manner similar to the treatment of I; of Theorem 3.9, we get |; = f(’)(t) +O0(n™),
uniformly in t € [a, b].

Finally, let

S1 = sup sup ——— qijr(x)
1=
x€la,b] 2i+j<r (P(x))
i,j20

then making use of the inequality

F9() - fO@) < (1 + %)w( £9,5), 5> 0,
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the Schwarz inequality, Corollary 2.3 and Lemma 2.6, we obtain

k+1

k—nxq;;, w1 | F@) @ (x
ol < (71+1)Z Z ! ”1(3211] (x k( f M X x(Hdt

k=0 21+]<r ) n+1
i,j=20
@ 58 0 b 1/2
< W05 Y o (Z(k nx)sz“k(x)) {((n+1)2wg,k(x) f (t—x)z%it)
q 2i+j<r k=0 n%
i,j>0

0 k+1
1 n+l 2 1/2
- a _ q+2
+ 5((71 w1 W fk (t—2) dt) }
k:O n+1
< Cl(n*(q*’m)w(f(‘”,nil/z), on choosing 6 = n 12,

By combining the estimates of J; — J3, we get the required result. [

3.6. Statistical convergence

Let A = (any) be a non-negative infinite summability matrix. For a given sequence x := (x),, the A-
transform of x denoted by Ax : (Ax), is defined as

(o]
(AX Z Apk Xk
=1

provided the series converges for each n. A is said to be regular if lim(Ax), = L whenever lim(x),, = L. Then
n n

x = (x), is said to be A-statistically convergent to Li.e. st4 —lim(x), = L if for every
n

€ >0, lim Z age = 0. If we replace A by C; then A is a Cesaro matrix of order one and A-statistical
n
k:|xy—L|>e
convergence is reduced to the statistical convergence. Similarly, if A = I, the identity matrix then A-statistical
convergence is called ordinary convergence.

Theorem 3.12. Let (a,x) be a non-negative regular summability matrix and x € [0, 00). Then, for all f € C,[0, o)
we have

sta — lirl;n”KZ(fr D= fllp. =0,
where pa(x) =1+ x>, a > 0.

Proof. From ([14], p. 191, Th. 3), it is sufficient to show that st4 — lim, [|K}(e;, .) — eill, = 0, where e;(x) = X,
i=0,1,2.

In view of Lemma 2.5, it follows that

sta = lim [|Kj(eo, -) = eoll, = 0. (16)

Again, by using Lemma 2.5, we have

—1 (—x+ i + 1)'
K% (e1, x) — e1(x)] n+1 1+x 2
sup —————~ =

x€[0,00) 1+ JC2 x€[0,00) 1+ x2

Fil+3)
n+1 2/

IA
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For € > 0, we define the following sets

D:

@mm&»—amz%

(e glo3) 2}

which yields us D € D; and therefore for all #, we have Z A < Z a,x and hence
keD keDy

Dli

sta —lim |[Kj(e1,) = eall, = 0. (17)

Proceeding similarly,
Il Kilez; ) — ezl

3 1 n (_x2+2x+2ax2)+ 1 ( 22 N 2ax _x2+1)‘
o 1H 22| (n+1)2 1+x) m+12\1+x)?2 1+x 3
1 13
< 2a +3) + 244 +—).
S L) (+1)2(” T3
Let us define the following sets
o= {nslKie ) - el > ¢f
Ei: = {n' ! (2a+3)>€/2}
b= "n+1 -
13
Er: = {n:——|d*+4 +—)z 2}.
2 {” (n+1)2(” atg)=zel

Then, we obtain E C E; U E;, which implies that

T MIES

keE keE, keE;
and hence
sta — lim K} ez, ) = eall, = 0. (18)

This completes the proof of the theorem. [

3.7. Rate of approximation

The rate of convergence for functions with derivative of bounded variation is an interesting area of
research in approximation theory. A pioneering work in this direction is due to Bojanic and Cheng ([8], [9])
who estimated the rate of convergence with derivatives of bounded variation for Bernstein and Hermite-
Fejer polynomials by using different methods. After that many researchers have obtained results in this
direction for different sequences of linear positive operators.

Now, we shall estimate the rate of convergence for the generalized Baskakov Kantorovich Operators K, for
functions with derivatives of bounded variation defined on (0, o) at points x where f’(x+) and f’(x—) exist,
we shall prove that the operators (1) converge to the limit f(x).

Let f € DBV,(0, o), y > 0 be the class of all functions defined on (0, o), having a derivative of bounded

variation on every finite subinterval of (0, o) and |f(t)| < M#", ¥V t > 0.
We notice that the functions f € DBV, (0, o) possess a representation

fw=£mmwﬂm
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where h(t) is a function of bounded variation on each finite subinterval of (0, o).
The operators K (f; x) also admit the integral representation

Ka(f3%) = f J2(x, D F (), (19)

n+1’ n+l

where Ji(x,t) := (n + 1) Z k(x Xni(t), where x, x(t) is the characteristic function of the interval [— ’”—1]

with respect to [0, o).

Remark 3.13. From Lemma 2.6, for A > 1,x € (0, 00) and n sufficiently large, we have

Ax(1 + x)

K((t = )% ) = 1,,(x) < ——
In order to prove the main result, we need the following Lemma.

Lemma 3.14. For fixed x € (0,00), A > 1 and n sufficiently large, we have
1 Ax(1+x)

. a _ (Y

(1) a,,(x,y)—fo Je(x, tydt < G—gf n+l 0<y<ux,

.. 00 1 Ax(1 + x

(ii) 1—0/,’,(3(,2)=fZ Jo(x, t)dt < e r§+1 ), X<z < oo,

Proof. First we prove (i).

2
f]"(xtdt<f(x ;)]ﬁ(x,t)dt

—— K((t = x)%%)

ay (%, y)

IA

(x - J/)2
1 Ax(1+x)
(x—-y? n+1l

The proof of (i) is similar. [

Theorem 3.15. Let f € DBV,,(0, o). Then, for every x € (0, 0), and n sufficiently large, we have

e |
e ' 2| 1f (x4) + f/(x— )| Ax(1+x) |f"(x+) = f'(x-)I
IKa(fix) = fl - < n+1 2 N TR 2

Vil «x
Al +x)
29§ oy g
k=1 x—(x/k) x (x/ v/n)

[Vn] x+x/k x+x/\n
/\(1 + Xx)
L Vg Vo
where \/! f(x) denotes the total variation of f(x) on [c,d] and fy is defined by
f()—f(x-), 0<t<x

fi(t) = 0, t=x
f(t) = f(x+), x<t<oo.
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Proof. For u € [0, ), we may write

frw) = f)+ (f () + f/(x= ))+ (f'(x+) = f'(x=))sgn(u — x)

HOI W) = 2 (F/4) + ), 0)
where
s ={ g0 42l

From (19) we get

Ki(f;x) = f(x)

fo 2 0e, OF(E) — )t

fooo Ju(x, t) fxtf'(u)dudt. @1

fooo ( fxt ( f(u) - %(f'(x+) + f’(x—)))éx(u)du)]Z(x, fdt = 0.

By (21), we have

It is obvious that

OO tl ’ S (o a _ 1 7 S (o * _ a
[ ([ 500+ panaiena = 307eo« e [ =
= S(FER+ FEKIE -9

and by using Schwarz inequality, we obtain

IA

‘f Jn(x, 1) f—(f (x+) = f'(x— ))sgn(u—x)du)dt‘ %If/(x+)—f’(x—)|j; |t — x|]7(x, £)dt
= SIF @) - f @K - )
< UF @) = f @R - x5 0)

From Lemma 2.5, Remark 3.13 and from the above estimates (21) becomes

KL (f;x) - f(x)l < 2(n1+ 1)|f’(x+)+f'(x—)| —x+ ﬁfx +%
X t
el ) = ey | [ [ s, e

; f ) ( f t f,;(u)du)]g(x, t)dt’. 22)

Z(f 9= [ f Frtudu s, D,
an

Vn(f,x :fx ]x‘fx(u)du I (x, )dt
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Now, we estimate the terms U,(f’,x) and V,(f’, x). Since fc ¢ dial(x,t) <1 forall [c,d] C (0, ),
using integration by parts and Lemma 3.14 with y = x - %ﬁ we have

U (f", %)l

X t
f fi(u)du dtaﬁ(x, t)dt‘

| f .00
(j(; f )|fx(t)||a (x, t)ldt
¥
el \7<f;><x ~ 1) %dt + fy ' ?( it

) f \/fx (=)t + \V @
n X(X/\f)

IN

IN

By the substitution of u = X, we get

Ax(1+x) [V o\ A1 +x)
n+1l J, (=1 \t/(fX)dt n+1 x\(;éu (f)du

A+ x) &

f+1 X
oY [ o
k=1 x—(x/u)
A1 +0)

——> .

k=1 x—(x/k)

IA

Thus we obtain
[Vn] «x

o< DY\ v (). 3)

k=1 x—(x/k) x (x/ \/n)

Also

[ s I”(x,t)dt‘
= f f fx(u)du (1 — af(x, b)) + f f fx(u)du d (1 — o} (x, t))'

- f F)(1 - a2~ f 01— o, D)t

Va(f', %)l

*( fxt )1 = e, f»du):o - f TR0 -t t))dt‘

IA

fxz B = e, t))dt‘ + lw FHA - ap(x, t))dt‘.
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By using Lemma 3.14, with z = x + (x/ v/n), we obtain

v < B[ V<fx><t o [ V<fx

x+(x/ V)
Ax(1 +3) " N
mixs [ V<fx><t s\ 0
By substitution of v = X, we get
i X+(x/0)
Ax(1+x) L Al+x) VY
i LW Vige-yra = 2000 V/ o
(x/)
Al +x) k1 1Y )
< M kZ:fk V e
Lvn] x+(x/k)
Al +x) ,
= W;Z:o‘ \x/ (f)-
Thus, we obtain
L] x+(x/k) x+(x/ V)
/1(1+x X
Vulf', 0l < )+ —= (f)- (24)
" i+l P \x/ \n \x/

From (22)-(24), we get the required result. [
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