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Abstract. We consider partial and total reduction of a nonhomogeneous linear system of the operator
equations with the system matrix in the same particular form as in paper [7]. Here we present two different
concepts. One is concerned with partially reduced systems obtained by using the Jordan and the rational
form of the system matrix. The other one is dealing with totally reduced systems obtained by finding the
adjugate matrix of the characteristic matrix of the system matrix.

1. Introduction

Let K be a field, V a vector space over K and A : V → V a linear operator on the vector space V.
Nonhomogeneous linear system of the operator equations with constant coefficients bi j ∈ K in unknowns
xi, 1 ≤ i, j ≤ n, has the general form

A(x1) = b11x1 + b12x2 + . . . + b1nxn + ϕ1

A(x2) = b21x1 + b22x2 + . . . + b2nxn + ϕ2
...

A(xn) = bn1x1 + bn2x2 + . . . + bnnxn + ϕn,

(1)

for ϕ1, ϕ2, . . . , ϕn ∈ V. It is common to consider system (1) in the matrix form

~A(~x) = B~x + ~ϕ,

where ~x = [x1 x2 . . . xn]T
∈ Vn×1 is a column of unknowns, ~A : Vn×1

→ Vn×1 is a vector operator defined
componentwise by ~A(~x) = [A(x1) A(x2) . . . A(xn)]T, ~ϕ = [ϕ1 ϕ2 . . . ϕn]T

∈ Vn×1 is a nonhomogeneous term
and B = [bi j]n

i, j=1 ∈ Kn×n is a system matrix. There is an extensive amount of literature relating to a problem
of reducing the linear system of the operator equations to an equivalent system in a simpler form. The
most widely used technique is to transform the system into a system with block diagonal system matrix
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I. Jovović, B. Malešević / Filomat 30:5 (2016), 1353–1362 1354

using basis transformation. Such a basis transformation produces a new system equivalent to the initial
one, which is decoupled into several subsystems. Each subsystem corresponds to one block of the new
system matrix. Subsystems are uncoupled, so we may solve them separately, and then simply assemble
these individual solutions together to obtain a solution of the general system. The Jordan canonical form
is the most commonly used if the field of coefficients is algebraically closed. If it is not the case, the Jordan
canonical form of a matrix can only be achieved by adding a field extension. The rational canonical form of a
matrix is the best diagonal block form that can be achieved over the field of coefficients and it corresponds to
the factorization of the characteristic polynomial into invariant factors without adding any field extension.
In the paper [5] the idea has been to use the rational canonical form to reduce the linear system (1) to an
equivalent partially reduced system. Each subsystem of the partially reduced system consists of a higher
order linear operator equation having only one variable and the first order linear operator equations in
two variables. By the order of a linear operator equation we mean the highest power of the operator in
the equation. An another method for solving the linear system of the operator equations, which does not
require a change of basis, is discussed in [6]. The system is reduced to a so called totally reduced system,
i.e. to a system with separated variables, by using the characteristic polynomial ∆B(λ) = det(λI − B) of the
system matrix B. This system consists of a higher order operator equations which differ only in the variables
and in the nonhomogeneous terms. The general reduction formulas from [5] and [6] can be applied to some
special systems. An example of total reduction of the linear system of the operator equations with the
system matrix in the companion form can be found in [4].

In this paper we consider nonhomogeneous linear systems of the operator equations in the form of
Shayanfar and Hadizadeh [7]:

A(x1) = b1x1 + b1x2 + . . . + b1xn + ϕ1

A(x2) = b2x1 + b2x2 + . . . + b2xn + ϕ2
...

A(xn) = bnx1 + bnx2 + . . . + bnxn + ϕn

(2̂)

and

A(x1) = b1x1 + b2x2 + . . . + bnxn + ϕ1

A(x2) = b1x1 + b2x2 + . . . + bnxn + ϕ2
...

A(xn) = b1x1 + b2x2 + . . . + bnxn + ϕn,

(2̌)

for b1, b2, . . . bn ∈ K and ϕ1, ϕ2, . . . , ϕn ∈ V. The systems (2̂) and (2̌) can be rewritten in the matrix form

~A(~x) = B̂~x + ~ϕ and ~A(~x) = B̌~x + ~ϕ,

where

B̂ =


b1 b1 . . . b1
b2 b2 . . . b2
...

...
. . .

...
bn bn . . . bn

 and B̌ =


b1 b2 . . . bn
b1 b2 . . . bn
...

...
. . .

...
b1 b2 . . . bn

 .
Shayanfar and Hadizadeh in [7] have used matrix polynomial approach to reduce the systems (2̂) and (2̌).
Their main idea has been to apply the Smith canonical form for obtaining a class of independent equations.
Here we present how standard Jordan and rational canonical forms can help in solving this problem. We
also sketch a method for total reduction for these special cases.
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2. Some Basic Notions and Notations

In this section we will review some standard facts from linear algebra, see for example [2, 3].
Let B be an n×n matrix over the field K. An elementλ ∈ K is called an eigenvalue of B with corresponding

eigenvector v, if v is a nonzero n × 1 column with entries in K such that λv = Bv. The set of all eigenvectors
with the same eigenvalue λ, together with the zero vector, is a vector space called the eigenspace of the
matrix B that corresponds to the eigenvalue λ. The geometric multiplicity of an eigenvalue λ is defined
as the dimension of the associated eigenspace, i.e. it is the number of linearly independent eigenvectors
corresponding to that eigenvalue. The algebraic multiplicity of an eigenvalueλ is defined as the multiplicity
of the corresponding root of the characteristic polynomial ∆B(λ) = det(λI − B). A generalized eigenvector
u of B associated to λ is a nonzero n × 1 column with entries in K satisfying (B − λI)ku = 0, for some k ∈N.
The set of all generalized eigenvectors for a given eigenvalue λ, together with the zero vector, form the
generalized eigenspace for λ.

Recall that the n × n matrix B̃ over the field K is said to be similar to the matrix B if there exists an
n × n nonsingular matrix S with entries in K such that B̃ = S−1BS. The matrix S is called transition matrix.
Similarity of matrices is an equivalence relation on Kn×n. It can be shown that basic notions of linear algebra
such as rank, characteristic polynomial, determinant, trace, eigenvalues and their algebraic and geometric
multiplicities, minimal polynomial, the Jordan and the rational canonical forms, elementary divisors and
invariant factors are similarity invariants.

One can notice that B̌ = B̂
T
. Since a matrix and its transpose matrix are similar, and all characteristic

that we examine are similarity invariant, we focus only on the first system (2̂). All conclusions we make are
the same for the second one as well.

Let us consider more closely some similarity invariants. Invariant factors of the matrix B are polynomials

∆1(λ) =
D1(λ)
D0(λ)

,∆2(λ) =
D2(λ)
D1(λ)

, . . . ,∆r(λ) =
Dr(λ)

Dr−1(λ)
,

where D j(λ) is the greatest common divisor of all minors of the order j in the matrix λI − B and D0(λ) = 1,
1 ≤ j ≤ r. Elementary divisors of the matrix B are monic irreducible polynomials over the field K into
which the invariant factors of the matrix B split. The product of all elementary divisors of the matrix B is
its characteristic polynomial, and their least common multiple is its minimum polynomial.

The k × k matrix of the form

J =


λ 1 . . . 0 0
0 λ . . . 0 0
...

...
...

...
0 0 . . . λ 1
0 0 . . . 0 λ


is called the Jordan block of size k with eigenvalueλ. A matrix is said to be in the Jordan canonical form if it is
a block diagonal matrix with Jordan blocks along the diagonal. The number of Jordan blocks corresponding
to an eigenvalue λ is equal to its geometric multiplicity and the sum of their sizes is equal to the algebraic
multiplicity of λ. Every square matrix is similar to a matrix in the Jordan canonical form. That is, for the
matrix B there exists a nonsingular matrix S, so that J = S−1BS, where J is in the Jordan canonical form. The
Jordan canonical form of the matrix B is unique up to the order of the Jordan blocks.

If the matrix B is similar to a diagonal matrix, then B is said to be diagonalizable. For the diagonalizable
matrix B, J = S−1BS is diagonal matrix, S is a matrix obtained by using as its columns any set of linearly
independent eigenvectors of B, and the diagonal entries of J are their corresponding eigenvalues. The
matrix S is called modal matrix.
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The companion matrix of the polynomial ∆(λ) = λn + d1λn−1 + . . . + dn−1λ + dn is the matrix

C=


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
−dn −dn−1 −dn−2 . . . −d2 −d1


.

It can easily be seen that the characteristic polynomial of the companion matrix C is ∆(λ). A matrix is said
to be in the rational canonical form if it is a block diagonal matrix with blocks the companion matrices of
the monic polynomials ∆1(λ),∆2(λ), . . . ,∆r(λ) of degree at least one with ∆1(λ) | ∆2(λ) | . . . | ∆r(λ). Every
square matrix is similar to a matrix in the rational canonical form. That is, for the matrix B there exists a
nonsingular matrix T, so that C = T−1BT, where C is in the rational canonical form. The rational canonical
form of the matrix B is unique up to the order of the diagonal blocks.

Butcher and Chartier in [1] introduced the notion of the doubly companion matrix of polynomials
α(λ) = λn + a1λn−1 + . . .+ an−1λ+ an and β(λ) = λn + b1λn−1 + . . .+ bn−1λ+ bn as an n× n matrix over the field
K of the form

C(α, β) =


−a1 −a2 . . . −an−1 −an − bn

1 0 . . . 0 −bn−1
...

...
. . .

...
...

0 0 . . . 0 −b2
0 0 . . . 1 −b1


.

3. Preliminaries and Auxiliary Results

At the beginning of this section we first present two standard lemmas for reduction process using
canonical forms. Afterwards we give a brief exposition of two main results from [5] and [6].

Lemma 3.1. Let J be the Jordan canonical form of the matrix B, i.e. there exists a nonsigular matrix S such that
J = S−1BS. Then the system (1) given in the matrix form

~A(~x) = B~x + ~ϕ,

can be reduced to the system
~A(~y) = J~y + ~ψ,

where ~ψ = S−1 ~ϕ is its nonhomogeneous term and ~y = S−1~x is a column of the unknowns.

Lemma 3.2. Let C be the rational canonical form of the matrix B, i.e. there exists a nonsigular matrix T such that
C = T−1BT. Then the system (1) given in the matrix form

~A(~x) = B~x + ~ϕ,

can be reduced to the system
~A(~z) = C~z + ~ν,

where ~ν = T−1 ~ϕ is its nonhomogeneous term and ~z = T−1~x is a column of the unknowns.

Let δ1
k

(
B; ~An−k(~ϕ)

)
stands for the sum of the principal minors of the order k containing the entries of the

first column of the matrix obtained from the matrix B by replacing column ~An−k(~ϕ) in the place of the first
column of B. Following two theorems are concerned with partial reduction of the system (1).
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Theorem 3.3. (Theorem 3.4 from [5]) Let us assume that the rational canonical form of the system matrix B has
only one block, i.e. that the rational canonical form of B is the companion matrix of the characteristic polynomial
∆B(λ) = λn + d1λn−1 + . . .+ dn−1λ+ dn. Then the linear system of the operator equations (1) can be transformed into
equivalent partially reduced system

∆B(A)(y1) =
∑n

k=1(−1)k−1δ1
k

(
C; ~An−k(~ψ)

)
y2 = A(y1) − ψ1

y3 = A(y2) − ψ2
...
yn = A(yn−1) − ψn−1,

where the columns ~y = [y1 y2 . . . yn]T and ~ψ = [ψ1 ψ2 . . . ψn]T are determined by ~y = T−1~x i ~ψ = T−1 ~ϕ for a
nonsingular matrix T such that C = T−1BT.

Theorem 3.4. (Theorem 3.7 from [5]) Let us assume that the rational canonical form of the system matrix B is block
diagonal matrix

C =


C1 0 . . . 0
0 C2 . . . 0
...

...
. . .

...
0 0 . . . Cr

 (2 ≤ k ≤ n),

where Ci are companion matrices of the monic polynomials ∆Ci (λ) = λni + di,1λni−1 + . . . + di,ni−1λ+ di,ni of degree at
least one with ∆Ci | ∆Ci+1 for 1 ≤ i < r. Let `1 =0 and `i =

∑i−1
j=1 n j for 2 ≤ i≤ k. Then the linear system of the operator

equations (1) can be transformed into equivalent partially reduced system
k∧

i=1
(RCi ), where every subsystem (RCi ) is of

the form

∆Ci (A)(y`i+1) =
∑ni

k=1(−1)k−1δ1
k

(
Ci; [Ani−k(ψ`i+1) Ani−k(ψ`i+2) . . . Ani−k(ψ`i+ni )]

T)
)

y`i+2 = A(y`i+1) − ψ`i+1

y`i+3 = A(y`i+2) − ψ`i+2
...
y`i+ni = A(y`i+ni−1) − ψ`i+ni−1.

The columns ~y = [y1 y2 . . . yn]T and ~ψ = [ψ1 ψ2 . . . ψn]T are determined by ~y = T−1~x i ~ψ = T−1 ~ϕ for a nonsingular
matrix T such that C = T−1BT.

We now present two theorems concerning total reduction of the system (1).

Theorem 3.5. (Theorem 4.1 from [5]) Assume that the system (1) is given in the matrix form

~A(~x) = B~x + ~ϕ,

and that matrices B0, . . . ,Bn−1 are coefficients of the matrix polynomial λI − B. Then for the linear operator ∆B( ~A),
obtained by replacing λ by ~A in the characteristic polynomial ∆B(λ) of the system matrix B, the equality

(
∆B( ~A)

)
(~x) =

n∑
k=1

Bk−1 ~An−k(~ϕ)

holds.



I. Jovović, B. Malešević / Filomat 30:5 (2016), 1353–1362 1358

An explicit formula for total reduction of the system (1) is given in the following theorem.

Theorem 3.6. (Theorem 4.3 from [6]) Let δi
k

(
B; ~An−k(~ϕ)

)
stands for the sum of the principal minors of the order k

containing the entries of the ith column of the matrix obtained from the matrix B by replacing column ~An−k(~ϕ) in the
place of the ith column of B. Then the linear system of the operator equations (1) implies the system, which consists of
the higher order operator equations as follows

∆B(A)(x1) =
∑n

k=1(−1)k−1δ1
k

(
B; ~An−k(~ϕ)

)
∆B(A)(x2) =

∑n
k=1(−1)k−1δ2

k

(
B; ~An−k(~ϕ)

)
...

∆B(A)(xn) =
∑n

k=1(−1)k−1δn
k

(
B; ~An−k(~ϕ)

)
.

In the rest of this section we restrict our attention to some properties of the matrix B̂.
The characteristic polynomial of the matrix B̂ is

∆B̂(λ) = det(λI − B̂) =

∣∣∣∣∣∣∣∣∣∣∣∣
λ − b1 −b1 . . . −b1
−b2 λ − b2 . . . −b2
...

...
. . .

...
−bn −bn . . . λ − bn

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣
λ −

∑n
i=1 bi λ −

∑n
i=1 bi . . . λ −

∑n
i=1 bi

−b2 λ − b2 . . . −b2
...

...
. . .

...
−bn −bn . . . λ − bn

∣∣∣∣∣∣∣∣∣∣∣∣ = (λ −
∑n

i=1 bi)

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1
−b2 λ − b2 . . . −b2
...

...
. . .

...
−bn −bn . . . λ − bn

∣∣∣∣∣∣∣∣∣∣∣∣
= (λ −

∑n
i=1 bi)

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1
0 λ . . . 0
...

...
. . .

...
0 0 . . . λ

∣∣∣∣∣∣∣∣∣∣∣∣ = λn−1(λ −
∑n

i=1 bi).

Since

B̂ ·

B̂ −
n∑

i=1

biI

 =


b1 b1 . . . b1
b2 b2 . . . b2
...

...
. . .

...
bn bn . . . bn

 ·

−

∑n
i=2 bi b1 . . . b1

b2 −
∑n

i = 1
i , 2

bi . . . b2

...
...

. . .
...

bn bn . . . −
∑n−1

i=1 bi

 = O,

the minimal polynomial of the matrix B̂ is µB̂(λ) = λ(λ −
∑n

i=1 bi).

The further consideration is divided into two parts.

Part 1: Let
∑n

i=1 bi , 0. Then the invariant factors of the matrix B̂ are λ, . . . λ︸ ︷︷ ︸
n−2

, λ2
−

∑n
i=1 biλ and its

elementary divisors are λ, . . . λ︸ ︷︷ ︸
n−1

, λ−
∑n

i=1 bi. The geometric multiplicity of an eigenvalue λ = 0 is equal to its
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algebraic multiplicity. So the Jordan and the rational canonical form of the matrix B̂ are

J =


0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0

∑n
i=1 bi


= dia1(0, 0, . . . , 0,

n∑
i=1

bi) and C =


0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 0

∑n
i=1 bi


.

The eigenvectors corresponding to the eigenvalue λ = 0 are nonzero solutions of the homogeneous system

b1x1 + b1x2 + . . . + b1xn = 0
b2x1 + b2x2 + . . . + b2xn = 0
...

bnx1 + bnx2 + . . . + bnxn = 0.

Therefore, we can take

v1 =


−1

1
0
...

0


, v2 =


−1

0
1
...
0


, . . . , vn−1 =


−1

0
0
...
1


to be basis of the eigenspace of the matrix B̂ that corresponds to the eigenvalue λ = 0. The eigenvector
corresponding to the eigenvalue λ =

∑n
i=1 bi is nontrivial solution of the homogeneous system

−
∑n

i=2 bix1 + b1x2 + . . . + b1xn = 0
b2x1 −

∑n
i = 1
i , 2

bix2 + . . . + b2xn = 0

...
bnx1 + bnx2 + . . . −

∑n−1
i=1 bixn = 0.

Multiplying the first equation successively with −b2,−b3, . . . ,−bn and adding to the second, the third, and
finally the last equation multiplied by b1, we obtain the equivalent system

b1x2 = b2x1
b1x3 = b3x1

...
b1xn = bnx1.

Hence, we conclude that the eigenvector corresponding to the eigenvalue λ =
∑n

i=1 bi is vn = [b1 b2 . . . bn]T.
Let us denote by S the modal matrix formed by the eigenvectors v1, v2, . . . , vn. The matrix S is of the form

−1 −1 . . . −1 b1
1 0 . . . 0 b2
...

...
. . .

...
...

0 0 . . . 0 bn−1
0 0 . . . 1 bn


,

i.e. it is doubly companion matrix. Applying Lemma 2.1 and Theorem 3.1 from Wanicharpichat’s paper
[8], we easy conclude that the determinant and the inverse of the matrix S are

det(S) = (−1)n−1
n∑

i=1

bi
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and

S−1 = −
1∑n

i=1 bi



b2 −
∑n

i = 1
i , 2

bi . . . b2 b2

b3 b3 . . . b3 b3
...

...
. . .

...
...

bn bn . . . bn −
∑n−1

i=1 bi
−1 −1 . . . −1 −1


.

For the matrices S and S−1 the equality J = S−1B̂S holds. Furthermore, it is easy to check that for the matrix

R =



1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 −
1∑n

i=1 bi

0 0 . . . 0 1


the equality C = R−1 JR holds. Hence, for the matrix T = SR, we have C = T−1B̂T.

Part 2: We now consider the case
∑n

i=1 bi = 0. The geometric multiplicity of the only eigenvalue λ = 0 of
the matrix B̂ is still equal to n − 1, but its algebraic multiplicity is n. In this case the Jordan and the rational
canonical form are the same

J = C =


0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 0 0


.

Since B̂
2

is equal to O, we can take for a generalized eigenvector column u = [1 0 . . . 0]T. Corresponding
eigenvector in associate chain is v = B̂u = [b1 b2 . . . bn]T. In this case the transition matrix is

T =



−1 −1 . . . −1 b1 1
1 0 . . . 0 b2 0
0 1 . . . 0 b3 0
...

...
. . .

...
...

...
0 0 . . . 1 bn−1 0
0 0 . . . 0 bn 0


.

4. Main Results

After consideration of the Jordan and the rational canonical form of the matrix B̂, we can turn back to
examination of the reduction process of the system (2̂).

Theorem 4.1. If
∑n

i=1 bi , 0, then the system (2̂) can be transform into the system

A(y1) = ψ1
A(y2) = ψ2

...
A(yn−1) = ψn−1

A(yn) =
∑n

i=1 biyn + ψn,

(3)

where the columns ~y and ~ψ are determined by ~y = S−1~x and ~ψ = S−1 ~ϕ, for a nonsingular matrix S such that
J = S−1B̂S.
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The proof follows immediately by Lemma 3.1 and the Jordan canonical form of the system matrix B̂.

Theorem 4.2. The system (2̂) can be transform into the system

A(z1) = ν1
A(z2) = ν2

...
(A2
−

∑n
i=1 biA)(zn−1) = νn + A(νn−1) −

∑n
i=1 biνn−1

A(zn) −
∑n

i=1 bizn = νn,

(4)

where the columns ~z and ~ν are determined by ~z = T−1~x and ~ν = T−1 ~ϕ, for a nonsingular matrix T such that
C = T−1B̂T.

Proof: Applying Lemma 3.2 the system (2̂) is equivalent to the system

A(z1) = ν1
A(z2) = ν2

...
A(zn−1) = zn + νn−1

A(zn) =
∑n

i=1 bizn + νn.

The reduced system is obtained by acting of the operator A −
∑n

i=1 bi on the penultimate equation and by
substituting the expression A(zn) −

∑n
i=1 bizn appearing on the right-hand side of the equation with νn.

Theorems 4.1 and 4.2 in the exactly same forms hold for the system (2̌). Nonsingular matrices G and H
such that J = G−1B̌G and C = H−1B̌H can be calculate in a similar manner as matrices S and T for which
J = S−1B̂S and C = T−1B̂T hold. Matrix G is a doubly companion matrix of the form

−
b2
b1
−

b3
b1

. . . − bn
b1

1
1 0 . . . 0 1
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 1 1


,

and for matrix H we have H = RG, for R from the section 3.
From now on we are concerned how general technique from [6] can be used in this special case. First

of all, we calculate the coefficients of the adjugate matrix of the characteristic matrix of the matrix B̂. The
characteristic matrix of the matrix B̂ is matrix λI − B̂. The adjugate matrix of the matrix λI − B̂ is matrix
adj(λI− B̂) = λn−1B0 +λn−2B1 + . . .+λBn−2 +Bn−1. The coefficients B0,B1, . . . ,Bn−1 satisfy following recurrence

B0 = I, Bk = Bk−1B̂ + dkI, 1 ≤ k < n,

where dk is a coefficient of the characteristic polynomial ∆B̂(λ) in front ofλn−k, see [3]. Thus, in this particular
case we have

B0 = I, B1 = B0B̂ + d1I = B̂ −
n∑

i=1

biI =


−

∑n
i=2 bi b1 . . . b1

b2 −
∑n

i = 1
i , 2

bi . . . b2

...
...

. . .
...

bn bn . . . −
∑n−1

i=1 bi

 , B2 = . . . = Bn−1 = O.

Therefore, the adjugate matrix adj(λI − B̂) is equal to λn−1I + λn−2(B̂ −
∑n

i=1 biI). Applying Theorem 3.5, the
system (2̂) can be transformed into totally reduced system(

∆B̂( ~A)
)

(~x) = ~An−1(~ϕ) +

B̂ −
n∑

i=1

biI

 ~An−2(~ϕ).
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We have thus proved following theorem.

Theorem 4.3. Linear system of the operator equations (2̂) implies the system, which consists of the higher order
operator equations as follows

∆B̂(A)(x1) = An−1(ϕ1) +
∑n

i=2(b1An−2(ϕi) − biAn−2(ϕ1))
∆B̂(A)(x2) = An−1(ϕ2) +

∑n
i = 1
i , 2

(b2An−2(ϕi) − biAn−2(ϕ2))

...
∆B̂(A)(xn) = An−1(ϕn) +

∑n−1
i=1 (bnAn−2(ϕi) − biAn−2(ϕn)).

(5̂)

The adjugate matrix of the characteristic matrix of the matrix B̌ is equal to λn−1I + λn−2(B̌ −
∑n

i=1 biI).
Hence, the corresponding theorem for totally reduced system of system (2̌) reads.

Theorem 4.4. Linear system of the operator equations (2̌) implies the system, which consists of the higher order
operator equations as follows

∆B̌(A)(x1) = An−1(ϕ1) +
∑n

i=2 bi(An−2(ϕi) − An−2(ϕ1))
∆B̌(A)(x2) = An−1(ϕ2) +

∑n
i = 1
i , 2

bi(An−2(ϕi) − An−2(ϕ2))

...
∆B̌(A)(xn) = An−1(ϕn) +

∑n−1
i=1 bi(An−2(ϕi) − An−2(ϕn)).

(5̌)

At the end of this section let us briefly analyze one application of the total reduction in the case when
A is a differential operator d

dt on the vector space of real functions in one unknown t. We consider systems
(2̂) and (2̌) with the initial conditions xi(t0) = ci, 1 ≤ i ≤ n. Recursively substituting the initial conditions
into the systems we obtain n−1 additional initial condition for each equation of the totally reduced systems
(5̂) and (5̌). Then Theorem 4.3 and 4.4 can be used for finding the unique solutions of the corresponding
Cauchy problems.
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