Filomat 29:4 (2015), 853-863
DOI 10.2298/FIL1504853Z

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

% ) &

% &

U 5
iy s’

%

T1pupor®

Representations for the Drazin Inverse of a Modified Matrix

Daochang Zhang?, Xiankun Du?

“#School of Mathematics, Jilin University, Changchun 130012, China

Abstract. In this paper expressions for the Drazin inverse of a modified matrix A — CDB are presented
in terms of the Drazin inverses of A and the generalized Schur complement D — BAYC under weaker
restrictions. Our results generalize and unify several results in the literature and the Sherman-Morrison-
Woodbury formula.

1. Introduction
The classical Sherman-Morrison-Woodbury formula reads
(A-CD'By ' =A"'+ A7'C(D-BA'C)'BATY,

where A and D are invertible matrices (not necessarily with the same size) and B and C are matrices with
the appropriate size such that D —BA~!C (and so A — CD~!B) is invertible ([25, 30]). The matrix A— CD™'B is
called, especially in the case where D is the identity matrix, a modified matrix of A, and D — BA~!C is called
the Schur complement. The Sherman-Morrison-Woodbury formula allows one to compute the inverse of a
modified matrix in terms of the inverses of the original matrix and its Schur complement. Inverse matrix
modification formulae of such type have been studied extensively and has numerous applications in various
fields such as statistics, networks, structural analysis, numerical analysis, optimization and partial different
equations, etc., see [13, 14, 17]. Formulae of such type have been developed in the context of generalized
inverses, such as the Moore-Penrose inverse [1, 20], the weighted Moore-Penrose inverse [28], the group
inverse [6], the weighted Drazin inverse [8], the generalized Drazin inverse [11, 19], and especially the
Drazin inverse [10, 12, 23, 24, 29].

In this paper, we are interested in the inverse matrix modification formula in the setting of the Drazin
inverse.

The Drazin inverse of a complex square matrix A is the unique matrix A? such that

AAY = AYA, ATAAT = A7, Ak = AF1AY)

where k is the smallest non-negative integer such that rank(A¥) = rank(A**!), called index of A and denoted
by ind(A). If ind(A) = 1, then A? is called the group inverse of A and denoted by A*. The Drazin inverse is
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a generalization of inverses and group inverses of matrices. There are widespread applications of Drazin
inverses in various fields, such as differential equations, control theory, Markov chains, iterative methods
and so on (see [2, 4]).

Wei [29] derived explicit expressions of the Drazin inverse of a modified matrix A — CB under certain
circumstances, which extends results of [22, 26] and can be used to present a perturbation bound for the
Drazin inverse studied by Campbell and Meyer [3]. Recently, Cvetkovi¢-1li¢ and Ljubisavljevi¢ [10] and
Dopazo and Martinez-Serrano [12] extended results of Wei [29] to the modified matrix A — CD“B. Mosi¢
[23] and Shakoor, Yang and Ali [24] generalized results of [10, 12]. These results are useful for perturbation
problems and updating finite Markov chains.

In this paper, based on an observation on Dedekind finiteness of unital matrix subalgebras, we relax
and remove some restrictions in theorems in [10, 12, 23, 24, 29] and give representations of (A — CD’B)¢
under fewer and weaker conditions. Our results generalize and unify results of these literatures and the
Sherman-Morrison-Woodbury formula. We also derive a new formula for the Drazin inverse of A — CD“B,
a corollary of which recovers a generalization of Jacobson’s Lemma (see [5, Theorem 3.6]) for the case of
matrices.

Throughout this paper, let C"*" denote the set of m X n complex matrices, A € C"™", D € C"", B € C"™"
and C € C™™. Let I denote the identity matrix of proper size. Conventionally, write A™ for I — AA?. For
simplicity, we will write S for the modified matrix A — CDB and Z for the generalized Schur complement
D - BA‘C.

We will adopt the conventions that A° = I for any square matrix A and YX o+ =0incasek < 0.

2. Drazin Inverse of a Modified Matrix

We start with a well-known result.

Lemma 2.1. ([16, Theorem 2.1]) Let P and Q be n X n matrices. If PQ = 0, then
t—1 ) . s—1 ) ‘
(P + Q)d — Qn Z Qz(Pd)1+1 + Z(Qd)HlePn,
i=0 i=0

where s = ind(P) and t = ind(Q).
In what follows, let S, = AAYSAA“.
Lemma 2.2. If A"CD"B =0, then Sy = SAA? and
k=1
s =84+ ) (84)*2sAiAT,
i=0
where k = ind(A).
Proof. Since ATCD’B = 0, we first note that S, = AAYSAA? = SAA? and S = SA™ + S,4. Then A™S,4 = 0 and
(SA™) = S(ATS) LA™ = S(AATY-1AT = SA1AT

for any positive integer i. Let k = ind(A). It has been known that k is the least nonnegative integer such
that A*A™ = 0. Thus SA™ is nilpotent and k < ind(SA™) < k + 1, and so (SA™)? = 0 and (SA™)™ = I. Let
s = ind(SA™). Then Lemma 2.1 implies that

s s—1
=) (SFUSATY =S4 + ) (Sh)*ASAIA™.
i=0 i=0
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Sinces —1 <k < sand A’A™ = 0 for any i > k, we have
[ ‘
=84+ ) (Sh)*2saiAT,
i=0

as desired. [
Lemma 2.3. Let X, Y and e be n X n matrices and ¢* = e. If XeY = e, then eYeXe = e.

Proof. Let W = {M € C*" | eM = Me = M}. Then W is a finite dimensional algebra over C with identity
e, and so W is Dedekind finite (see [18, Corollary 21.27]). Note that eXe, eYe € W and (eXe)(eYe) = e. Then
(eYe)(eXe) = e, thatis, eYeXe =e. [

If ind(A) = 1, then A? is called the group inverse of A and denoted by A*. In what follows, let H = BA?
and K = A“C.

Lemma 2.4. Let Sy = AASAA? and M = A? + KZH. Then the following statements are equivalent:
(1) KD™"Z9H = KDZ"H;
(2) SAM = AA%;
(3) MSy = AA%;
(4) KZ"DH = KZD"H.
Furthermore, if one of (1)—(4) holds, then S has the group inverse
S* = A’ + KZ°H.
Proof. Let A° = AA? and Z¢ = ZZ°. Then
SaM = A° + AKZH — AKDH — AKD*(D — Z)ZH.

Thus (2) holds if and only if AK(Z? — D? — DD — Z)Z%)H = 0, or equivalently K(D*Z¢ — D?Z™)H = 0, that
is, (1) holds. Similarly, (3) is equivalent to (4). Lemma 2.3 implies equivalence of (2) and (3). Furthermore,
(2) and (3) give S =M = A+ KZH. O

Now we can give our first main result.

Theorem 2.5. If A"CD“B = 0 and KD"Z¢H = KD"Z™H, then

k-1
st = A+ KZH + Z(Ad + KZPH)*2S A AT
i=0

with H = BA® and K = A“C, or alternatively

k-1
S = A4 + AYCZ9BA" - Z(Ad + AYCZBATY ATCZIBAIA™
i=0
k-1 . ‘
+ Z(Ad + AYCZBAY I AYC(Z2D™ — Z'DY)BA!,
i=0

where k = ind(A).
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Proof. Since A"CDB = 0, we have S4 = AAYSAA? = SAA?. Thus the first equation follows from Lemma
2.2 and Lemma 2.4. Note that
(A + KZ'H)SA™ =(AA? — KDB + KZ'BAA® — KZ%(D — Z)DB)A™
= - KZ"DBA™ — KZ%(I — D™)BA™,
=K(ZD™ — Z"D*)BA™ — KZ?BAT,

Since KD"ZH = KDZ"H, by Lemma 2.4 we have
K(ZD™ — Z"DHBA™ = K(ZD™ — Z"D*)B — K(Z°D™ — Z"D?)HA = K(Z°D™ — Z"D%B,
whence the second equation follows from the first one. O

Remark 2.6. From the second expression of S in Theorem 2.5, we can more clearly see several results in the literature
how to be generalized. In addition, observing that

(A? + KZ'H)SA™ = K(Z°D™ — Z"D?)BA™ — KZ*BA™ = —K(Z°D + Z™)DBAT,
we can get another expression of S%:
k-1

S = A + AYCZ4BAY - Z(A"’ + ACZBAN AC(Z°D + Z™)DBAIAT,
i=0
where k = ind(A).
The following result is a fairly direct consequence of Theorem 2.5.
Corollary 2.7. If A"CDB = 0, CD™Z%B = 0 and CD“Z"B = 0, then
k=1 ' '
s = A" + AYCZIBAY - Z(Ad + AYCZIBAY AYCZIBAI AT
i=0
+ Z(A"’ + AYCZBAY T AYC(Z27D™ — Z"DY)BA!,
i=0
where k = ind(A).
We now analyse some special cases of the preceding theorems, some of which give and generalize the
Sherman-Morrison-Woodbury formula and results of [10, 12, 23, 24, 29].
It is easy to verify that D"Z% = 0 and DZ™ = 0 if and only if D™ = Z7, that is, D and Z have the same
eigenprojection at zero. Matrices with equal eigenprojections at zero were studied in [7] to give error bounds

for the Drazin inverse of a perturbation. So the following consequence of Theorem 2.5 is of independent
interest.

Corollary 2.8. If A"CD“B = 0 and D™ = ZT, then

k-1
S = A + ACZ9BA? - Z(Ad + ACZBAT T ATCZIBAIAT,
i=0

where k = ind(A).
In [10, 12, 24], expressions of the Drazin inverse of A — CD’B are given under the following conditions

(1) A"C=0, BA®™ =0, CD"ZB =0, CDZ"B =0, CZ*D"B = 0 and CZ"D“B = (;
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(2) A"C=0,CD" =0, Z'B=0, D"B=0and CZ" = (;
(3) A"C =0, CD"ZB =0, CDZ"B =0, CZD"B = 0 and CZ"D’B = 0.

Corollary 2.7 relaxes the first condition and drops the last two ones in each item of (1)-(3) and gives a unified
generalization of [10, Theorem 2.1], [12, Theorem 2.1] and [24, Theorem 2.1].

Corollary 2.7 also generalizes Theorem 1 and Theorem 2 of [23], in which Mosi¢ made the following
assumptions:

(4) A™C = CD™, D"B = 0 and DZ" = 0;
(5) A®C = CD™, D"B =0, Z*B = 0 and CZ" = 0.

Indeed, observe that A"C = CD™ implies A"CDB = 0 and BA’CD"™ = 0, or equivalently (D — Z)D™ = 0,
while D™B = 0 implies D"BAYC = 0, or equivalently D"(D — Z) = 0. Then we have ZD™ = D"Z, and
particularly Z?D™ = D™Z“. Now it is easy to see that either of (4) and (5) implies the conditions of Corollary
2.7.

If we suppose D is the identity matrix, then Corollary 2.7 gives a generalization of [29, Theorem 2.1].

If A,D and Z are invertible in Corollary 2.7, then A™ = 0, D™ = 0, Z™ = 0 and ind(A)=0. In this case
it is well known that S is also invertible, and so Corollary 2.7 is exactly the Sherman-Morrison-Woodbury
formula.

The following theorem, which is a dual version of Theorem 2.5, can be proved similarly.

Theorem 2.9. If CDYBA™ = 0 and CZ"D?B = CZD™B, then

k-1
§'= Al + AlCZIBAT - ) ATAICZIBAY (AT + ATCZIBA")!
i=0
k=1 ‘ ‘
+ Z A'C(D"Z? — D'Z"BAY(A? + A’CZ'BA")™,
i=0
where k = ind(A).

Theorem 2.9 generalizes [10, Theorem 2.1], [23, Theorem 3], [12, Theorem 2.2], [24, Theorem 2.2] and
[29, Theorem 2.1].

We now turn to the next main result of this section. Let H = BA?, K = AC, I = HK and E = AAY —KT"H,
the first three of which were introduced by Wei [27] to give representations for the Drazin inverses of block
matrices.

The following lemma is an immediate consequence of [9, Corollary 3.2].

Lemma 2.10. Let P, Q and R be n X n matrices such that PQ = QP = QR = RP = R? = 0. If Q is nilpotent, then
-1 A A
(P+Q+R)y =P+ ) (P*RQ,
i=0

where t = ind(Q).

Lemma 2.11. If A"CD“B = 0 and KT*HSA? = 0, then
t—1
Sd — (ESE)d + 2((ESE)d)i+2(SEn)i+l,

i=0

where H = BA?, K = A%C, T = HK, E = AA? — KT%H and t = ind(E"SE™).
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Proof. We first note that E is idempotent. Since A"CDB = 0, we have A"SE = A™AE = 0. Thus
E™SE = (A™ + KI'"H)SE = KI¥HSE = 0

and
E"SE™ = E™S = A”™S + KTYHS = AA™ + KT“HS.

Since A™K = 0, (KTYHS)? = 0 and AA™ is nilpotent, we see that E*SE™ is nilpotent. Now we use Lemma 2.10
to S = ESE + E™SE™ + ESE™ to obtain

t—1
s = (ESE)* + Z((ESE)”I)”ZSE"(E”SE”)"
i=0
t—1 ) )
= (ESEY' + ) | (ESEY)**(SE™)™*!,
i=0
where t = ind(E"SE™). O

Lemma 2.12. If KTYHSA? = 0 and KT™D?H = 0, then there exists the group inverse of ESE and (ESE)* = EA“E,
where H = BA?, K = A“C, T = HK, E = AA? - KT"H.

Proof. We first note that E is idempotent and E = A%(A — CI'H). A calculation gives
EK = K — KTT = KI™. (1)
Then
EAYESE = EA“SE — EAKT?HSE = E(AA® — KDB)E = E — EKDBE = E — KI"DBE = E.
It follows from Lemma 2.3 that ESEA’E = E. Thus ESE has the group inverse EA’E. [

Theorem 2.13. If A"CD?B = 0, KT“HSA? = 0 and KI"D“H = 0, then

k-1 k-1
$4 = (I - KT?H)A%(I — KT"H) - Z((I — KTH)A%)*2KT"HS A" — Z((I — KTH)A%*IKT™"DBA!,
i=0 i=0

where H = BA?, K = A%C, T = HK and k = ind(A).
Proof. LetE = AAY — KTH. By Lemma 2.11 and Lemma 2.12 we have
t—1 ] .
Sd — EAdE + Z(EAdE)HZ(SEW)Hl
i=0
t—1 ) .
= EAE + Z(EAdE)l“(EA”’ESE’T)(E”SE“)’, (2)
i=0
where t = ind(E"SE™). Note that EA’ESE™ = EA?ESA™ + EAESKT?H. Since KTYHSA? = 0, we have
KT?HSA™ = KT?HS. It follows from (1) and KI"D?H = 0 that
EAYESA™ = EAY(AAYSA™ — KT'HSAT)
= EAY(—~CDBA™ — KT?HS)
= —EKD'BA™ — EA®KT?HS
= —KI™DB — EA®KTHS.
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We first note that EKT?H = 0. By KTYHSA? = 0 again we have KT?HSK = 0. It follows from KI"D?H = 0
that
EAYESKT?H = EAY(AA® — KT¥H)SKT"H
= EAYSKT"H
= EAY(A - CDB)KT“H
= EKTH — EKDHCIH
= —KI"DHCIH
= 0.
Then EA?ESE™ = —KI"D*B—EA?KT?HS. Note that E"SE™ = AA™+KI'?HS. Since A"K = 0 and (KT?HS)? = 0,

we have ‘ ‘
(ETSE™) = (A™A + KT¥HS)A™!,

for any positive integer i, whence ind(A) < ind(E™SE™) < ind(A) + 1. It follows that
EAYESE™(E™SE™) =(~KI™D"B — EA’KTYHS)(A™A + KT"HS)A™™!
= — KI™D'BA’ — EA"KTYHSA', (3)
for any positive integer i. Combining (2) and (3) yields

t—1 t—1
st = EAE - Z(EAd)i”KrdHSA" - Z(EAd)f“Kr”DdBAf.
i=0 i=0

Since t — 1 < k < t and KI"HSA' = KI"D“BA' = 0 for any i > k, we have

k-1 k-1
st = EAE - Z(EAd)i”KrdHSA" - Z(EAd)f“Kr“DdBAf.
i=0 i=0

Now the conclusion follows from the facts that EA? = (I - KT"H)A? and A“E = AY(I - KTYH). O
Theorem 2.14. If A"CD?B =0, CI"ZD“B = 0, CT*D™B = 0 and CI™D“B = 0, then

k-1
$% = (I - KT'H)A%(I - KT9H) + Z((I — KTYH)A%)*2KTYBAIAT,
i=0

where k = ind(A).
Proof. A calculation yields
HS = BAYA — BA"CDB = BA“A — (D — Z)D"B = BAYA — DD“B + ZDB = —BA™ + D™B + ZD"B.
Now it is easy to verify that the conditions of Theorem 2.13 are satisfied and K[YHS = —KI“BA™ and
KT™D?B = 0. Thus the expression of S in Theorem 2.13 can be reduced to the desired one. [

Theorem 2.14 generalizes [29, Theorem 2.2], [10, Theorem 2.2] and [24, Theorem 2.8], where the following
assumptions are made, respectively,

(1) A"C=0,Z=0, D=1, BA* = 0and CI"B = 0;
(2) A"C=0, Z=0, BAT=0, CDI"B =0, CI"D"B = 0, CD"I"B = 0, and CT“D"B = 0;
(3) A"C =0, Z=0, CDI"B = 0, CI"DB = 0, CD"T*B = 0 and CI"D"B = 0.
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Theorem 2.14 relaxes and drops some conditions above. Moreover, it is not difficult to give an example that
satisfies the conditions of Theorem 2.14 and Z # 0:

A=1, B:[(l)], c=[1 0], D:[(l) (1)]

The following theorem may be proved in the same way as Theorem 2.13.
Theorem 2.15. If CD'BA™ = 0, KDZI"H = 0, KD™"TH = 0 and KDT™H = 0, then
k-1 k-1
§¢ = (I - KTH)A(I — KTH) — Z AISKTYH(AY(I — KT?H))*2 — Z AICDT™H(AY(I — KT?H))*!,
i=0 i=0
where H = BA?, K = AC, T = HK and k = ind(A).
Theorem 2.15 generalizes [29, Theorem 2.2] [10, Theorem 2.2] and [24, Theorem 2.9].

3. Generalized Jacobson’s Lemma

In this section we will present new expressions for (A — CD?B)“.

Lemma 3.1. ([15] and [21]) Let M = [ 1(‘)\ g ] and N = [ lg 1(4); ] € C™", where A and D are square matrices.
Then ] .
| AT X 4_| D* 0
M? = [ 0 D and N? = X Al
where

s—1 r—1
X = Z(Ad)HZCDiDT( + A™ ZAic(Dd)HZ _ AdCDd,
i=0 i=0

r = ind(A) and s = ind(D).
Lemma 3.2. If DYBAA? = D'DBA?, then
s—1

S4 = A+ A'CZLD'BAAY - Z(Ad)’“CDDdzgngdBAAd,
i=0

where Sy = AAYSAA?, Zp = DD*ZDD? and s = ind(Zp).

Proof. By abuse of notation we write A%/ instead of (A?)? for any 7 xn matrix A. Let A° = AA9 and D¢ = DD".
Note that
Sa ACD® | | AA°® ACD* I 0
[ 0 DD¢ ] B [ D*BA® DD¢ ] [ -DBA® 1 ]

For short let us introduce the temporary notation

AA®  A°CD¢

I 0
M‘[ D'BA® DD¢ ] and N‘[ _DBA® | ]

Then Cline’s formula gives

[ S4  ACCD*®

d
— 2d
i~ ] = M(NM)¥N.
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AA® A°CD¢
D°BA® — D'BA°A  DD¢ — DYBA°CD*
AA®  A°CD*
0 Zb

A calculation yields NM = [ ] Since D'BAAY = DDBA4, we have

D°BA® — DBAA = 0 and DD* — D?BA°CD* = Zp. Thus NM = [ ] By Lemma 3.1 we have

d 2 24 Ad d
(NM)Zd:[A X]z[A AX+XZD}I

d d
0o z4 0 7%
where X = Y1) (AY)*2CD*ZL ZF, — A%CZ% and s = ind(Zp). Note that XZ¢ = —A?CZ%. Then

Sa Accor |' [ AY-XDBA® X
0 DD¢ ~ | D°BA* —YD'BA® Y |
where Y = D°B(A“X — AdCZ%i) + DZ%i. Hence
s—1 ) )
S4 = Al + A'CZLDIBAC - Z(Ad)’“cwzbngdBA@,
i=0
where s =ind(Zp). O
Combining Lemma 2.2 and Lemma 3.2 gives the following result.

Lemma 3.3. If A"CD"B = 0 and D"BAA? = D'DBA", then

k-1
s =84+ ) (84 *sAiA",
i=0

where
s—1

S4 = A+ A'CZLD'BAAY - Z(Ad)f+ZCDDdengDdBAAd,
i=0

Sa = AASAAY, Zp = DDZDD?, k = ind(A) and s = ind(Zp).
To represent S in terms of Z¢ we need an extra assumption.
Theorem 3.4. If A"CDB = 0, D"BA“C = 0 and D'BAA“ = D'DBA?, then

k-1
=84+ ) (Sh)*2saiAT,
i=0

where k = ind(A), S4 = AAYSAAT,

s—1
% = Al + AYCZD'BAA? — Z(Ad)”ZCDDdziz"DdBAAd,
i=0

and s = ind(Z).
Proof. Let D° = DD“ and Zp = D°ZD*. Using an analogous strategy as Lemma 2.2 we get
-1

74 =78+ Y (Zh)**zD'Dr,
i=0
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where t = ind(D). Note that Z/D¢ = 74, D°Z? = Z? and Zp = ZD°. Then Zi, = Z'D* and ZJD? =
(I-2ZpZHD? = Z*D?, implying

778D = 7'DY(1 - 29D = Z'Z"D".
Now the theorem follows from Lemma 3.3. [

Corollary 3.5. Let A and D be invertible. If DB = BA, then

s—1
(A-CD By = A1+ A1CZD'B - Z A~2CZiz"D 1B,
i=0

where s = ind(Z).

If A and D are identity matrices in the corollary above, then we recover a generalization of Jacobson’s
Lemma (see [5, Theorem 3.6]) for the case of matrices.

Corollary 3.6. Let s =ind(I — BC). Then

s—1
(I-CB) =1+ C(I-BC)'B - Z C(I - BC)i(I — BC)™B.
i=0
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