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Abstract. In this paper we introduce the notions of left (resp. right) Fredholm and left (resp. right)
Browder linear relations. We construct a Kato-type decomposition of such linear relations. The results are
then applied to give another decomposition of a left (resp. right) Browder linear relation T in a Banach
space as an operator-like sum T = A + B, where A is an injective left (resp. a surjective right) Fredholm
linear relation and B is a bounded finite rank operator with certain properties of commutativity. The
converse results remain valid with certain conditions of commutativity. As a consequence, we infer the
characterization of left (resp. right) Browder spectrum under finite rank operator.

1. Introduction

In a paper of 2011 [17], Zivkovic, Djordjevic and Harte consider four types of Fredholm operators. A
bounded operator T from a Banach space X to a Banach space Y is said to be left Fredholm if it is upper
semiFredholm and R(T) is topologically complemented in Y, right Fredholm if it is lower semiFredholm
and N(T) is topologically complemented in X. When in particular X = Y we say that T is a left Browder
operator if it is a left Fredholm operator with finite ascent and T is called a right Browder operator if T is a
right Fredhom operator with finite descent.

In [17, Theorems 5 and 6] the authors have shown that these operators can be characterized in terms of
an algebraic decomposition, the so-called Kato decomposition.

The purpose of this paper is to extend the results above mentioned to the general case of multivalued
linear operators. After that, the results obtained are applied to give another decomposition of a left (resp.
right) Browder linear relation T in a Banach space as an operator-like sum T = A + B, where A is an injective
left (resp. a surjective right) Fredholm linear relation and B is a bounded finite rank operator with certain
properties of commutativity. The converse results remain valid with certain conditions of commutativity.
As a consequence, we infer the characterization of left (resp. right) Browder spectrum under finite rank
operator.

We note that the class of operators is unstable under the operations closure, inverse and adjoint. This is
not the case if we consider the more general case of linear relations. We emphasize that the linear relations
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(sometimes called multivalued linear operators) made their appearance in Functional Analysis motivated
by the need to consider adjoints of non-densely defined Fredholm type operators which arise in physical
applications (see, for instance [13] [16] among others), and also by the need to consider the inverses of
certain operators, used, for example in the study of some Cauchy problems associated to parabolic type
equations in Banach spaces (see, for instance [10]).

The investigation of the theory of Fredholm-type linear relations, including the left-right Fredholm and
the left-right Browder linear relations, serves a twofold purpose. The first is for it own sake and intrinsic
value; the second is that such an investigation may shed light on many problems of the operator theory.
We cite two of them.

1.- The study of linear bundles. Let S and T be bounded operators. The map P(λ) := λS − T, λ ∈ C is
called a linear bundle. It is known that many problems of mathematical physics (for example, quantum
theory, transport theory,...) are reduced to the study of certain reversibility conditions of λS − T, and this
study is reduced to the analysis of the essential spectra of the linear relations S−1T and TS−1 (see, for example
[12]).

2.- The study of the existence and uniqueness questions for bounded solutions of the differential equation

(*) −dx/dt + A(t)x = f (t), t ∈ J

where J is an infinite interval of R and A(t) : D(A(t)) ⊂ X → X, t ∈ J, is a family of closed operators in a
complex Banach space X, called the phase space. In a recent paper of 2013 [4], using properties of certain left
and right Fredholm linear relations, the author proves some results which are closely connected with the
asymptotic behaviour of solutions, the stability of solutions and the problem of the existence of bounded
solutions to differential equation (*).

To make the paper easily accessible the exposition is more or less selfcontained. For this, some purely
algebraic concepts and properties of linear relations in vector spaces over the field K of real or complex
numbers are recalled in Section 2. In Section 3 some general facts concerning the linear relations in normed
spaces are presented; in particular, properties of closed linear relations and the adjoint of a linear relation
are studied. Throughout Section 4 we develop a considerable quantity of interesting results needed in the
rest of the paper. First, we establish some algebraic properties for linear relations which play an important
role in the sequel. After that, we investigate some results concerning the conjugate of a product of linear
relations and the relation between a(T) (resp. d(T)) and d(T′) (resp. a(T′)) for bounded linear relations.
Left Fredholm and left Browder linear relations in a Banach space are considered in Section 5, where
also the Kato decomposition results can be found. As an application we prove that a left Browder linear
relation T in a Banach space can be expressed in the form T = A + B where A is an injective left Fredholm
linear relation and B is a bounded finite rank operator with BT ⊂ TB. The converse of the last result
remains valid for everywhere defined linear relation T satisfying T′ commutes with itself. Furthermore,
we apply the obtained results to study the characterization of left Browder spectrum. The notions of right
Fredholm and right Browder linear relation in a Banach space are introduced and studied in Section 6. The
Theorems 6.1 and 6.2 characterize the right Fredholm and right Browder linear relations through the Kato
decomposition. These Theorems generalize the corresponding results of Zivkovic, Djordjevic and Harte
[17, Theorem 6] for bounded operators. As an application of Theorem 6.2 we deduce the third main result
of this Section (Theorem 6.3 below), which gives another decomposition of a right Browder linear relation
T as an operator-sum T = A + B, where A is a surjective right Fredholm linear relation and B is a bounded
finite rank operator such that BT ⊂ TB. The converse of the last result remains valid under the condition
T commutes with itself. Finally, in Section 7 we study the stability of right Browder linear relations under
the class of compact operator perturbations. As a consequence, we obtain the stability of right Browder
spectrum under compact operator perturbations.

2. Linear Relations in Vector Spaces

In this Section we present some purely algebraic notions and properties of linear relations in vector
spaces which are needed in the sequel, in the attempt of making our paper as selfcontained as possible.
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We adhered to the notations and terminology of the monographs [7] and [14]. Let E,F and Z denote
vector spaces overK = R orC. A linear relation or multivalued linear operator T from E to F is any mapping
T having domain D(T) a nonempty subspace of E, and taking values in the collection of nonempty subsets
of F such that T(αx1 + βx2) = αTx1 + βTx2 for all nonzero scalars α, β and x1, x2 ∈ D(T). For x ∈ E \D(T) we
define Tx = ∅. With this convention, we have that D(T) := {x ∈ E : Tx , ∅}.

The class of all linear relations from E to F is denoted by LR(E,F) and we write LR(E) := LR(E,E). If
T ∈ LR(E) we say that T is a linear relation in E. If T ∈ LR(E,F) maps the points of its domain to singletons,
then T is said to be an operator. We note that a linear relation T is an operator if and only if T(0) = {0}.
Every element T ∈ LR(E,F) is uniquely determined by its graph, G(T), which is defined by

G(T) := {(x, y) ∈ E × F : x ∈ D(T), y ∈ Tx},

and in the sequel we will identify a linear relation with its graph.
Let T ∈ LR(E,F). The inverse of T is the linear relation T−1 given by T−1 := {(y, x) : (x, y) ∈ T}. The

subspace T−1(0), denoted by N(T), is called the null space of T and we say that T is injective if N(T) = {0}. The
range of T is the subspace R(T) := T(D(T)) and T is called surjective if R(T) = F. We write α(T) := dim N(T)
and β(T) := dim F/R(T).

For linear relations S,T ∈ LR(E,F) the linear relations S + T, S+̂T and S ⊕ T are defined by

S + T := {(x, y + z) : (x, y) ∈ S, (x, z) ∈ T},

S+̂T := {(x + u, y + v) : (x, y) ∈ S, (u, v) ∈ T}.

This last sum is direct when S ∩ T = {(0, 0)}. In such case we write S ⊕ T.
Let S ∈ LR(E,F) and let M be a subspace of E. The notation S |M will be used for the linear relation

S |M:= S ∩ (M × F)

and if E = F then SM is the linear relation given by

SM := S ∩ (M ×M).

For λ ∈ K and S ∈ LR(E) the linear relation λS is given by

λS := {(x, λy) : (x, y) ∈ S},

while S − λ stands for S − λI, where I is the identity operator in E.
For T ∈ LR(E,F) and S ∈ LR(F,Z) the composition or product ST is the linear relation given by

ST := {(x, z) : (x, y) ∈ T, (y, z) ∈ S for some y ∈ F}.

It is useful to observe that the domain of ST coincides with the subspace {x ∈ D(T) : Tx ∩ D(S) , ∅}.
Furthermore the product of linear relations is clearly associative. Hence if T ∈ LR(E), then Tn,n ∈ Z, is
defined as usual with To = I and T1 = T. It is easily seen that (T−1)n = (Tn)−1,n ∈ Z.

The following Lemma is a preliminary result from which information concerning the domain, the range
and the null space of powers of a linear relation will follow.

Lemma 2.1. [14, Lemmas 3.2, 3.4, 3.5, 4.2 and 5.4] Let T ∈ LR(E). Then

(i) For all n,m ∈N ∪ {0} we have
D(Tn+m) ⊂ D(Tn),R(Tn+m) ⊂ R(Tn),
N(Tn) ⊂ N(Tn+m),Tn(0) ⊂ Tn+m(0),
N(Tn) ⊂ D(Tm) and Tn(0) ⊂ R(Tm).

(ii) If D(Tk) = D(Tk+1) for some nonnegative integer k, then D(Tk) = D(Tn) for all nonnegative integers n ≥ k.
(iii) If N(Tr) = N(Tr+1) (resp. R(Tr) = R(Tr+1)) for some r ∈ N ∪ {0}, then N(Tr) = N(Tn) (resp. R(Tr) = R(Tn))

for all nonnegative integers n ≥ r.
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(iv) N(Tn+m)/(N(Tn+m) ∩ {N(Tn) + R(Tm)}) � (N(Tm) ∩ R(Tn))/(N(Tm) ∩ R(Tn+m)).
(v) Let m ∈N and assume that dimN(T) < ∞. Then dimN(Tm) ≤ m dimN(T).

Lemma 2.2. For T ∈ LR(E) the following properties are equivalent:

(i) N(T) ⊂ R(Tm) for all m ∈N.
(ii) N(Tn) ⊂ R(T) for all n ∈N.

(iii) N(Tn) ⊂ R(Tm) for all n,m ∈N.

Proof. (i)⇒ (ii) This implication is proved by induction. The case n = 1 is obvious by (i). Assume that
N(Tn) ⊂ R(T) and we shall prove that N(Tn+1) ⊂ R(T). Let x ∈ N(Tn+1), that is, (x, y) ∈ Tn and (y, 0) ∈ T for
some y ∈ D(T). Hence y ∈ N(T) ⊂ R(Tn+1) by (i), so that (z, y) ∈ Tn+1 for some z ∈ E which implies that
there exists u ∈ E such that (z,u) ∈ T and (u, y) ∈ Tn. Consequently, (x− u, 0) ∈ Tn and thus by the induction
hypothesis we have that x − u ∈ R(T). Since u ∈ R(T), it follows that x ∈ R(T). Therefore N(Tn+1) ⊂ R(T), as
required.

(ii) ⇒ (iii) This implication is proved by induction. The cases m = 0 is true for all n ∈ N. Assume
that N(Tn) ⊂ R(Tm) for all n ∈ N and we shall prove that N(Tn) ⊂ R(Tm+1). Let x ∈ N(Tn). So (x, 0) ∈ Tn.
Due to x ∈ R(T), it follows that (y, x) ∈ T for some y ∈ D(T). This implies that (y, 0) ∈ Tn+1 and hence
y ∈ N(Tn+1) ⊂ R(Tm). Using the fact that (y, x) ∈ T for some y ∈ D(T) and (z, y) ∈ Tm for some z ∈ D(Tm), we
get (z, x) ∈ Tm+1 for some z ∈ D(Tm+1) which shows that x ∈ R(Tm+1).

(iii)⇒ (i) This implication is clear. �.

The statements in Lemma 2.1 lead to the introduction of the ascent and the descent of T by

a(T) := min{r ∈N ∪ {0} : N(Tr) = N(Tr+1)},

d(T) := min{r ∈N ∪ {0} : R(Tr) = R(Tr+1)},

respectively, whenever these minima exist. If no such numbers exist the ascent and descent of T are defined
to be ∞. Clearly a(T) = 0 if and only if T is injective and d(T) = 0 if and only if T is surjective. For a linear
relation T, the root manifold N∞(T) is defined by N∞(T) = ∪∞n=1N(Tn). Similarly, the root manifold R∞(T), is
defined by R∞(T) = ∩∞n=1R(Tn).

In [14] the authors introduce and give a systematic treatment of these notions. They show that many of
the results of Taylor and Kaashoek for operators remain valid in the context of linear relations only under
the additional condition Rc(T) = {0}, where for T ∈ LR(E), Rc(T) := (∪n∈NN(Tn)) ∩ (∪n∈NTn(0)).

We note

Lemma 2.3. [14, Lemmas 3.1 and 5.5]Let T ∈ LR(E) such that Rc(T) = {0}. We have

(i) If M is a subspace of E, then Rc(TM) = {0}.
(ii) If a(T) ≤ p for some nonnegative integer p, then N(Tn) ∩ R(Tp) = {0} for all n ∈N.

The algebraic resolvent set of T ∈ LR(E) is defined by Sandovici [15, page 2168] as follows:
ρ(T) := {λ ∈ K : T − λ is injective and surjective }.
The set σ(T) := K \ ρ(T) is called the spectrum of T.

Lemma 2.4. [15, Lemma 6.1] Let T ∈ LR(E) such that ρ(T) , ∅. Then for all n,m ∈N

E = D(Tn) + R(Tm) and {0} = Tm(0) ∩N(Tn).

This Lemma ensures that if T is a linear relation in E with ρ(T) , ∅ then Rc(T) = {0}.
To prove the main Theorems of this paper some properties concerning the notion of linear relation

completely reduced are required.
Assume that M and N are two complementary subspaces of E, that is, E = M + N and {0} = M ∩ N (in

short, E = M ⊕N)). Following [14, page 25] we say that T ∈ LR(E) is completely reduced by the pair (M,N)
if T = TM ⊕ TN.
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Lemma 2.5. [14, Lemma 8.1 and Theorem 8.2] Let T ∈ LR(E) be completely reduced by the pair (M,N). Then

(i) D(T) = D(TM) ⊕D(TN),N(T) = N(TM) ⊕N(TN),R(T) = R(TM) ⊕ R(TN) and T(0) = TM(0) ⊕ TN(0).
(ii) If a(T) = p < ∞ then a(TM) ≤ p and a(TN) ≤ p. If a(TM) and a(TN) are both finite, then a(T) =

max{a(TM), a(TN)}.
(iii) If d(T) = q < ∞ then d(TM) ≤ q and d(TN) ≤ q. If d(TM) and d(TN) are both finite, then d(T) =

max{d(TM), d(TN)}.

3. Linear Relations in Normed Spaces

This Section contains some auxiliary notions and properties of linear relations in normed spaces.
Throughout this Section X,Y and Z will denote normed spaces and T will always denote an element
of LR(X,Y), except where stated otherwise.

We first recall some basic properties for future use.

Lemma 3.1. [7, Lemma IV.4.7 and IV.5.2] Let M and N be two subspaces of X such that N is closed and N ⊂ M.
Then

(i) M is closed if and only if M/N is closed.
(ii) If M is closed, then

(X/N)/(M/N) = X/M

where the equality is a canonical isometry.
(iii) If M is a closed finite codimensional subspace of X and M1 is a dense subspace of X, then M∩M1 is dense in M.

If K and L are subspaces of X and X′ (the dual space of X) respectively, then

K⊥ := {x′ ∈ X′ : x′(K) = 0} and L> := {x ∈ X : L(x) = 0}.

The adjoint or conjugate of T ∈ LR(X,Y) is the linear relation T′ given by

G(T′) := G(−T−1)⊥ ⊂ Y′ × X′.

We note that

Lemma 3.2. [7, Theorem III.3.9] Let M and N be closed subspaces of the Banach space X. Then M + N is closed if
and only if M + N = (M⊥ ∩N⊥)>.

Observe that if QT denotes the quotient map from Y onto Y/T(0), then it is easy to see that QTT is an
operator and so we can define for x ∈ D(T), ‖ Tx ‖:=‖ QTTx ‖ and the norm of T is defined by ‖ T ‖:=‖ QTT ‖.
We remark that ‖ . ‖ is not a true norm since ‖ T ‖= 0 does not imply T = 0.

Following [7] we say that T ∈ LR(X,Y) is closed if its graph is a closed subspace of X × Y, continuous
if ‖ T ‖< ∞, bounded if it is continuous and everywhere defined, open if its inverse is continuous, φ+,
denoted by T ∈ φ+(X,Y), if T is closed with closed range and dimN(T) < ∞ and T is called a φ− linear
relation, denoted by T ∈ φ−(X,Y), if T is closed and its range is a closed finite codimensional subspace of
Y. A closed linear relation S in X such that N(S) ⊂ R(Sn) for all n ∈ N and R(S) is closed is called a regular
linear relation in X.

We now list some of the known facts about linear relations in normed spaces which will be used in the
sequel.

Lemma 3.3. [7, Chapters II and III] We have:

(i) T−1 is closed if and only if T is closed if and only if QTT is closed and T(0) is closed.
(ii) N(T′) = R(T)⊥. Further R(T′) = N(T)⊥ if and only if T is open if and only if γ(T) > 0, where γ(T) := sup{ε ≥

0 : εd(x,N(T)) ≤‖ Tx ‖, x ∈ D(T)}.
(iii) Let S ∈ LR(X,Y) be a bounded operator and assume that T is closed. Then T + S is closed.
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(iv) Suppose that T is closed and let S ∈ LR(Y,Z) be open with closed range and dimN(S) < ∞. Then ST is closed.
(v) If X and Y are Banach spaces and T is closed, then T is open if and only if R(T) is closed if and only if R(T′) is

closed. Further T is continuous if D(T) is closed.

We close this Section with the following Lemma concerning the φ+ and φ− linear relations.

Lemma 3.4. Let X and Y be Banach spaces and let T ∈ LR(X,Y) be closed. Then

(i) T ∈ φ+(X,Y) if and only if QTT ∈ φ+(X,Y/T(0)). In such case N(T) = N(QTT).
(ii) T ∈ φ−(X,Y) if and only if QTT ∈ φ−(X,Y/T(0)). In such case N(T) = N(QTT).

Proof. Follows immediately from Lemmas 3.1 and 3.3. �

Lemma 3.5. Let T ∈ LR(X) where X is a Banach space and let n ∈N. We have

(i) If T ∈ φ+(X), then Tn
∈ φ+(X).

(ii) Let T ∈ φ−(X) such that D(T) = X and ρ(T) , ∅, then Tn is densely defined, (Tn)′ = (T′)n and Tn
∈ φ−(X).

Proof. (i) Let n ∈ N. We first show by induction that Tn is closed. For n = 1, it is clear. Suppose that Tn

is closed. It follows from the conditions (iv) and (v) of Lemma 3.3 that Tn+1 is closed.
On the other hand, by Lemma 2.1 (v) we infer that dimN(Tn) ≤ ndimN(T), so that dimN(Tn) < ∞. It

remains to prove that R(Tn) is closed. To do this, we proceed by induction. For n = 1, it is obvious. Assume
that R(Tn) is closed.

Define T1 := T |N(T)+R(Tn).
Since T is closed with finite dimensional null space and R(Tn) is closed we obtain that T1 is a closed

linear relation. Furthermore the linear relations T and T1 have the same null space and hence γ(T) ≤ γ(T1).
In this situation, applying the conditions (ii) and (v) in Lemma 3.3 we deduce that R(T1) is closed. But
R(T1) = R(Tn+1). Indeed, we have that

R(T1) := T(N(T) + R(Tn)) = TT−1(0) + TR(Tn) = T(0) + TR(Tn) ([7, Corollary I.2.10])= R(Tn+1).
(ii). See [2, Corollary 2.1] and [9, Proposition 3.1].�

4. Preliminary Results

Throughout the rest of the paper, we denote byK (X) the set of compact operators on a Banach space X
and CR(X) the set of all closed linear relations in X.

4.1. Algebraic Properties for Linear Relations
This Subsection contains some algebraic properties in the context of linear relations in Banach spaces.

Lemma 4.1. Let X be a Banach space, A ∈ LR(X) and T = A + K where K ∈ K (X). Assume that KT ⊂ TK. Then
(i) KA ⊂ AK.
(ii) TA ⊂ AT.
(iii) KTn

⊂ TnK.
(iv) K′T′ ⊂ T′K′.

Proof. (i) KA = K(T − K) = KT − KK [7, Proposition I.4.2] ⊂ TK − KK = (T − K)K [7, Proposition I.4.2]
= AK.
(ii) TA = (A + K)A ⊂ AA + KA [7, Proposition I.4.2] ⊂ AA + AK ⊂ A(A + K) [7, Proposition I.4.2] = AT.
(iii) We prove by induction. For n = 1 is trivial. Assume the property to be valid for n. Then KTn+1 =
KTnT ⊂ TnKT ( by the induction hypothesis and [7, Proposition I.4.2]) ⊂ Tn+1K.
(iv) Since KT ⊂ TK, then −(KT)−1

⊂ −(TK)−1. After that, using the definition of adjoint of a linear relation ,
we obtain (TK)′ ⊂ (KT)′. Using [7, Theorem III.1.6 (a), (i)] we have K′T′ ⊂ (TK)′ ⊂ (KT)′. The use also of [7,
Theorem III.1.6 (a), (ii)] leads to K′T′ ⊂ (TK)′ ⊂ (KT)′ = T′K′ ( since D(K′) = X′ and R(T) ⊂ D(K) = X).�

Definition 4.1. Let X be a Banach space and T ∈ LR(X). We say that T commutes with itself if TD(T) ⊂ D(T).
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Lemma 4.2. Let X be a Banach space, A ∈ LR(X) and T = A + K where K ∈ K (X). Assume that A is onto and T
commutes with itself. Then
(i) R(Tn) = R(Tn) ∩D(T).
(ii) R(Tn) = AR(Tn).
(iii) N(A) ⊂ R(Tn).

Proof. (i) It is easy to see that R(Tn) ⊂ R(T) := T(D(T)) ⊂ D(T) (as T commutes with itself).
(ii) We first show that R(Tn) ⊂ A(R(Tn)). Since A is surjective then IR(A) = IX ⊂ IX + (AA−1

−AA−1) = AA−1 [7,
Proposition I.4.2 (a) ] So T = TIX ⊂ TAA−1 which leads to R(T) ⊂ TAR(A−1) = TAD(A) = TAD(T) ⊂ ATD(T)
(see Lemma 4.1 (ii)) = AR(T). Now, assume that R(Tn) ⊂ AR(Tn). Then R(Tn+1) = TR(Tn) ⊂ TA(R(Tn)) ⊂
AT(R(Tn))(see Lemma 4.1 (ii))= AR(Tn+1).Conversely, let y ∈ Ax, for some x ∈ R(Tn)∩D(T). Then y ∈ Tx−Kx
where Tx ⊂ TR(Tn) = R(Tn+1) ⊂ R(Tn) and Kx ∈ KR(Tn) = R(KTn) ⊂ R(TnK) (Lemma 4.1 (ii))⊂ R(Tn). Hence
y ∈ R(Tn).
(iii) Let Z := R(Tn) = R(Tn) ∩D(T) = R(Tn) ∩D(A) ⊂ D(A). Then
dim R(A)/AZ ≤ dim D(A)/Z [7, Proposition I.6.1] := dim D(A)/R(Tn) ∩ D(A) = dim D(A)+R(Tn)

R(Tn) [14, Lemma
2.3]≤ dim X/R(Tn) = dim R(A)/R(Tn) = dim R(A)/AZ (see (ii)). In consequence dim R(A)/AZ = dim D(A)/Z
with Z ⊂ D(A) and in this situation [7, Exercise I.6.5] ensures that N(A) ⊂ Z.

Remark 4.1. Let T ∈ CR(X) and K ∈ K (X).
(i) If T commutes with itself, then T(R(Tm) ∩D(T)) = T(R(Tm)) = R(Tm+1) for all m ∈N.
(ii) If KT ⊂ TK, then K(R(Tm)) = R(KTm) ⊂ R(TmK) ⊂ R(Tm) for all m ∈N.

4.2. Further Properties of Ascent and Descent

It is well known for bounded semi-Fredholm operators that the ascent (resp. descent) of T coincides
with the descent (resp. ascent) of T′. Recently, T. Alvarez, F. Fakhfakh and M. Mnif improved this result
for closed lower semi-Fredholm linear relations. For more information we refer to [2]. Y, Chamkha and M.
Mnif [5] give an analogue result for upper semi-Fredholm linear relations.

Let us recall some important results from [5].

Lemma 4.3. [5, Lemma 9] Let X be a Banach space and T ∈ LR(X). If T is bounded then (Tn)′ = (T′)n for all n ∈N.

Proposition 4.1. [5, Proposition 10] Let X be a Banach space and T ∈ CR(X). Assume that T is bounded. If
T ∈ Φ+(X), then
(i) a(T′) = d(T).
(ii) d(T′) = a(T).

We close this Subsection by the following result which will be used to obtain the main results of this paper.

Lemma 4.4. Let X be a Banach space and T ∈ LR(X) such that N(T) ⊂ R(Tn) for all n ∈N. Then

(i) If Rc(T) = {0}, then a(T) = 0 or∞.
(ii) If ρ(T) , ∅, then d(T) = 0 or∞.

Proof. (i) Suppose that a(T) := p < ∞. Then by virtue of Lemma 2.3 (ii) we have that N(T) ∩ R(Tp) = {0}
and since N(T) ⊂ R(Tp) we infer that N(T) = {0}, so that a(T) = 0.

(ii) Assume that d(T) := q < ∞ and let x ∈ D(Tq). Then Tqx ⊂ R(Tq) = R(Tq+1) which implies that
if y ∈ Tqx, then (x, y) ∈ Tq and (z, y) ∈ Tq+1 for some z ∈ D(Tq+1) ⊂ D(T). Hence, there is w ∈ X such
that (x − w, 0) ∈ Tq and (z,w) ∈ T, which implies that x − w ∈ N(Tq), so that by virtue of Lemma 2.2 we
have that x − w ∈ R(T) and since w ∈ Tz ⊂ R(T) we conclude that x ∈ R(T). Therefore D(Tq) ⊂ R(T), so
that D(Tq) + R(T) = R(T) and now this fact together with Lemma 2.4 ensures that R(T) = X equivalently
d(T) = 0.�
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5. Left Fredholm and Left Browder Linear Relations

Throughout this Section X will denote a Banach space and T will always denote a closed linear relation
in X.

We begin this Section with the notion of a left Fredholm linear relation in a Banach space. For this, we
recall the following standard definition.

Definition 5.1. A closed subspace M of X is said to be topologically complemented in X if there exists a closed
subspace N of X such that X = M ⊕N.

Note that the finite dimensional subspaces and the closed finite codimensional subspaces of X are
topologically complemented in X.

Definition 5.2. We say that T is a left Fredholm linear relation in X, denoted by T ∈ φl(X), if T is a φ+ linear
relation and R(T) is topologically complemented in X.

Our next objective is to give a characterization of the class φl(X) in terms of an algebraic decomposition,
the so-called Kato decomposition. In order to obtain this characterization, we need a bit of preparation.

Lemma 5.1. [3, Lemma 2.2] Let X and Y be Banach spaces and let S be a bounded operator from X to Y. Assume
that M is a closed subspace of X such that S|M is injective and SM is topologically complemented in Y and let N be a
topological complement of SM. Then, S−1N is closed and a topological complement of M.

Definition 5.3. [8] A linear relation P in a vector space is said to be a multivalued linear projection if P2 = P and
R(P) ⊂ D(P).

A multivalued linear projection can be characterized in terms of a pair of subspaces as follows:

Lemma 5.2. [8, Proposition 1.1] Let M and N be subspaces of a vector space E. Define P ∈ LR(E) by G(P) =
{(m + n,m) : m ∈ M,n ∈ N}. Then P is a multivalued linear projection satisfying D(P) = M + N, R(P) = M,
N(P) = N and P(0) = M ∩ N. Conversely, if P is a multivalued linear projection in E, then P determines a pair of
subspaces M and N such that G(P) = {(m + n,m) : m ∈ M,n ∈ N} with D(P) = M + N, R(P) = M, N(P) = N and
P(0) = M ∩N.

The following result shows that the notion of topological complementation may be expressed in terms
of multivalued projections under suitable restrictions.

Lemma 5.3. [8, Proposition 3.13] Suppose M and N are subspaces of a normed space E and let P denote the projection
with D(P) = M + N, R(P) = M, N(P) = N and P(0) = M ∩ N. If P is continuous and M + N and M ∩ N are
topologically complemented in E and M + N respectively, then M and N are topologically complemented in E.

Proposition 5.1. Let T ∈ φl(X). Then there is d ∈N ∪ {0} such that

(i) N(T) ∩ R(Td) = N(T) ∩ R(Tn), for all nonnegative integers n ≥ d.
(ii) N(T) ∩ R(Td) is a finite dimensional subspace of X.

(iii) N(Td) + R(T) is topologically complemented in X.

Proof. We first note that
(5.1) For each n ∈N, dimN(Tn) < ∞ and R(Tn) is closed.
Indeed, since T ∈ φ+(X) the assertion (5.1) follows from Lemma 3.5 (i).
(i) By (5.1) the sequence dim(N(T) ∩ R(Tn)) is a decreasing sequence and has therefore a limit. Hence,

there exists some smallest d ∈N ∪ {0} for which N(T) ∩ R(Td) = N(T) ∩ R(Tn) for all n ≥ d. Hence (i) holds.
(ii) It is obvious, since T ∈ φ+ and hence its null space is finite dimensional.
(iii) Since R(T) is closed and dimN(Td) < ∞, the subspace N(Td)+R(T) is closed. Furthermore we observe

that by Lemma 3.5 (i) dimN(Td) < ∞which implies that dim(N(Td)+R(T))/R(T) = dimN(Td)/(N(Td)∩R(T)) <
∞ and hence there exists a finite dimensional subspace Z of X such that N(Td) + R(T) = R(T) ⊕ Z.
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On the other hand, R(T) is topologically complemented in X by hypothesis, so that, there is a closed
subspace N such that X = R(T) ⊕ N. Let I and q denote the isomorphism to X/R(T) onto N and the
quotient map from X onto X/R(T). Define S := Iq. Then S is a bounded operator from X to N such that
N(S) = R(T), R(S) = N, S|Z injective, SZ = S(N(Td) + R(T)) and SZ ⊕ R = N for some closed subspace R.
Indeed, N(S) = N(q) = R(T), R(S) = N, N(S|Z) = N(S) ∩ Z = R(T) ∩ Z = {0}, S(N(Td) + R(T)) = S(R(T) ⊕ Z) =
SR(T) ⊕ SZ = SN(S) ⊕ SZ = SZ and since SZ is finite dimensional, then there exists a closed subspace R
such that SZ ⊕ R = N. From the reasoning above together with Lemma 5.1, we get S−1R is a topological
complement of Z. Using the reasoning above with [7, Proposition I.3.1] , we deduce that

S−1S(N(Td) + R(T)) = ((N(Td) + R(T)) ∩D(S)) + N(S) = N(Td) + R(T)

and
N(Td) + R(T) + S−1R = R(T) ⊕ Z + S−1R = R(T) + X = X.

It remains to show that (N(Td) + R(T)) ∩ S−1R = R(T). Indeed, let x ∈ (N(Td) + R(T)) ∩ S−1R. Then x ∈
S−1R ∩ S−1S(N(Td) + R(T)) = S−1R ∩ S−1SZ. So that Sx ∈ R ∩ SZ = {0}. Hence Sx = 0 that is, x ∈ N(S) =
R(T). Conversely, let x ∈ R(T) = N(S), then it is clear that x ∈ N(Td) + R(T) and Sx = 0 ∈ R. So that
x ∈ (N(Td) + R(T)) ∩ S−1R. Now, by virtue of Lemma 5.2 we can consider the multivalued linear projection
P with D(P) = (N(Td) + R(T)) + S−1R,R(P) = N(Td) + R(T),N(P) = S−1R and P(0) = (N(Td) + R(T)) ∩ S−1R.
Further, since N(Td) + R(T) and S−1R are closed, it follows from [8, Theorem 3.4] that P is continuous
and since P(0) = R(T) is topologically complemented in X we infer from Lemma 5.3 that N(Td) + R(T) is
topologically complemented in X. �

We are now in the position to state the first main result of this paper.

Theorem 5.1. (The Kato decomposition of a left Fredholm linear relation) The following properties are equivalent:

(i) T ∈ φl(X).
(ii) There are two closed subspaces M and N of X such that

(a) X = M ⊕N with N ⊂ D(T) and dimN < ∞.
(b) T = TM ⊕ TN.
(c) TM is a regular left Fredholm linear relation in M.
(d) TN is a bounded nilpotent operator in N.

Proof. (i)⇒ (ii) Let d ∈N∪ {0} as in Proposition 5.1. Since T ∈ φl(X), then it is easy to see by Proposition
5.1 that T is a quasi-Fredholm linear relation (see Definition 4.1.3 in [6]). Reasoning in the same way as
in the proof of Theorem 4.1.1 in [6], we can construct two closed subspaces M and N of X satisfying the
following conditions:

(1) X = M ⊕N with N ⊂ N(Td).
(2) T = TM ⊕ TN.
(3) TM is a regular linear relation in M such that N(TM) = N(T) ∩ R(Td)
and R(TM) ⊕N = R(T) + N(Td).
(4) TN is a bounded operator in N and it is nilpotent of degree d (that is, Td

N = 0).
Hence, it only remains to show that dimN < ∞ and that TM ∈ φl(M).
Since T ∈ φ+(X) so is Td by virtue of Lemma 3.5 (i), in particular N(Td) is finite dimensional. This last

fact together with the inclusion N ⊂ N(Td) ensures that dimN < ∞. That N(TM) is finite dimensional is a
direct consequence of the equality N(TM) = N(T) ∩ R(Td) combined with the condition (ii) in Proposition
5.1. Since TM is regular, then R(TM) is closed.

On the other hand, it follows from the identity R(T) + N(Td) = R(TM) ⊕ N established in (3) and the
property (iii) in Proposition 5.1 that there exists a closed subspace Z of X such that R(TM)⊕Z = X and hence
R(TM)⊕ (Z∩M) = M, that is, R(TM) is topologically complemented in M. Therefore TM ∈ φl(M), as required.

(ii) ⇒ (i) Assume that the properties (a)-(d) in (ii) are satisfied. It is clear that R(TM) is closed (as TM
is regular) and N(TN) and R(TN) are both finite dimensional subspaces (as dimN < ∞). Then we deduce
from Lemma 2.5 (i) together with [14, Theorem 8.2] that T ∈ φ+(X). On the other hand, there exist closed
subspaces M1 and N1 of X such that M1 ⊂ M,N1 ⊂ N,R(TM) ⊕M1 = M and R(TN) ⊕ N1 = N. Furthermore
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M1 + N1 is closed (since M1 is closed and N1 is finite dimensional), M1 ∩ N1 = {0} (since M ∩ N = {0}) and
R(T) = R(TM) ⊕ R(TN) (Lemma 2.5 (i)). Hence R(T) ⊕ (M1 ⊕N1) = X. The proof is completed. �

Definition 5.4. We say that T is a left Browder linear relation in X, denoted by T ∈ Bl(X), if T is a left Fredholm
linear relation with finite ascent.

For bounded operators this notion was introduced in [17, page 2]. In [17, Theorem 5] the authors
prove that the bounded left Browder operators are completely characterized in terms of an algebraic Kato
decomposition. Next, this characterization is generalized to the case of linear relations.

Theorem 5.2. (The Kato decomposition of a left Browder linear relation) Assume that Rc(T) = {0}. The following
properties are equivalent:

(i) T ∈ Bl(X).
(ii) There are two closed subspaces M and N of X such that

(a) X = M ⊕N with N ⊂ D(T) and dimN < ∞.
(b) TM ⊕ TN.
(c) TM is a regular injective linear relation in M with R(TM) topologically complemented in M.
(d) TN is a bounded nilpotent operator in N.

Proof. (i)⇒ (ii) Let M,N,TM and TN as in the part (ii) in Theorem 5.1. Then, it only remains to prove
that TM is injective. Observe that by Lemma 2.3 (i) we have that Rc(TM) = {0} and since TM is regular it
follows from Lemma 4.4 (i) that a(TM) = 0 or∞. The use of this last property combined with Lemma 2.5 (ii)
allowed us to conclude that a(TM) = 0, so that TM is injective, as desired.

(ii)⇒ (i) Using the implication (ii)⇒ (i) in Theorem 5.1 we get T ∈ φl(X). Furthermore, since a(TM) = 0
and a(TN) < ∞ (as TN is nilpotent), we infer from Lemma 2.5 that a(T) = a(TN) < ∞. Therefore T ∈ Bl(X), as
desired. �

We close this Section by another decomposition of a left Browder linear relation T as an operator-like
sum T = A + B where A is an injective left Fredholm linear relation and B is a bounded finite rank operator
with certain properties of commutativity. The converse result needs that T commutes with itself.

In order to obtain this decomposition we need a bit of preparation.

Proposition 5.2. Suppose that T commutes with itself. Let K ∈ K (X) such that KT ⊂ TK. Assume that there exists
A ∈ LR(X) surjective such that T = A + K. Then d(T) < ∞.

Proof. Since A is an onto closed linear relation, then by [7, Theorem III.4.2 (b) and Proposition II.3.2 (b)]
there is a positive number γ for which ‖Ax‖ ≥ γd(x,N(A)) ∀ x ∈ D(A). Suppose that x ∈ D(A) = D(T) and
z ∈ R(Tn). Therefore by Lemma 4.2 (i), (ii) there is y ∈ R(Tn)∩D(A) such that z ∈ Ay (Ay = z+A(0) = z+A(0)).
Thus we have

(5.2) ‖A(x − y)‖ := ‖QAA(x − y)‖ = ‖QTAx −QTz)‖ ≥ γd(x − y,N(A)) ≥ γd(x,R(Tn)),

since N(A) ⊂ R(Tn) for all n ∈N (see Lemma 4.2 (iii)). Since this holds for all z ∈ R(Tn), we obtain

(5.3) d(QTAx,QTR(Tn)) ≥ γd(x,R(Tn)) ∀ x ∈ D(A).

Suppose that T has infinite descent. Then there would be a bounded sequence {xn} with xn ∈ R(Tn)
and d(xn,R(Tn+1)) ≥ 1. Assume m > n > 0, then

‖QTKxn −QTKxm‖ =‖QTKxn −QTKxm + QTAxn −QTAxn‖

=‖QTTxn −QTAxn −QTKxm‖.

The use of Remark 4.1 and Equation (5.3) leads to
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(5.4) ‖QTKxn −QTKxm‖ ≥ d(QTAxn,QTR(Tn+1)) ≥ γd(xn,R(Tn+1)) ≥ γ

which contradicts the compactness of the operator QTK.�
We are now ready to give the third main result of this paper.

Theorem 5.3. . (i) Let T ∈ Bl(X) such that Rc(T) = {0}. Then there exist two linear relations A and B such that
T = A + B, A is an injective left Fredholm linear relation and B is a bounded finite rank operator with BT ⊂ TB and
R(B) ⊂ D(T).
(ii) If we suppose that T is everywhere defined, T′ commutes with itself and there exist two linear relations A and
B such that T = A + B, A is an injective left Fredholm linear relation and B is a bounded compact operator with
BT ⊂ TB, then T ∈ Bl(X).

Proof. (i) Let M,N,TM and TN as in Therorem 5.2 (ii). Define the linear relations A and B in X by

A := {(x,PMy − PNx) : (x, y) ∈ T}

and

B := TNPN + PN

where PM and PN designate the bounded projections of X onto M along N and onto N along M, respectively.
According to the definitions of A and B we have that T = A + B and that B is a bounded operator with
R(B) ⊂ N ⊂ D(T), so that B is finite rank and R(B) ⊂ D(T). These properties together with Lemma 3.3 (iii)
ensure that A is a closed linear relation and that D(A) = D(T).

On the other hand, A is injective and its range is topologically complemented in X. Indeed, let x ∈ N(A),
so that there exists an element y ∈ X such that (x, y) ∈ T and PMy − PNx = 0. Since PMy ∈ M and PNx ∈ N
with M ∩N = ∅, it follows that PMy = PNx = 0. Furthermore, since (x, y) ∈ T we have that (PMx,PMy) ∈ TM
and (PNx,PN y) ∈ TN. Hence x = PMx ∈ N(TM) = {0}, so that A is injective. The use of the identity A = T − B
combined with [1, Theorem 11] allowed us to conclude that R(A) is topologically complemented in X.

In order to complete the proof we will check that BT ⊂ TB. First , we show that BA ⊂ AB. Indeed, let
(x, y) ∈ BA. Then there is z ∈ X for which (x, z) ∈ A and (z, y) ∈ B. So that (x, z) = (x,PMu − PNx) for some
(x,u) ∈ T and y = Bz. Consequently

y = Bz := (TNPN + PN)(PMu − PNx) = −TNPNx − PNx := −Bx.
Define w := Bx.
It is clear that w ∈ N, so that w = PNw and PMw = PMTNw = 0. Hence (w,−w) = (w,PMTNw − PNw) and

(PNw,TNPNw) ∈ TN ⊂ T and thus it follows from the definition of A that (w,−w) ∈ A. This last property
combined with the equalities w = −y = Bx leads to (x, y) ∈ AB.On the other hand, BT = B(A + B) = BA + B.B
[7, Proposition I.4.2 (e)] ⊂ A.B + B.B = (A + B)B [7, Proposition I.4.2 (d)]= TB.
(ii) Since A ∈ Φl(X) and B ∈ K (X), then by [1, Theorem 11] we obtain that T ∈ Φl(X). Hence, it only remains
to see that a(T) < ∞. By Proposition 4.1, we have a(T) = d(T′). Hence, we shall prove that d(T′) < ∞. For
this we shall apply Proposition 5.2. We note that T′ = (A + B)′ = A′ + B′( see [7, Proposition III.1.5 (b)] .
Since A is a closed linear relation with closed range, then A is open (see Lemma 3.3 (v) ). Therefore, by [7,
Proposition III.4.6 (b)] we infer R(A′) = N(A)⊥ = {0}⊥. So A′ is surjective. This together with the fact that T′

commutes with itself and B′T′ ⊂ T′B′ (see Lemma 4.1 (iv)) show d(T′) < ∞. �

As a consequence, we infer the characterization of left Browder spectrum under finite rank operators
with certain properties of commutativity.

Definition 5.5. (i) The left Browder spectrum of T ∈ CR(X) is the set σle f t
b (T) := {λ ∈ C : λ − T < Bl(X)}.

(ii) The left spectrum of T ∈ CR(X) is the set σl(T) := {λ ∈ C : λ − T < Gl(X)} where T ∈ Gl(X) if and only if T is
injective and R(T) is a topologically complemented subspace of X.
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Theorem 5.4. Let G = {K ∈ F0(X) such that KT ⊂ TK} where F0(X) designates the set of bounded finite rank
operators.
(i) If Rc(T) = {0}, then ⋂

K∈G

σl(T + K) ⊂ σle f t
b (T).

(ii) If T is everywhere defined and T′ commutes with itself, then

σle f t
b (T) ⊂

⋂
K∈G

σl(T + K).

Proof. (i) If λ < σle f t
b (T) then λ−T ∈ Bl(X). From Theorem 5.3 (i) (as Rc(λ−T) = {0} (see [14, Lemma 7.1] ),

we infer that there exist two linear relations A and B such that λ− T = A + B, A is an injective left Fredholm
linear relation and B is a bounded finite rank operator satisfying B(T − λ) ⊂ (T − λ)B and R(B) ⊂ D(T). Take
K = B ∈ F0(X). Since B(T − λ) ⊂ (T − λ)B then it is easy to see that BT ⊂ TB. Moreover, λ − T − B = A is
injective with range space topologically complemented in X. So that λ <

⋂
K∈G

σl(T + K).

(ii) Ifλ <
⋂{

σl(T + K) with K ∈ G
}

thus∃ K ∈ G such thatλ−T−K is injective and R(λ−T−K) is topologically
complemented in X. So λ− T −K ∈ Φl(X). On the other hand, it easy to see that K(T − λ) ⊂ (T − λ)K.Hence,
applying Theorem 5.3 (ii), we get λ − T = (λ − T − K) + K ∈ Bl(X). So λ < σle f t

b (T).�

6. Right Fredholm and Right Browder Linear Relations

In the sequel we assume that T is a densely defined closed linear relation in a complex Banach space X
with ρ(T) , ∅.

Definition 6.1. We say that T is a right Fredholm linear relation in X, denoted by T ∈ φr(X), if T ∈ φ−(X) and
N(T) is topologically complemented in X.

Note that an everywhere defined continuous linear relation in a Banach space may have a spectrum
that coincides with the whole complex plane (see [7, Example VI.2.6] ; in contrast, in the case of operators,
the spectrum of a bounded operator S in a Banach space is a compact subset contained in a compact disc
of radius ‖ S ‖. This remark combined with Lemma 3.3 (v) ensures that our definition of right Fredholm
linear relation coincides with the definition for bounded operators.

In [17, Theorem 6], the authors give characterizations of bounded right Fredholm and right Browder
operators in terms of a Kato decomposition of T. Our objective in this Section is to extend the above
charaterizations to the case of multivalued linear operators. To do this, we first prove some auxiliary
results.

Proposition 6.1. Let T ∈ φr(X). Then there is a nonnegative integer d satisfying the following properties:

(i) N(T) ∩ R(Td) = N(T) ∩ R(Tn) for all nonnegative integers n ≥ d.
(ii) N(T) ∩ R(Td) is topologically complemented in X.

(iii) N(Td) + R(T) is a closed finite codimensional subspace of X.

Proof. We first note that
(6.1) For each n,m ∈N, N(Tn) ∩ R(Tm) and N(Tn) + R(Tm) are closed.
Indeed, from Lemma 3.5 (ii) we have that Tn and Tm belong to φ−(X), in particular Tn is closed, so

that N(Tn) is closed and R(Tm) is a closed finite codimensional subspace contained in N(Tn) + R(Tm) which
implies that N(Tn) + R(Tm) is closed. Hence (6.1) holds.

(6.2) For each n ∈N, N(Tn) + R(T) = (N(T′) ∩ R((T′)n))>.
In fact, we note that N(Tn),R(T) and N(Tn) + R(T) are closed by Lemma 3.5 (ii) and (6.1) so that we have

that
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N(Tn)+R(T) = (N(Tn)⊥∩R(T)⊥)> (Lemma 3.2) = (R((Tn)′)∩N(T′))> (Lemma 3.3 (ii))= (R((T′)n)∩N(T′))>

(Lemma 3.5 (ii)). Hence (6.2) holds.
(6.3) There exists a nonnegative integer d for which N(Td) + R(T) = N(Tn) + R(T) for all nonnegative

integers n ≥ d.
Indeed, since dimN(T′) = dimR(T)⊥ < ∞we have that dim(N(T′)∩R((T′)n)) is a decreasing sequence and

has therefore a limit. Hence there exists some smallest d ∈N∪{0} for which N(T′)∩R((T′)d) = N(T′)∩R((T′)n)
for all n ≥ d. This last equality together with (6.2) allow us to conclude that (6.3) is true.

Let d ∈N ∪ {0} as in (6.3).
(i) Applying the statement (6.3) and the condition (iv) in Lemma 2.1 with n = d and m = 1 we get

N(T)∩R(Td) = N(T)∩R(Td+1). A repeated application of (6.3) and Lemma 2.1 (iv) leads to the assertion (i).
(ii) Since N(T) + R(Td) is closed by (6.1) and R(Td) is closed we deduce from Lemma 3.1 (i) that (N(T) +

R(Td))/R(Td) is a closed subspace of X/R(Td). This fact combined with dimX/R(Td) < ∞ ( as Td
∈ φ−(X) by

Lemma 3.5 (ii)) yields to dim(N(T) + R(Td))/R(Td) < ∞ equivalently dimN(T)/(N(T) ∩ R(Td)) < ∞, so that
there exists a finite dimensional subspace M of X such that N(T) = (N(T) ∩ R(Td)) ⊕M and since N(T) is
topologically complemented in X, it follows that N(T) ∩ R(Td) is topologically complemented in X. Hence
(ii) holds.

(iii) By (6.1) N(Td) + R(T) is a closed subspace and since T is a φ− linear relation we infer from Lemma
3.1 (ii) that dimX/(N(Td) + R(T)) < ∞. Therefore (iii) holds. �

We now are in the position to express the fourth main result of this paper.

Theorem 6.1. (The Kato decomposition of a right Fredholm linear relation) The following properties are equivalent:

(i) T ∈ φr(X).
(ii) There are two closed subspaces M and N of X such that

(a) X = M ⊕N with N ⊂ D(T) and dimN < ∞.
(b) T = TM ⊕ TN.
(c) TM is a regular right Fredholm linear relation in M.
(d) TN is a bounded nilpotent operator in N.

Proof. (i)⇒ (ii) Let d ∈N∪{0} as in Proposition 6.1. Since T ∈ φr(X), then it is easy to see by Proposition
6.1 that T is a quasi-Fredholm linear relation (see Definition 4.1.3 in [6]). Reasoning in the same way as
in the proof of Theorem 4.1.1 in [6], we can construct two closed subspaces M and N of X satisfying the
following conditions:

(1) X = M ⊕N with N ⊂ N(Td) and N(Td) + R(Td) = N ⊕N(Td).
(2) T = TM ⊕ TN.
(3) TM is a regular linear relation in M such that N(TM) = N(T) ∩ R(Td) and R(TM) ⊕N = R(T) + N(Td):
(4) TN is a bounded operator in N and it is nilpotent of degree d.
Hence, it only remains to show that dimN < ∞ and that TM ∈ φr(M).
Arguing as in the part (ii) in Proposition 6.1, we deduce that dim(N(Td) + R(Td))/R(Td) < ∞. This fact

together with the equality N(Td) + R(Td) = N⊕N(Td) established in (1) allow us to conclude that dimN < ∞.
On the other hand, that N(TM) is topologically complemented in M follows immediately from the

identity N(TM) = N(T) ∩ R(Td) combined with the assertion (ii) in Proposition 6.1.
Finally, we deduce that TM ∈ φ−(M) by noting the following facts:
dimX/(R(T) + N(Td)) < ∞ (Proposition 6.1 (iii)); dimN < ∞ and (X/R(TM))/(R(TM) ⊕ N/R(TM)) =

(X/R(TM)/(R(T) + N(Td)/R(TM)) ((3)) = X/(R(T) + N(Td)) (Lemma 3.1 (ii)).
(ii) ⇒(i) Assume that the properties (a) - (d) in (ii) are satisfied. From Lemma 2.5 (i) we have R(T) =

R(TM) ⊕ R(TN). So R(T) is closed (as R(TM) is closed and dim R(TN) < ∞). Using the fact that TM ⊂ T, we
obtain β(T) < β(TM) < ∞. So T ∈ φ−(X). On the other hand, there exists closed subspaces M1 and N1 of X
such that M1 ⊂ M,N1 ⊂ N,N(TM) ⊕M1 = M and N(TN) ⊕ N1 = N and hence N(T) ⊕ (M1 ⊕ N1) = X, where
M1⊕N1 is a closed subspace of X (as M1 is closed, dimN1 < ∞ and M∩N = {0}), so that N(T) is topologically
complemented in X. Therefore T ∈ φr(X), as required. �

Definition 6.2. We say that T is a right Browder linear relation in X, denoted by T ∈ Br(X), if T is a right Fredholm
linear relation with finite descent.
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Next we characterize the class Br(X) in terms of a Kato-type decomposition.

Theorem 6.2. (The Kato decomposition of a right Browder linear relation) The following properties are equivalent:

(i) T ∈ Br(X).
(ii) There are two closed subspaces M and N of X such that

(a) X = M ⊕N with N ⊂ D(T) and dimN < ∞.
(b) T = TM ⊕ TN.
(c) TM is a regular surjective and right Fredholm linear relation in M.
(d) TN is a bounded nilpotent operator in N.

Proof. (i)⇒ (ii) Assume that T ∈ Br(X), in particular T ∈ φr(X), so that by virtue of Theorem 6.1, there
exist two closed subspaces M and N of X verifying the conditions of the part (ii) in Theorem 6.1. Hence,
it only remains to prove that R(TM) = M. Note that by virtue of Lemma 2.5 (i) and (iii) we have ρ(TM) is
a nonempty subset and d(TM) < ∞. These properties together with the regularity of TM allow us to apply
Lemma 4.4 (ii) and thus we can deduce that d(TM) = 0, that is R(TM) = M, as desired.

(ii)⇒ (i) Using the implication (ii)⇒ (i) in Theorem 6.1 we get T ∈ φr(X). Furthermore, since d(TM) = 0
and d(TN) < ∞ (as TN is nilpotent) we infer from Lemma 2.5 (iii) that T has finite descent. Therefore
T ∈ Br(X).

The proof is completed. �
For bounded operators the above Theorem 6.2 was obtained in [17, Theorem 6].
As an application of Theorem 6.2 we deduce another decomposition of a right Browder linear relation

T via a special operator-sum decomposition of T : T = A + B where A is a linear relation whose range is
the whole space and B is a bounded finite rank operator with certain properties of commutativity. The
converse result remains also valid under the condition of commutativity.

Theorem 6.3. (i) Let T ∈ Br(X). Then there exist two linear relations A and B in X such that T = A + B, A is
a closed surjective linear relation with null space topologically complemented in X and B is a bounded finite rank
operator satisfying BT ⊂ TB and R(B) ⊂ D(T).
(ii) If we suppose that T commutes with itself and there exist two linear relations A and B such that A is surjective right
Fredholm linear relation and B is a bounded compact operator verifying T = A + B and BT ⊂ TB. Then T ∈ Br(X).

Proof. (i) Let M,N,TM and TN as in the part (ii) in Theorem 6.2. Define the linear relations A and B in X
by

A := {(x,PMy − PNx) : (x, y) ∈ T}

and

B := TNPN + PN

where PM and PN designate the bounded projections of X onto M along N and onto N along M, respectively.
Then

(6.4) T = A + B.
Follows immediately from the definitions of A and B.
(6.5) B is a bounded finite rank operator with R(B) ⊂ D(T).
Clearly B is a bounded operator with R(B) ⊂ N ⊂ D(T), so that dimR(B) ≤ dimN < ∞.
(6.6) A is closed and D(A) = D(T).
Note that by (6.4) we get A = T − B where T is closed and B is a bounded operator, so that it follows

from Lemma 3.3 (iii) that A is closed. Further D(A) = D(T) ∩D(B) = D(T) (by (6.5)).
(6.7) A is surjective.
Let x ∈ X. Then x = m + n for some m ∈ M and n ∈ N and (n,TNn) ∈ TN ⊂ T which implies that

(n,−n) = (n,PMTNn − PNn) ∈ A. Further, since m ∈ M = R(TM), there is y ∈ M such that (y,m) ∈ TM ⊂ T.
Hence (y,PMm − PN y) = (y,m) ∈ A. Consequently (y − n,m + n) = (y − n, x) ∈ A, so that x ∈ R(A). Hence
(6.7) holds.
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(6.8) N(A) is topologically complemented in X.
Indeed, since A is closed by (6.6) we deduce from Lemma 3.3 (i) that N(A) is closed. In order to show

that N(A) is topologically complemented in X it is enough to prove that N(A) = N(TM). To see this, assume
that N(A) = N(TM), then it follows from Theorem 6.2 (ii) that N(TM)⊕M1 = M for some closed subspace M1
contained in M and since X = M ⊕ N with N finite dimensional we conclude that N(TM) ⊕ (M1 ⊕ N) = X.
Accordingly, we shall verify that N(A) = N(TM). Let x ∈ N(A), that is, (x, 0) ∈ A so that by the definition
of A we have that (x, 0) = (x,PMy − PNx) for some (x, y) ∈ T. Hence PMy = PNx and since (PMx,PMy) ∈ TM
with PMy ∈ M,PNx ∈ N and M ∩ N = {0} we deduce that PMy = PNx = 0. Consequently x = PMx and also
(x, 0) = (PMx,PMy) ∈ TM which implies that x ∈ N(TM). Therefore N(A) ⊂ N(TM).

Conversely, let x ∈ N(TM), then x = PMx ∈ M and (x, 0) = (x,PM0 − PNx) ∈ A and thus x ∈ N(A). Hence
N(TM) ⊂ N(A).

(6.9) BT ⊂ TB.
This property is obtained proceeding exactly as in Theorem 5.3.

(ii) Since A ∈ Φr(X) and B ∈ K (X), then by [1, Theorem 11] we obtain that T ∈ Φr(X). The use of Proposition
5.2 leads to ∈ Br(X).

Now the proof of Theorem 6.3 is completed. �
As a consequence, we infer the characterization of right Browder spectrum under finite rank operators

with certain properties of commutativity.

Definition 6.3. (i) The right Browder spectrum of T ∈ CR(X) is the set σri1ht
b (T) := {λ ∈ C : λ − T < Br(X)}.

(ii) The right spectrum of T ∈ CR(X) is the set σr(T) := {λ ∈ C : λ − T < Gr(X)} where T ∈ Gr(X) if and only if T
is onto and N(T) is a topologically complemented subspace of X.

Theorem 6.4. We have
(i)

⋂
K∈G

σr(T + K) ⊂ σri1ht
b (T).

(ii) If T commutes with itself, then σri1ht
b (T) ⊂

⋂
K∈G

σr(T + K).

Proof. (i) If λ < σri1ht
b (T) then λ−T ∈ Br(X). From Theorem 6.3 (i) (as ρ(λ−T) , ∅), we infer that there exist

two linear relations A and B such that λ − T = A + B, A is a closed surjective linear relation with null space
topologically complemented in X and B is a bounded finite rank operator satisfying B(T−λ) ⊂ (T−λ)B and
R(B) ⊂ D(T). Take K = B ∈ F0(X). Since B(T − λ) ⊂ (T − λ)B then it is easy to see that KT ⊂ TK. Moreover,
λ − T − B = A is surjective with null space topologically complemented in X. So that λ <

⋂
K∈G

σr(T + K).

(ii) If λ <
⋂{

σr(T + K) with K ∈ G
}

thus ∃ K ∈ G such that λ − T − K is surjective and N(λ − T − K) is
topologically complemented in X.Soλ−T−K ∈ Φr(X).On the other hand, it easy to see that K(T−λ) ⊂ (T−λ)K.
Hence, applying Theorem 6.3 (ii), we get λ − T = (λ − T − K) + K ∈ Br(X). So λ < σri1ht

b (T).�

7. Stability of Right Browder Linear Relations

Throughout this section, we investigate the stability of right Browder linear relations under compact
operator perturbations. The analysis is essentially based on the results developed in [2].
Let us recall some definitions and results from [2].

Definition 7.1. [2, Definition 2.1] Let X be a Banach space and let K,T ∈ LR(X).We say that K commutes with T if
(i) D(T) ⊂ D(K),
(ii) Kx ⊂ D(T) whenever x ∈ D(T),
(iii) KTx = TKx for x ∈ D(T2).

We denote by L(X) the set of all bounded linear operators on X.
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Lemma 7.1. [2, Lemma 2.1] Let X be a Banach space, T ∈ LR(X) and K ∈ L(X). If K commutes with T, then K
commutes with T + K.

Remark 7.1. [2, Remark 2.1] Let X be a Banach space, T ∈ LR(X) and K ∈ L(X). If K commutes with T, then K
commutes with T − λ for all λ ∈ C. Indeed, from [7, Proposition I.4.2, (e), (d)] we infer

K(T − λ)x = KTx − λKx = TKx − λKx = (T − λ)Kx

for all x ∈ D(T2) = D((T − λ)2).

Proposition 7.1. [2, Proposition 2.1] Let X be a Banach space, T ∈ CR(X) and K ∈ L(X). Assume that D(T) = X,
ρ(T) , ∅ and T(0) ⊂ D(T). If K commutes with T, then KTx = TKx ∀x ∈ D(T).

Proposition 7.2. [2, Proposition 2.2] Let X be a Banach space and T ∈ CR(X) such that T(0) ⊂ D(T), ρ(T) , ∅ and
D(T) = X. Let K ∈ L(X) such that K commutes with T. Then
(i) K′ : D(T′)→ D(T′).
(ii) K′T′ f = T′K′ f ∀ f ∈ D(T′).
(iii) K′ commutes with T′.

Theorem 7.1. [2, Theorem 2.1] Let X be a Banach space and T ∈ CR(X) such that ρ(T) , ∅ and D(T) = X. If
T ∈ Φ−(X), then
(i) a(T′) = d(T).
(ii) d(T′) = a(T).

Remark 7.2. Let X be a Banach space and T ∈ LR(X).
If D(T) = X, then it follows from [7, Proposition III.1.4 (b)] , that T′(0) = D(T)⊥ = D(T)

⊥

= {0} which proves that
T′ is an operator.

Theorem 7.2. Let X be a Banach space, T ∈ CR(X) and K ∈ K (X). Assume that
(i) ρ(T) , ∅ and ρ(T + K) , ∅.
(ii) T is bounded and K commutes with T.
Then

T ∈ Br(X) if and only if T + K ∈ Br(X).

Proof. We first claim that if T ∈ Br(X), then T + K ∈ Br(X). Indeed, let T ∈ Φr(X) such that d(T) := p < ∞.
By [1, Theorem 11] we deduce T + K ∈ Φr(X). It remains to show d(T + K) < ∞. Using Theorem 7.1 we infer
a(T′) = d(T) = p < ∞. Since T′ is a closed linear relation satisfying α(T′) = β(T) < ∞ and R(T′) is a closed
subspace (see [7, Propositions II.3.2 (b) and III.1.4 (a) and Theorems III.4.2 (b) and III.5.3 (a)]), then it follows
from [7, Proposition II.5.17] that T′p ∈ CR(X′) ∀ p ∈ N. So that ((T′)p)−1 is also closed (see [7, Definitions
II.5.1 (2)]). This together with [7, Proposition II.5.3] shows that ((T′)p)−1(0) := N((T′)p) is a closed subspace
and since a(T′) = d(T) < ∞ (by Theorem 7.1) we have N∞(T′) = N∞(T′). Now, applying [9, Proposition 2.2
(i)] , we get

N∞(T′) ∩ R∞(T′) = N∞(T′) ∩ R∞(T′) = {0}.

Since λK ∈ K (X) then it follows by [1, Theorem 11] that T +λK ∈ Φ−(X). Set A = Tλ′ = (T +λK)′ = T′ +λK′

(see [7, Proposition III.1.5 (b)] ) and B = (µ − λ)K′ where λ, µ ∈ [0, 1]. It is clear from Remark 7.2 that A is a
closed operator satisfying R(A) is a closed subspace and α(A) = β(Tλ) < ∞. The use of Proposition 7.2 makes
us to conclude that D(A) = D(Tλ′) = D(T′) ⊂ D(AB) = {x ∈ D(K′) : K′x ∈ D(T′)} and BAx = (µ − λ)K′Tλ′x =
(µ − λ)K′(T′ + λK′)x = (µ − λ)K′T′x + λ(µ − λ)K′2x = (µ − λ)T′K′x + λ(µ − λ)K′2x = (µ − λ)Tλ′K′x = ABx for
x ∈ D(T′). Thus by [11, Theorem 3] , we deduce that there exists ε = ε(λ) such that

(7.1) N∞(Tλ′) ∩ R∞(Tλ′) = N∞(Tµ′) ∩ R∞(Tµ′)
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for all µ in the open disc S(λ) with center λ and radius ε.

Equation (7.1) proves that N∞(Tλ′) ∩ R∞(Tλ′) is a locally constant function of λ on the interval [0, 1].
Since every locally constant function on a connected set like [0, 1] is constant, it follows that N∞((T + K)′)∩
R∞((T + K)′) = {0} and hence N∞(T′ + K′) ∩ R∞(T′ + K′) = {0}. Since α(T′ + K′) = β(T + K) < ∞, the use,
again, of [9, Proposition 2.2 (ii)] proves a((T + K)′) = a(T′ + K′) < ∞ which implies by Theorem 7.1 that
d(T + K) < ∞. Conversely, let T + K ∈ Br(X). [1, Theorem 11] gives T ∈ Φr(X) and now, by Theorem 7.1 it is
enough to prove that a(T′) < ∞. To do this, we consider

(T + K)′λ = T′ + K′ + λK′ = T′ + (λ + 1)K′,

where λ ∈ [−1, 0] and we reasone in the same way as above. �

As a consequence, we infer the invariance of right Browder spectrum under compact operator pertur-
bations

Theorem 7.3. Let X be a Banach space, T ∈ CR(X) and K ∈ K (X). Assume that
(i) ρ(T) , ∅ and ρ(T + K) , ∅.
(ii) T is bounded and K commutes with T.
Then

σri1ht
b (T) = σri1ht

b (T + K).

Proof. We first claim that σri1ht
b (T + K) ⊂ σri1ht

b (T). Indeed, if λ < σri1ht
b (T) then T − λ ∈ Br(X). From [7,

Theorem VI.5.4], we infer ρ(T − λ) , ∅ and ρ(T + K − λ) , ∅. On the other hand, by Remark 7.1 we have K
commutes with T −λ. This implies by Theorem 7.2 that T + K−λ ∈ Br(X). So λ < σri1ht

b (T + K). Similarly, we

show σri1ht
b (T) ⊂ σri1ht

b (T + K). �
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