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Abstract. The aim of this paper is to give oscillation criteria for the third-order quasilinear neutral delay
dynamic equation

1A
010 + PO | + a0 (6 + 200 (20 = 0,

on a time scale T, where 0 < @ < y < B. By using a generalized Riccati transformation and integral

averaging technique, we establish some new sufficient conditions which ensure that every solution of this
equation oscillates or converges to zero.

1. Introduction

In this paper, we deal with the oscillatory behavior of all solutions of the third-order quasilinear neutral
delay dynamic equation

A
[r(t)([x(t)+p(t)x(fo(t))1“)‘] + g1 (X (T1(1) + 2(DxF (12(1) = 0, tET, t 2>t

)
In the sequel we will assume that the following conditions are satisfied:
(h1) v, a, p are the ratio of positive odd integers such that0 < a <y < g;
(h2) 7 : T — (0, o) is a real valued rd-continuous function on T and
fw(l );At tyeT @)
N = o, ;
to r(t) ‘

(h3) g1, g2 are rd-continuous positive functions on T and p(t) is real valued rd-continuous positive function
onT, 0<pt)<P<1;

(h4) 7; : T — T satisfied that 7,(t) < t for t € T and lim;_, 7i(t) = oo, for i=0, 1, 2 and there exists a function
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7 : T — T which satisfies that 7(f) < 71(¢), 7(t) < T2(f) and lim;_, T(t) = o0.

Define the function by

z(t) = x(t) + p(Hx(to(t))- 3)

Furthermore, the equation (1) can be written as

A

(=01 |+ 910 (01(6) + 20 c2(0) = 0. (4)

A solution x(t) of (1) is said to be oscillatory if it is neither eventually positive nor eventually negative,
otherwise it is non-oscillatory. The theory of time scales, which has recently received a lot of attention, was
introduced by Hilger [1], in order to unify continuous and discrete analysis. Since then, several authors
have expounded on various aspects of this new theory; see the survey paper by R.P. Agarwal, M. Bohner,
D. O’Regan and A. Peterson [2]. A book on the subject of time scales by M. Bohner and A. Peterson [3] also
summarizes and organizes much of the time scale calculus. In the recent years, there has been increasing
interest in obtaining sufficient conditions for the oscillation and non-oscillation of solutions of various
equations on time-scales; we refer the reader to the papers [4-13].

To the best of our knowledge, it seems to have few oscillation results for the oscillation of third-order
dynamic equations. Li, Han, Zhang, Sun [22] considered third-order nonlinear delay dynamic equation

X+ (B (1(1) = 0,

on a time scale T, where y > 0 is quotient of odd positive integers.
Li, Han, Sun, Zhao [16] considered third-order nonlinear delay dynamic equation

@B HIN) + f(t, x(2(#) = 0,

on a time scale T, where y > 0 is quotient of odd positive integers.
Senel[19 ] considered a third order dynamic equation

A
(c(axA)A) (t) + P(t, x(t), x(1)) + F(t, x(1)) = 0.

Saker and Graef[ 20] and Zhang [21] considered a third order half-linear neutral dynamic equation

A
(OO +aOxEEN)) +pE 6E) =0

Han, Li, Sun, Zhang [14] and Grace, Graef, El-Beltagy [15] considered third-order neutral delay dynamic
equation

(r()(x(H) = a)x(z (D)) + p(H) (5(1) =0,

on a time scale T.

In this paper, we consider third-order quasilinear neutral delay dynamic equation on time scales which is
not in literature. We obtain some conclusions which contribute to oscillation theory of third order quasilin-
ear neutral delay dynamic equations.
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2. Several Lemmas

Before stating our main results, we begin with the following lemmas which play an important role in
the proof of the main results. Throughout this paper, we let

1+(t) == max{0, n(t)}, 1-(f) := max{0, —n(t)},

p-a
m}/

Q= min{%,
K 1= min{k®, kP},

) = ({1 — PV E0) gy (8)(1 — PP~ B-0) (XD,
p) =55, 0<y <1, B =G5V, y>1,

R(t L) = ftf (%);’/As,

where, for sufficiently large ¢, € [fy, co)r.

Lemma 2.1. Let x(t) be a positive solution of (1), z(t) is defined as in (3). Then z(t) has only one of the following two
properties:

(1) z(t) > 0, Z2(t) > 0, z224(t) > 0;
(2) z(t) > 0, z2(t) < 0, z24(t) > 0,
where t > t1, t1 sufficiently large.

Proof. Let x(f) be a positive solution of (1) on [ty, o), so that z(t) > x(t) > 0, and

[rOEA Y] = —g1 X (w1 (®) - g0 (xa8)) < 0.

Then r(t)([z(t)]*2)" is a decreasing function and therefore eventually of one sign, so z*2(t) is either eventually
positive or eventually negative on t > t; > t;. We assert that z**(f) > 0 on t > t; > t. Otherwise, assume
that z*2(t) < 0, then there exists a constant M > 0, such that

()@ (1) < -M < 0.

By integrating the last inequality from t; to ¢, we obtain

1

r(s))?As.

t
20 < 25(8) - M f (

Let t — oo. Then from (4) , we have (z(t))* — —oo, and therefore eventually z2(t) < 0.

Since z*4(t) < 0 and z2(t) < 0, we have z(t) < 0, which contradicts our assumption z(t) > 0. Therefore, z(t)
has only one of the two properties (1) and (2).

This completes the proof. [

Lemma 2.2. Let x(t) be a positive solution of (1), correspondingly z(t) has the property (2). If

jt; [} [ﬁﬁ (q1(5)+q2(s))As]%AuAU:oo, (5)
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then limy_, x(f) = limy_,e0 z(¢) = 0.

Proof. Let x(t) be a positive solution of (1). Since z(t) has the property (2), then there exists finite

lim;_, z(t) = €. We shall prove that £ = 0. Assume that ¢ > 0, then for any € > 0, we have { + € > z(t) > ¢,

ta-p)
p

eventually. Choosing 0 < € < , we obtain from (3)

x(t) = z(t) — pt)x(to(t)) > € — p(Hz(to(t)) > € — p()(€ + €) = k(€ + €) > kz(t),

where k = £2059 5 ¢, Using (4), (h1) and (h4), we obtain

“l+e

[rOE O = —qaOx (1) — q2()xP (z2(h)
< —qpOk (1 (t) - (O 2P (Ta(1))
< —q(OKZ(t) — qa(DKPZP(H)
< —quOR(E) - gk D).
Then
[r(OEA B < —xz*(1)(q1(t) + g2(D). (6)

Integrating inequality (6) from ¢ to co, we obtain

HOEH) > f 251 (6) + a(s))As.
t
Using z%(s) > {*, we obtain

1/)/€a/y

200 > f (1(6) + qz(s»As] . %

Integrating inequality (7) from t to oo, we have

© 1 e 1
—ZA(t) > kel f [@ f (q1(s) + g2(s))As]” Au

t

Integrating the last inequality from t; to oo, we obtain

z(t1)>1<1/)’£a/7/f f [r(u)f (q1(5)+q2(s))As] AuAv. 8)

The last inequality contradict (5), we have £ = 0. And since 0 < x(f) < z(t), then lim;, x(t) = 0. This
completes the proof. [

Lemma 2.3. Assume that x(t) is a positive solution of equation (1), z(t) is defined as in (3) such that z*(t) >
0,z2(t) > 0, on [t., 00), t. > 0. Then

2 > R(E )17 (D2 (). (9)
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Proof. Since r(t)(z*2(t))” is strictly decreasing on [t., co)t, we get for t € [t,, 00)

2 > M) -Z2AMk)
_ (V(S)(ZAA(f))”)
t. r; (s)
> (OO f <)
and, hence

ZMt) > R(E, £)17 (2 (¢) on [t 0o)p. [

Lemma 2.4. Assume that x(t) is a positive solution of equation (1), correspondingly z(t) has the property (1). Such
that zM(t) > 0, z*2(t) > 0, on [t., )T, t. > to. Furthermore,

t
f (1(5) + 4a(6))T(6)As = 0. (10)

Then there exists a T € [t., oo)r, sufficiently large, so that

z(t) > tz2(1),
z(t)/t is strictly decreasing, t € [T, co)r.

Proof. Let U(t) = z(t) — tz(t). Hence UA(t) = —a(t)z*(t) < 0. We claim there exists a t; € [t., o)t such that
U(t) >0, z(t(f)) > 0 on [t., 00). Assume not. Then U(t) < 0 on [t., oo). Therefore,

zZO\® A —z(t)  U()
(T) T o) __ta(t)>0'

which implies that z(t)/t is strictly increasing. Pick t, € [t1, 00)T so that T(t) > t(t.), for t > f,. Then

z(x(t) _ z(t(t)
() — 1(t)

so that z(7(t)) > dt(t), for t > t,. By (3) and (h3), we obtain
x(f) = z(t) - p(O)x(to(t)) > z(t) — p(£)z(70(£)) = (1 — p(£)=(f)

=d>0,

> (1-P)z(t). (11)

Using (4) and (11), we have

OO = —qu)x* () — g2(Dx" (T2(b))

<~ - P2 (n() - ()1 - PP (na(h)) (12)
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Using (h1) and (h4), we have

—qu(H)(1 = P)*z(1(1)) = q2(H)(1 = PYP2F(x(t)
~qu()(1 = PYz*(¢(1) = ()1 = PYPz*(x(t)
~(1 = PYz* (z())(@1(t) + g2(1)).

ININ A

Now by integrating both sides of last equation from t, to t, we have

HOEA ) = r(k) (A (1)) + f (1= PY(qu(t) + 2(H)z"(z(t))As < 0.
ty

This implies that
t
)G > f (1= PY(@i(s) + qa(s)2" (2(5))As
15}
t
> 41— Py f (1(5) + 429 T (),
ty

which contradicts (10). So U(t) > 0 on ¢ € [t;, o)1 and consequently,

<0, t€[ty, 00,

(z(t) )A _ O 2 _ U

Tt ta(t)  to(b)

and we have that z(t)/¢ is strictly decreasing on t € [t;, o). The proof is now complete. [

3. Main Results

In this section we give some new oscillation criteria for (1).

Theorem 3.1. Assume that (2), (5) and (10) hold and that, for all sufficiently large Ty € [to, co), thereisa T > T4
such that

e (&) i
imsup [ 15600 - G aRe T )

where the function p € C!([to, )t, R) is a nonnegative function. Then every solution of equation (1) is either
oscillatory or tends to zero.

Proof. Assume (1) has a nonoscillatory solution x(¢) on [fg, o). Then, without loss of generality that x(¢) > 0,
x(to(t)) >0, x(t1(t)) >0, x(72(t)) > 0 for t > 1. z(t) is defined as in (3). We shall consider only z(¢) > 0,
since the proof when z(t) is eventually negative is similar. Therefore Lemma 2.1 and Lemma 2.2, we have

(O] <0, 220> 0, t € [t 00,

and either z2(t) > 0 for t > t, > t; or lim;_, z(t) = lim;_,« x(t) = 0. Let z2(t) > 0 on [t,, 00)T.
Define the function w(t) by Riccati substitution

OO

W) = p) S

(14)
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Then
_ rO([zB1) O 1
W) = T |
_ AOI(E(0) S LN £ (51(E(5) e SN S O 1( 00 S M 24 O) s
= pA(t)—Zy(t) O T PO e
By (4) and (11), we have
[r®([()]*) 1 < —qu(B)(A = P)*z*(t1(1) = q2()(A = PP (za(t)).
From the definition of w(t) and the last inequality, we have,
p™(1) o ZNT®) 2 (12(t))
W) < s - p OO0 - P S - p 000 - PP
o OO @ (1)
T PO e
By Young’s inequality

1
labl < 1|a|”+1|b|‘7, a,beR, p>1,g9>1, 1+—=1,
p q p

q
we have
By @) | y-a )
=P Sy T a0 P 6w
()P H(aa(t) 7/
> noa-pr5ZP] T roa-pr 5]

_ Py _ iy 2T - 2 @)\ -ayp-a)
(@1 = PP o1 - Py SRR RO,

z(T(t)

> (@)1 = P)) PP ga(e)(1 = PPYO I Sy
Hence, by (15) and (16) and using the fact that z(t)/f is decreasing, we obtain
A
w0 < D - op o - PP - o Sy

UOI(E0) A CAG)

) 2/ (Hz27o(t)

In the first case 0 < y < 1. Using the Keller’s chain rule(see [3]), we have

1
@)t =y f [hz” + (1 = bzl = 25 (0)dh =y () 7' 2A(),
0

1431

(15)

(16)

(17)
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in view of (17), Lemma 2.2, Lemma 2.3, (9) and using the fact that z(t)/t is decreasing, we have

A o (P« r() (@A (1) zA (H)z(t)
W) < —p 000 + )~y 0
. (P (®)- . r(EA Y
< =p R + L)~y OR ) —_TEs
A Wy
< =000+ 50 - yprORG ’E ((;) s
Let y > 1. Applying the Keller’s chain rule , we have
1
@) =y f [h2? + (1 = Wzl "' 28(dh > p () ~'28(), (19)
0

in the view of (19), Lemma 2.2, Lemma 2.3 and (9), we have

A ’ (P (D)4 r(B)[z()]*2) 25 (B2 (t)
wi(t) < —p’(HD(t) + o) w(t) —yp°(t) (D)
At +
0 <0000 + C% i) -y R 1), (20)
p(t) ( ) 7(1‘)
By (18), (20) and the definition of S(t), we have, for y > 0,
W@ < 00 + LD 0 —yprnpoRre, 1) e1)
a p(t) Pt
where A := y)—
Define A > 0 and B > 0 by
= Y (OBOR(E, 1) %,
B/\—l = PA(t) .
Aype (OBOREL) T
Then using the inequality [18]
AABM - AN < (A -1)B? (22)
which yields
(p™(1))+ w'(t B ((p™(5)+ !
o O TP ORORE L) Gy < N o ORG, L)
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From this last inequality and (21), we find

(CRO)NS
(O + D7 BHP7(OR(E 1))

wi(t) < —p”(HD(H) +
Integrating both sides from T to t , we get

ft[PU(S)(D(S) - GOk 1As < w(T) — w(t) < w(T),
T (y + 1) (B(s)p ()R (s, 1))

which contradicts to assumption (13). This completes the proof of Theorem 3.1. [J

Theorem 3.2. Assume that (2), (5) and (10) hold. Furthermore, suppose that there exist functions H,h € C,4(ID, R),
where D = (t,5) : t > s > t such that

H(t,t)=0,t>0

H(t,s) >0, t >s >ty

and H has a nonpositive continous A-partial derivative H*(t, s) with respect to the second variable and satisfies

A(s) _h(t, s)
pis) — pls)

H™(o(t), ) + H(o(h), o(s)) H(o(t), o(s)) 7, (23)

and for all sufficiently large Ty € [ty, o)1, there is a T > Ty such that

) 1 ot B
limsup m fT‘ Xx(t,5)As = oo, (24)

t—o0
where p is a positive A-differentiable function and

(h-(t, )
(7 + D71 (B)p (IR(s, T1))

x(t,s) = H(a(t), 0(s))p” (s)P(s) —

Then every solution of equation (1) is either oscillatory or tends to zero.

Proof. Suppose that x(t) is a nonoscillatory solution of (1) and z(f) is defined as in (2). Without loss of
generality, we may assume that there is a t; € [ty, oo)r sufficiently large so that the conclusions of Lemma
2.1. hold and (23) holds for t, > t;. If case (I) of Lemma 2.1. holds then proceeding as in the proof of
Theorem 3.1. , we see that (21) holds for t > t,. Multiply both sides of (21) by H(d(t), 0(s)) and integrating
from T to o(t), we get

o(t) a(t) o (t) pA (s)
H(o(t),0(s))p (s)D(s)As < — H(o(t), a(s))w?(s)As + H(a(t), 0(s)) w(s)As
T T T p(s)
f Hmommwomm@nﬂfi @=%¥) 25)

Integrating by parts and using H(t, t) = 0, we obtain

o (t) o (t)
H(o(t), o(s))w™(s)As = —H(o(t), T)w(T) — f H2(a(t), s)w(s)As.
T
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It then follows from (25) that

o (t) o(t)
H(o(t), a(s))p” (s)@(s)As < H(o(t), T)w(T) + f H*(a(t), s)w(s)As
T

()
A()

Pee) w(s)As—f H(o(t),0(s))yp’(s)B(s)R(s, T1)

f Hio,06) 5

Then, we have

o(t)

H(o(t), 0(s))p  (s)P(s)As < H(o(t), T)w(T)

a(t)
o= [ Hot, o epeRs ™4

a(t) A
As P (S)
+[ 0,9 + Hiot),06) S
It then follows from (23) that

a(t)
H(o(t), 0(s))p (s)D(s)As < H(o(t), )w(T)

o® : ®)
. fT - %H( o006 Jote)as - - HO0,06)p OBERG,T) AA((S))

Then
a(t)

h_(t,s)
p(s)

o (t)
H(G(t), o‘(S))pG(S)CD(S)AS < H(g(t), T)ZU(T) +f [ H( (t) U(S))) 1]W(S)AS
w(s 5) A
H(a(t) o©)yp EPERE Tr) x5 A

Therefore, as in Theorem 3.1. , by letting

/\

A= (0, 0@ OBORE T o)

B = h-(t,5) -
A(ype(DBOR(E, T1))

Then using the inequality [18]

AABM - AY < (A -1)BY,

we have

w (S)

A()

a(t) h a(t)
f k= (o), o) fote)s - - Ho), 0@y GBERG T

< f " (h-(t, )"
=) O EEMF ORE T

p()s

1434

(26)
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From this last inequality and (26), we find

a(t)

sy
0+ DT EEp ORE T

a(t)
HIG(), o©)p P(©)s < Ho(), Tyo(D) + [
T
Then for T > T; we have

(h-(t, )
(y + 1 (B(s)p? ()R(s, Th))”

a(t)
fT |Ho0), 06Dp 0)200) - [as < How, Tro(m),

and this implies that

1 o) 5 (h_(t,5)) "
Ho®.T) fT [H(a(t),o(S))P (5)D(s) — 0+ 1 BE)p GRE, T1))

for all large T, which contradicts (24). This completes the proof of Theorem 3.2. [

]As < w(T),

Remark 3.3. From Theorem 3.1, we can obtain different conditions for oscillation of equation (1.1) with different
choices of p(t).

Remark 3.4. The conclusion of Theorem 3.1 remains intact if assumption (13) is replaced by the two conditions

t—o0

¢
lim sup f p°(s)P(s)As = oo,
T

t ((p" ()

Insup | T D EEp ORG Ly

Remark 3.5. The conclusion of Theorem 3.2 remains intact if assumption (24) is replaced by the two conditions2

) 1 a(t)
lim sup Hom.T) fT H(o(t), 0(s))p’ (s)D(s)As = oo,

t—o0

. 1 ® (h_(t,s))"*"
N aem D ) 0 EEprERE TS <

Example 3.6. Consider the third order quasilinear neutral delay dynamic equations on time scales

1 AAAS 1 st
(v + 3300+ 583G+ 1) =0, @7)
wherer(t) =1, a = %, y=1 = g, q1(t) = qo(t) = %, U is a positive constant.

The condition (2), (5) and (10) hold. By Theorem 3.1, pick p(t) = t, we have

. o (PP
mii?pr [0~ 0+ D BEPF GRG, ol

) ! 1

Hence, every solution of eq. (27) is oscillatory or tends to zero if u > 0.
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Example 3.7. Consider the third order quasilinear neutral delay dynamic equations on time scales

AAA
(0 + 33on)  +Zpx o)+

o(t)
w(£)

X3 (1a(t)) = 0, (28)

a(t)
(

wherer(t) =%, a =%, y=1, =3, q(t) = q2(t) = T3, W is a positive constant.

DL

The condition (2), (5) and (10) hold. By Theorem 3.1, pick p(t) = 1, we have

. v (pPE). )
lTimﬁwp@q”_W+w“w@M@wme“

t
limsupf uAs = oo,
T

t—oo

Hence, every solution of eq. (28) is oscillatory or tends to zero if y > 0.
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