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Representations for the Drazin Inverse of a Modified Matrix
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Abstract. In this paper expressions for the Drazin inverse of a modified matrix A − CDdB are presented
in terms of the Drazin inverses of A and the generalized Schur complement D − BAdC under weaker
restrictions. Our results generalize and unify several results in the literature and the Sherman-Morrison-
Woodbury formula.

1. Introduction

The classical Sherman-Morrison-Woodbury formula reads

(A − CD−1B)−1 = A−1 + A−1C(D − BA−1C)−1BA−1,

where A and D are invertible matrices (not necessarily with the same size) and B and C are matrices with
the appropriate size such that D−BA−1C (and so A−CD−1B) is invertible ([25, 30]). The matrix A−CD−1B is
called, especially in the case where D is the identity matrix, a modified matrix of A, and D−BA−1C is called
the Schur complement. The Sherman-Morrison-Woodbury formula allows one to compute the inverse of a
modified matrix in terms of the inverses of the original matrix and its Schur complement. Inverse matrix
modification formulae of such type have been studied extensively and has numerous applications in various
fields such as statistics, networks, structural analysis, numerical analysis, optimization and partial different
equations, etc., see [13, 14, 17]. Formulae of such type have been developed in the context of generalized
inverses, such as the Moore-Penrose inverse [1, 20], the weighted Moore-Penrose inverse [28], the group
inverse [6], the weighted Drazin inverse [8], the generalized Drazin inverse [11, 19], and especially the
Drazin inverse [10, 12, 23, 24, 29].

In this paper, we are interested in the inverse matrix modification formula in the setting of the Drazin
inverse.

The Drazin inverse of a complex square matrix A is the unique matrix Ad such that

AAd = AdA, AdAAd = Ad, Ak = Ak+1Ad,

where k is the smallest non-negative integer such that rank(Ak) = rank(Ak+1), called index of A and denoted
by ind(A). If ind(A) = 1, then Ad is called the group inverse of A and denoted by A#. The Drazin inverse is
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a generalization of inverses and group inverses of matrices. There are widespread applications of Drazin
inverses in various fields, such as differential equations, control theory, Markov chains, iterative methods
and so on (see [2, 4]).

Wei [29] derived explicit expressions of the Drazin inverse of a modified matrix A − CB under certain
circumstances, which extends results of [22, 26] and can be used to present a perturbation bound for the
Drazin inverse studied by Campbell and Meyer [3]. Recently, Cvetković-Ilić and Ljubisavljević [10] and
Dopazo and Martı́nez-Serrano [12] extended results of Wei [29] to the modified matrix A − CDdB. Mosić
[23] and Shakoor, Yang and Ali [24] generalized results of [10, 12]. These results are useful for perturbation
problems and updating finite Markov chains.

In this paper, based on an observation on Dedekind finiteness of unital matrix subalgebras, we relax
and remove some restrictions in theorems in [10, 12, 23, 24, 29] and give representations of (A − CDdB)d

under fewer and weaker conditions. Our results generalize and unify results of these literatures and the
Sherman-Morrison-Woodbury formula. We also derive a new formula for the Drazin inverse of A − CDdB,
a corollary of which recovers a generalization of Jacobson’s Lemma (see [5, Theorem 3.6]) for the case of
matrices.

Throughout this paper, let Cm×n denote the set of m× n complex matrices, A ∈ Cn×n, D ∈ Cm×m, B ∈ Cm×n

and C ∈ Cn×m. Let I denote the identity matrix of proper size. Conventionally, write Aπ for I − AAd. For
simplicity, we will write S for the modified matrix A − CDdB and Z for the generalized Schur complement
D − BAdC.

We will adopt the conventions that A0 = I for any square matrix A and
∑k

i=0 ∗ = 0 in case k < 0.

2. Drazin Inverse of a Modified Matrix

We start with a well-known result.

Lemma 2.1. ([16, Theorem 2.1]) Let P and Q be n × n matrices. If PQ = 0, then

(P + Q)d = Qπ
t−1∑
i=0

Qi(Pd)i+1 +

s−1∑
i=0

(Qd)i+1PiPπ,

where s = ind(P) and t = ind(Q).

In what follows, let SA = AAdSAAd.

Lemma 2.2. If AπCDdB = 0, then SA = SAAd and

Sd = Sd
A +

k−1∑
i=0

(Sd
A)i+2SAiAπ,

where k = ind(A).

Proof. Since AπCDdB = 0, we first note that SA = AAdSAAd = SAAd and S = SAπ + SA. Then AπSA = 0 and

(SAπ)i = S(AπS)i−1Aπ = S(AAπ)i−1Aπ = SAi−1Aπ

for any positive integer i. Let k = ind(A). It has been known that k is the least nonnegative integer such
that AkAπ = 0. Thus SAπ is nilpotent and k ≤ ind(SAπ) ≤ k + 1, and so (SAπ)d = 0 and (SAπ)π = I. Let
s = ind(SAπ). Then Lemma 2.1 implies that

Sd =

s∑
i=0

(Sd
A)i+1(SAπ)i = Sd

A +

s−1∑
i=0

(Sd
A)i+2SAiAπ.
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Since s − 1 ≤ k ≤ s and AiAπ = 0 for any i ≥ k, we have

Sd = Sd
A +

k−1∑
i=0

(Sd
A)i+2SAiAπ,

as desired.

Lemma 2.3. Let X, Y and e be n × n matrices and e2 = e. If XeY = e, then eYeXe = e.

Proof. Let W = {M ∈ Cn×n
| eM = Me = M}. Then W is a finite dimensional algebra over C with identity

e, and so W is Dedekind finite (see [18, Corollary 21.27]). Note that eXe, eYe ∈ W and (eXe)(eYe) = e. Then
(eYe)(eXe) = e, that is, eYeXe = e.

If ind(A) = 1, then Ad is called the group inverse of A and denoted by A#. In what follows, let H = BAd

and K = AdC.

Lemma 2.4. Let SA = AAdSAAd and M = Ad + KZdH. Then the following statements are equivalent:

(1) KDπZdH = KDdZπH;
(2) SAM = AAd;
(3) MSA = AAd;
(4) KZπDdH = KZdDπH.

Furthermore, if one of (1)–(4) holds, then SA has the group inverse

S#
A = Ad + KZdH.

Proof. Let Ae = AAd and Ze = ZZd. Then

SAM = Ae + AKZdH − AKDdH − AKDd(D − Z)ZdH.

Thus (2) holds if and only if AK(Zd
−Dd

−Dd(D − Z)Zd)H = 0, or equivalently K(DπZd
−DdZπ)H = 0, that

is, (1) holds. Similarly, (3) is equivalent to (4). Lemma 2.3 implies equivalence of (2) and (3). Furthermore,
(2) and (3) give S#

A = M = Ad + KZdH.

Now we can give our first main result.

Theorem 2.5. If AπCDdB = 0 and KDπZdH = KDdZπH, then

Sd = Ad + KZdH +

k−1∑
i=0

(Ad + KZdH)i+2SAiAπ

with H = BAd and K = AdC, or alternatively

Sd = Ad + AdCZdBAd
−

k−1∑
i=0

(Ad + AdCZdBAd)i+1AdCZdBAiAπ

+

k−1∑
i=0

(Ad + AdCZdBAd)i+1AdC(ZdDπ
− ZπDd)BAi,

where k = ind(A).
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Proof. Since AπCDdB = 0, we have SA = AAdSAAd = SAAd. Thus the first equation follows from Lemma
2.2 and Lemma 2.4. Note that

(Ad + KZdH)SAπ =(AAd
− KDdB + KZdBAAd

− KZd(D − Z)DdB)Aπ

= − KZπDdBAπ
− KZd(I −Dπ)BAπ,

=K(ZdDπ
− ZπDd)BAπ

− KZdBAπ,

Since KDπZdH = KDdZπH, by Lemma 2.4 we have

K(ZdDπ
− ZπDd)BAπ = K(ZdDπ

− ZπDd)B − K(ZdDπ
− ZπDd)HA = K(ZdDπ

− ZπDd)B,

whence the second equation follows from the first one.

Remark 2.6. From the second expression of Sd in Theorem 2.5, we can more clearly see several results in the literature
how to be generalized. In addition, observing that

(Ad + KZdH)SAπ = K(ZdDπ
− ZπDd)BAπ

− KZdBAπ = −K(ZdD + Zπ)DdBAπ,

we can get another expression of Sd:

Sd = Ad + AdCZdBAd
−

k−1∑
i=0

(Ad + AdCZdBAd)i+1AdC(ZdD + Zπ)DdBAiAπ,

where k = ind(A).

The following result is a fairly direct consequence of Theorem 2.5.

Corollary 2.7. If AπCDdB = 0, CDπZdB = 0 and CDdZπB = 0, then

Sd = Ad + AdCZdBAd
−

k−1∑
i=0

(Ad + AdCZdBAd)i+1AdCZdBAiAπ

+

k−1∑
i=0

(Ad + AdCZdBAd)i+1AdC(ZdDπ
− ZπDd)BAi,

where k = ind(A).

We now analyse some special cases of the preceding theorems, some of which give and generalize the
Sherman-Morrison-Woodbury formula and results of [10, 12, 23, 24, 29].

It is easy to verify that DπZd = 0 and DdZπ = 0 if and only if Dπ = Zπ, that is, D and Z have the same
eigenprojection at zero. Matrices with equal eigenprojections at zero were studied in [7] to give error bounds
for the Drazin inverse of a perturbation. So the following consequence of Theorem 2.5 is of independent
interest.

Corollary 2.8. If AπCDdB = 0 and Dπ = Zπ, then

Sd = Ad + AdCZdBAd
−

k−1∑
i=0

(Ad + AdCZdBAd)i+1AdCZdBAiAπ,

where k = ind(A).

In [10, 12, 24], expressions of the Drazin inverse of A − CDdB are given under the following conditions

(1) AπC = 0, BAπ = 0, CDπZdB = 0, CDdZπB = 0, CZdDπB = 0 and CZπDdB = 0;
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(2) AπC = 0, CDπ = 0, ZπB = 0, DπB = 0 and CZπ = 0;
(3) AπC = 0, CDπZdB = 0, CDdZπB = 0, CZdDπB = 0 and CZπDdB = 0.

Corollary 2.7 relaxes the first condition and drops the last two ones in each item of (1)-(3) and gives a unified
generalization of [10, Theorem 2.1], [12, Theorem 2.1] and [24, Theorem 2.1].

Corollary 2.7 also generalizes Theorem 1 and Theorem 2 of [23], in which Mosić made the following
assumptions:

(4) AπC = CDπ, DπB = 0 and DZπ = 0;
(5) AπC = CDπ, DπB = 0, ZπB = 0 and CZπ = 0.

Indeed, observe that AπC = CDπ implies AπCDdB = 0 and BAdCDπ = 0, or equivalently (D − Z)Dπ = 0,
while DπB = 0 implies DπBAdC = 0, or equivalently Dπ(D − Z) = 0. Then we have ZDπ = DπZ, and
particularly ZdDπ = DπZd. Now it is easy to see that either of (4) and (5) implies the conditions of Corollary
2.7.

If we suppose D is the identity matrix, then Corollary 2.7 gives a generalization of [29, Theorem 2.1].
If A,D and Z are invertible in Corollary 2.7, then Aπ = 0, Dπ = 0, Zπ = 0 and ind(A)=0. In this case

it is well known that S is also invertible, and so Corollary 2.7 is exactly the Sherman-Morrison-Woodbury
formula.

The following theorem, which is a dual version of Theorem 2.5, can be proved similarly.

Theorem 2.9. If CDdBAπ = 0 and CZπDdB = CZdDπB, then

Sd = Ad + AdCZdBAd
−

k−1∑
i=0

AπAiCZdBAd(Ad + AdCZdBAd)i+1

+

k−1∑
i=0

AiC(DπZd
−DdZπ)BAd(Ad + AdCZdBAd)i+1,

where k = ind(A).

Theorem 2.9 generalizes [10, Theorem 2.1], [23, Theorem 3], [12, Theorem 2.2], [24, Theorem 2.2] and
[29, Theorem 2.1].

We now turn to the next main result of this section. Let H = BAd, K = AdC, Γ = HK and E = AAd
−KΓdH,

the first three of which were introduced by Wei [27] to give representations for the Drazin inverses of block
matrices.

The following lemma is an immediate consequence of [9, Corollary 3.2].

Lemma 2.10. Let P, Q and R be n × n matrices such that PQ = QP = QR = RP = R2 = 0. If Q is nilpotent, then

(P + Q + R)d = Pd +

t−1∑
i=0

(Pd)i+2RQi,

where t = ind(Q).

Lemma 2.11. If AπCDdB = 0 and KΓdHSAd = 0, then

Sd = (ESE)d +

t−1∑
i=0

((ESE)d)i+2(SEπ)i+1,

where H = BAd, K = AdC, Γ = HK, E = AAd
− KΓdH and t = ind(EπSEπ).
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Proof. We first note that E is idempotent. Since AπCDdB = 0, we have AπSE = AπAE = 0. Thus

EπSE = (Aπ + KΓdH)SE = KΓdHSE = 0

and
EπSEπ = EπS = AπS + KΓdHS = AAπ + KΓdHS.

Since AπK = 0, (KΓdHS)2 = 0 and AAπ is nilpotent, we see that EπSEπ is nilpotent. Now we use Lemma 2.10
to S = ESE + EπSEπ + ESEπ to obtain

Sd = (ESE)d +

t−1∑
i=0

((ESE)d)i+2SEπ(EπSEπ)i

= (ESE)d +

t−1∑
i=0

((ESE)d)i+2(SEπ)i+1,

where t = ind(EπSEπ).

Lemma 2.12. If KΓdHSAd = 0 and KΓπDdH = 0, then there exists the group inverse of ESE and (ESE)# = EAdE,
where H = BAd, K = AdC, Γ = HK, E = AAd

− KΓdH.

Proof. We first note that E is idempotent and E = Ad(A − CΓdH). A calculation gives

EK = K − KΓdΓ = KΓπ. (1)

Then

EAdESE = EAdSE − EAdKΓdHSE = E(AAd
− KDdB)E = E − EKDdBE = E − KΓπDdBE = E.

It follows from Lemma 2.3 that ESEAdE = E. Thus ESE has the group inverse EAdE.

Theorem 2.13. If AπCDdB = 0, KΓdHSAd = 0 and KΓπDdH = 0, then

Sd = (I − KΓdH)Ad(I − KΓdH) −
k−1∑
i=0

((I − KΓdH)Ad)i+2KΓdHSAi
−

k−1∑
i=0

((I − KΓdH)Ad)i+1KΓπDdBAi,

where H = BAd, K = AdC, Γ = HK and k = ind(A).

Proof. Let E = AAd
− KΓdH. By Lemma 2.11 and Lemma 2.12 we have

Sd = EAdE +

t−1∑
i=0

(EAdE)i+2(SEπ)i+1

= EAdE +

t−1∑
i=0

(EAdE)i+1(EAdESEπ)(EπSEπ)i, (2)

where t = ind(EπSEπ). Note that EAdESEπ = EAdESAπ + EAdESKΓdH. Since KΓdHSAd = 0, we have
KΓdHSAπ = KΓdHS. It follows from (1) and KΓπDdH = 0 that

EAdESAπ = EAd(AAdSAπ
− KΓdHSAπ)

= EAd(−CDdBAπ
− KΓdHS)

= −EKDdBAπ
− EAdKΓdHS

= −KΓπDdB − EAdKΓdHS.
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We first note that EKΓdH = 0. By KΓdHSAd = 0 again we have KΓdHSK = 0. It follows from KΓπDdH = 0
that

EAdESKΓdH = EAd(AAd
− KΓdH)SKΓdH

= EAdSKΓdH

= EAd(A − CDdB)KΓdH

= EKΓdH − EKDdHCΓdH

= −KΓπDdHCΓdH
= 0.

Then EAdESEπ = −KΓπDdB−EAdKΓdHS. Note that EπSEπ = AAπ+KΓdHS. Since AπK = 0 and (KΓdHS)2 = 0,
we have

(EπSEπ)i = (AπA + KΓdHS)Ai−1,

for any positive integer i, whence ind(A) ≤ ind(EπSEπ) ≤ ind(A) + 1. It follows that

EAdESEπ(EπSEπ)i =(−KΓπDdB − EAdKΓdHS)(AπA + KΓdHS)Ai−1

= − KΓπDdBAi
− EAdKΓdHSAi, (3)

for any positive integer i. Combining (2) and (3) yields

Sd = EAdE −
t−1∑
i=0

(EAd)i+2KΓdHSAi
−

t−1∑
i=0

(EAd)i+1KΓπDdBAi.

Since t − 1 ≤ k ≤ t and KΓdHSAi = KΓπDdBAi = 0 for any i ≥ k, we have

Sd = EAdE −
k−1∑
i=0

(EAd)i+2KΓdHSAi
−

k−1∑
i=0

(EAd)i+1KΓπDdBAi.

Now the conclusion follows from the facts that EAd = (I − KΓdH)Ad and AdE = Ad(I − KΓdH).

Theorem 2.14. If AπCDdB = 0, CΓdZDdB = 0, CΓdDπB = 0 and CΓπDdB = 0, then

Sd = (I − KΓdH)Ad(I − KΓdH) +

k−1∑
i=0

((I − KΓdH)Ad)i+2KΓdBAiAπ,

where k = ind(A).

Proof. A calculation yields

HS = BAdA − BAdCDdB = BAdA − (D − Z)DdB = BAdA −DDdB + ZDdB = −BAπ + DπB + ZDdB.

Now it is easy to verify that the conditions of Theorem 2.13 are satisfied and KΓdHS = −KΓdBAπ and
KΓπDdB = 0. Thus the expression of Sd in Theorem 2.13 can be reduced to the desired one.

Theorem 2.14 generalizes [29, Theorem 2.2], [10, Theorem 2.2] and [24, Theorem 2.8], where the following
assumptions are made, respectively,

(1) AπC = 0, Z = 0, D = I, BAπ = 0 and CΓπB = 0;
(2) AπC = 0, Z = 0, BAπ = 0, CDdΓπB = 0, CΓπDdB = 0, CDπΓdB = 0, and CΓdDπB = 0;
(3) AπC = 0, Z = 0, CDdΓπB = 0, CΓπDdB = 0, CDπΓdB = 0 and CΓdDπB = 0.
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Theorem 2.14 relaxes and drops some conditions above. Moreover, it is not difficult to give an example that
satisfies the conditions of Theorem 2.14 and Z , 0:

A = 1, B =

[
1
0

]
, C =

[
1 0

]
, D =

[
1 0
0 1

]
.

The following theorem may be proved in the same way as Theorem 2.13.

Theorem 2.15. If CDdBAπ = 0, KDdZΓdH = 0, KDπΓdH = 0 and KDdΓπH = 0, then

Sd = (I − KΓdH)Ad(I − KΓdH) −
k−1∑
i=0

AiSKΓdH(Ad(I − KΓdH))i+2
−

k−1∑
i=0

AiCDdΓπH(Ad(I − KΓdH))i+1,

where H = BAd, K = AdC, Γ = HK and k = ind(A).

Theorem 2.15 generalizes [29, Theorem 2.2] [10, Theorem 2.2] and [24, Theorem 2.9].

3. Generalized Jacobson’s Lemma

In this section we will present new expressions for (A − CDdB)d.

Lemma 3.1. ([15] and [21]) Let M =

[
A C
0 D

]
and N =

[
D 0
C A

]
∈ Cn×n, where A and D are square matrices.

Then

Md =

[
Ad X
0 Dd

]
and Nd =

[
Dd 0
X Ad

]
,

where

X =

s−1∑
i=0

(Ad)i+2CDiDπ + Aπ
r−1∑
i=0

AiC(Dd)i+2
− AdCDd,

r = ind(A) and s = ind(D).

Lemma 3.2. If DdBAAd = DdDBAd, then

Sd
A = Ad + AdCZd

DDdBAAd
−

s−1∑
i=0

(Ad)i+2CDDdZi
DZπDDdBAAd,

where SA = AAdSAAd, ZD = DDdZDDd and s = ind(ZD).

Proof. By abuse of notation we write A2d instead of (Ad)2 for any n×n matrix A. Let Ae = AAd and De = DDd.
Note that [

SA AeCDe

0 DDe

]
=

[
AAe AeCDe

DeBAe DDe

] [
I 0

−DdBAe I

]
.

For short let us introduce the temporary notation

M =

[
AAe AeCDe

DeBAe DDe

]
and N =

[
I 0

−DdBAe I

]
.

Then Cline’s formula gives[
SA AeCDe

0 DDe

]d
= M(NM)2dN.
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A calculation yields NM =

[
AAe AeCDe

DeBAe
−DdBAeA DDe

−DdBAeCDe

]
. Since DdBAAd = DdDBAd, we have

DeBAe
−DdBAeA = 0 and DDe

−DdBAeCDe = ZD. Thus NM =

[
AAe AeCDe

0 ZD

]
. By Lemma 3.1 we have

(NM)2d =

[
Ad X
0 Zd

D

]2
=

[
A2d AdX + XZd

D
0 Z2d

D

]
,

where X =
∑s−1

i=0 (Ad)i+2CDeZi
DZπD − AdCZd

D and s = ind(ZD). Note that XZd
D = −AdCZ2d

D . Then[
SA AeCDe

0 DDe

]d
=

[
Ad
− XDdBAe X

DeBA2d
− YDdBAe Y

]
,

where Y = DeB(AdX − AdCZ2d
D ) + DZ2d

D . Hence

Sd
A = Ad + AdCZd

DDdBAe
−

s−1∑
i=0

(Ad)i+2CDeZi
DZπDDdBAe,

where s = ind(ZD).

Combining Lemma 2.2 and Lemma 3.2 gives the following result.

Lemma 3.3. If AπCDdB = 0 and DdBAAd = DdDBAd, then

Sd = Sd
A +

k−1∑
i=0

(Sd
A)i+2SAiAπ,

where

Sd
A = Ad + AdCZd

DDdBAAd
−

s−1∑
i=0

(Ad)i+2CDDdZi
DZπDDdBAAd,

SA = AAdSAAd, ZD = DDdZDDd, k = ind(A) and s = ind(ZD).

To represent Sd in terms of Zd we need an extra assumption.

Theorem 3.4. If AπCDdB = 0, DπBAdC = 0 and DdBAAd = DdDBAd, then

Sd = Sd
A +

k−1∑
i=0

(Sd
A)i+2SAiAπ,

where k = ind(A), SA = AAdSAAd,

Sd
A = Ad + AdCZdDdBAAd

−

s−1∑
i=0

(Ad)i+2CDDdZiZπDdBAAd,

and s = ind(Z).

Proof. Let De = DDd and ZD = DeZDe. Using an analogous strategy as Lemma 2.2 we get

Zd = Zd
D +

t−1∑
i=0

(Zd
D)i+2ZDiDπ,
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where t = ind(D). Note that ZdDe = Zd
D, DeZd = Zd and ZD = ZDe. Then Zi

D = ZiDe and ZπDDd =

(I − ZDZd)Dd = ZπDd, implying

Zi
DZπDDd = ZiDe(I − Ze)Dd = ZiZπDd.

Now the theorem follows from Lemma 3.3.

Corollary 3.5. Let A and D be invertible. If DB = BA, then

(A − CD−1B)d = A−1 + A−1CZdD−1B −
s−1∑
i=0

A−i−2CZiZπD−1B,

where s = ind(Z).

If A and D are identity matrices in the corollary above, then we recover a generalization of Jacobson’s
Lemma (see [5, Theorem 3.6]) for the case of matrices.

Corollary 3.6. Let s = ind(I − BC). Then

(I − CB)d = I + C(I − BC)dB −
s−1∑
i=0

C(I − BC)i(I − BC)πB.
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