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Abstract. The aim of this paper is to present fixed point results of ψρ-contractive mappings in the
framework of modular spaces. We also introduce (G, ψρ)-contractive mappings and obtain fixed point
results for such mappings. Some examples are presented to support the results proved herein.

1. Introduction

The concept of modular space was initiated by Nakano [24] and was redefined and generalized the
notion of modular space by Musielak and Orlicz [23]. In addition, the most important development of
these theory is due to Mazur and Orlicz, Luxemburg and Turpin ( see, [19], [18], [31]). The study of fixed
point theory in the context of modular function spaces was initiated by Khamsi [12] (see also [13]-[5]).
Kuaket and Kumam [14] and Mongkolkeha and Kumam [20–22], considered and proved some fixed point
and common fixed point results for generalized contraction mappings in modular spaces. Also, Kumam
[15] obtained some fixed point theorems for nonexpansive mappings in arbitrary modular spaces. Recently,
Kutbi and Latif [16] studied fixed points of multivalued mappings in modular function spaces. Recently,
Chen [9] defined ψ-contractive mappings in complete metric spaces. Later, Nasine et al. [25] exteding the
notion of ψ-contractive mappings obtained common fixed point results in ordered metric spaces. Also,
Chandok and Dinu [8] obtained common fixed point results for weak ψ-contractive mappings in ordered
metric spaces.

In 2008, Jachymski [11] investigated a new approach in metric fixed point theory by replacing an order
structure with graph structure on a metric space. In this way, the results proved in ordered metric spaces
are generalized (see for detail [11] and the reference therein). Recently, Aghanians and Nourouzi [3] proved
the existence and uniqueness of fixed points for Banach and Kannan contractions defined on modular space
endowed with a graph. Also, Öztürk et al. ([26]) obtained some fixed point results for mappings satisfying
contractive condition of integral type in modular spaces endowed with a graph. For further work in this
direction, we refer to (see, e.g., [1, 2, 27]).

The purpose of this paper is to introduce ψ-contractive mappings and to obtain fixed point results for
such mappings in the setup of modular spaces. As an application of the results proved herein, we obtain
fixed point results in the framework of modular space endowed with a graph. The existence of fixed
points of mappings satisfying contractive condition of integral type is also obtained in such spaces. Some
examples are provided to validate the results presented herein.
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2. Preliminaries

Let (X, d) be a metric space and T : X → X a mapping. A point x in X is said to be a fixed point of T if
Tx = x and denote the set of fixed points of T by F(T). A self mapping T on X is called a Picard operator
(PO) if F(T) = {z} and for any initial approximation x in X, we have lim

n→∞
Tnx = z.

In the sequel the letters R, R+ andN will denote the set of all real numbers, the set of all nonnegative
real numbers and the set of all positive integer numbers, respectively.

Let Ψ be the collection of all mappings ψ : R+
5
→ R+ which satisfy the following conditions:

(C1) ψ is continuous;

(C2) ψ is strictly increasing in all the arguments;

(C3) For t ∈ R+ with t > 0, we have

ψ (t, t, t, 0, 2t) < t, ψ (t, t, t, 2t, 0) < t, ψ (0, 0, t, t, 0) < t,
ψ (0, t, 0, 0, t) < t, ψ (t, 0, 0, t, t) < t.

Note that a mapping ψ : R+
5
→ R+ defined by

ψ (t1, t2, t3, t4, t5) = k max
{
t1, t2, t3,

t4

2
,

t5

2

}
, for k ∈ (0, 1)

satisfies conditions (C1) − (C3). For more examples of such functions, we refer to [9].

Consistent with [23], some basic facts and notations needed in this paper are recalled as follows.
Definition 2.1. Let X be an arbitrary vector space. A functional ρ : X→ [0,∞] is called modular if for any
x, y in X, the following conditions hold:

(m1) ρ(x) = 0 if and only if x = 0;

(m2) ρ(αx) = ρ(x) for every scalar α with |α| = 1;

(m3) ρ(αx + βy) ≤ ρ(x) + ρ(y) whenever α + β = 1, and α, β ≥ 0.

If (m3) is replaced with ρ(αx + βy) ≤ αsρ(x) + βsρ(y) whenever αs + βs = 1 and α, β ≥ 0,where s ∈ (0, 1] , then
ρ is called s− convex modular. If s = 1, then we say that ρ is convex modular.
A trivial example of a modular functional is ρ(x) =

√
|x|, where ρ : R→ [0,∞].

The modular functional ρ : X→ [0,∞] defines the following set

Xρ = {x ∈ X; ρ(λx)→ 0 as λ→ 0}

called a modular space. The modular ρ is not sub-additive in general and therefore does not behave as a
norm. One can associate to a modular an F− norm.
Modular space Xρ can be equipped with an F−norm defined by

‖x‖ρ = inf{α > 0 : ρ
( x
α

)
≤ α}.

If ρ is convex modular, then

‖x‖ρ = inf{α > 0 : ρ
( x
α

)
≤ 1}

defines a norm on the modular space Xρ, and is called the Luxemburg norm.
Define the ρ−ball, centered at x ∈ Xρ with radius r as

Bρ(x, r) = {h ∈ Xρ : ρ(x − h) ≤ r}.

Remark 2.2. [7] Followings are some consequences of condition (m3):
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(r1) For a, b ∈ R with |a| < |b|we have ρ (ax) < ρ (bx) for all x ∈ X;

(r2) For a1, ..., an ∈ R+ with
n∑

i=1
ai = 1, we have

ρ

 n∑
i=1

aixi

 ≤ n∑
i=1

ρ (xi), for any x1, ..., xn ∈ X.

A function modular is said to satisfy (a) ∆2−type condition if there exists K > 0 such that for any x ∈ Xρ,we
have ρ(2x) ≤ Kρ(x) (b) ∆2-condition if ρ (2xn)→ 0 as n→∞, whenever ρ (xn)→ 0 as n→∞.
Definition 2.3. A sequence {xn} in modular space Xρ is said to be:

(t1) ρ− convergent to x ∈ Xρ if ρ(xn − x)→ 0 as n→∞

(t2) ρ− Cauchy if ρ(xn − xm)→ 0 as n, m→∞.

Xρ is called ρ− complete if any ρ-Cauchy sequence is ρ-convergent. Note that ρ− convergent sequence
is not necessarily a ρ-Cauchy sequence as ρ does not satisfy the triangle inequality. In fact, one can show
that this will happen if and only if ρ satisfies the ∆2-condition.
We know that [6] the norm and modular convergence are also the same when we deal with the ∆2-type
condition. Throughout this paper, we assume that modular function ρ is convex and satisfies the ∆2-type
condition.
Proposition 2.4. [20] Let Xρ be a modular space. If a, b ∈ R+ with b ≥ a, then ρ (ax) ≤ ρ (bx).
Proposition 2.5. [20] Suppose that Xρ is a modular space, ρ satisfies the ∆2-condition and {xn}n∈N is a
sequence in Xρ. If ρ (c (xn − xn−1))→ 0, then
ρ (αl (xn − xn−1))→ 0, as n→∞, where c, l, α ∈ R+ with c > l and l

c + 1
α = 1.

We define the notion of ψρ-contractive mappings in the framework of modular space as follows:
Definition 2.6. Let Xρ be a modular space. A self mapping T on Xρ is said to be ψρ-contractive mapping if
there exist nonnegative numbers l, c with l < c such that

ρ
(
c
(
Tx − Ty

))
≤ ψ

(
ρ
(
l
(
x − y

))
, ρ (l (x − Tx)) , ρ

(
l
(
y − Ty

))
, ρ

(
l
2
(
y − Tx

))
, ρ

(
l
2
(
x − Ty

)))
(1)

holds for any x, y ∈ Xρ, where ψ ∈ Ψ.
We also state the following definitions and results from graph theory.
Let ∆ = {(x, x) : x ∈ X} denotes the diagonal of X × X, where X is any nonempty set equipped with a

metric d. Let G be a directed graph such that the set V(G) of its vertices coincides with X and E(G) be the set
of edges of the graph such that ∆ ⊆ E(G). Further assume that G has no parallel edge and G is a weighted
graph in the sense that each edge (x, y) is assigned the weight d(x, y). Since d is a metric on X, the weight
assigned to each vertex x to vertex y need not be zero and whenever a zero weight is assigned to some edge
(x, y), it reduces to a (x, x) having weight 0. The graph G is identified by the pair (V(G),E(G)).

If x and y are vertices of G, then a path in G from x to y of length k ∈N is a finite sequence {xn} of vertices
such that x = x0, ..., xk = y and (xi−1, xi) ∈ E(G) for i ∈ {1, 2, ..., k}.

Recall that a graph G is connected if there is a path between any two vertices and it is weakly connected
if G̃ is connected, where G̃ denotes the undirected graph obtained from G by ignoring the direction of edges.
Denote by G−1 the graph obtained from G by reversing the direction of edges. Thus,

E
(
G−1

)
=

{(
x, y

)
∈ X × X :

(
y, x

)
∈ E (G)

}
.

It is more convenient to treat G̃ as a directed graph for which the set of its edges is symmetric, under this
convention; we have that

E(G̃) = E(G) ∪ E(G−1).
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Let Gx be the component of G consisting of all the edges and vertices which are contained in some path in
G beginning at x. In V(G), we define the relation R in the following way:

For x, y ∈ V(G), we have xRy if and only if, there is a path in G from x to y. If G is such that E(G) is
symmetric, then for x ∈ V(G), the equivalence class [x]G in V(G) defined by the relation R is V(Gx).
Definition 2.7. ( [11, Definition 2.1]) A mapping f : X→ X is called a Banach G−contraction if and only if:

(a) There is an edge between x and y implies that there is an edge between f (x) and f (y) for any x, y ∈ X,
that is, f preserves edges of G;

(b) There exists α in [0, 1) such that there is an edge between x and y implies

d(T(x),T(y)) ≤ αd(x, y).

for all x, y ∈ X. That is, T decreases weights of edges of G.
Let Xρ be a modular space endowed with a graph G and T : Xρ → Xρ a mapping. Denote

XT = {x ∈ X : (x,Tx) ∈ E (G)} .

For any x, y ∈ V′ ⊆ V(G), (x, y) ∈ E′ ⊆ E(G), then (V′,E′) is called a subgraph of G.
Öztürk et al. ([26] ) defined the notions of Cρ-graph and orbitally Gρ-continuity as follows:

Definition 2.8. Let {Tnx} be a sequence, there exists C > 0 such that ρ (C (Tnx − x∗)) → 0 for x∗ ∈ Xρ and(
Tnx,Tn+1x

)
∈ E (G) for all n ∈ N. Then a graph G is called a Cρ-graph if there exists a subsequence {Tnp x}

of {Tnx} such that (Tnp x, x∗) ∈ E (G) for p ∈N.
Definition 2.9. A mapping T : Xρ → Xρ is called orbitally Gρ-continuous if for all x, y ∈ Xρ and any
sequence (np)p∈N of positive integers, and also there exists C > 0 such that

ρ
(
C

(
Tnp x − y

))
→ 0,

(
Tnp x,Tnp+1x

)
∈ E (G) imply ρ

(
C

(
T (Tnp x) − T

(
y
)))
→ 0

as p→∞.

3. Fixed Points of ψρ-Contractive Mappings

In this section, we obtain several fixed point results in the setup of modular space. We start with the
following result.
Theorem 3.1. Let Xρ be a ρ-complete modular space and T : Xρ → Xρ a ψρ-contractive mapping. Then T
has a unique fixed point.
Proof. Let x be a given point in X. We construct a sequence {xn} such that xn = Tnx, n = 1, 2, 3, .... Now we
show that the following statement hold:

ρ
(
c
(
Tnx − Tn+1x

))
< ρ

(
c
(
Tn−1x − Tnx

))
(2)

for all n ≥ 1. Suppose that ρ
(
c
(
Tn−1x − Tnx

))
≤ ρ

(
c
(
Tnx − Tn+1x

))
for some n ∈ N. If follows from (1) and

Remark 2.2 that

ρ
(
c
(
Tnx − Tn+1x

))
≤ ψ

(
ρ
(
l
(
Tn−1x − Tnx

))
, ρ

(
l
(
Tn−1x − Tnx

))
, ρ

(
l
(
Tnx − Tn+1x

))
,

ρ
(

l
2

(
Tn−1x − Tn+1x

))
, ρ

(
l
2 (Tnx − Tnx)

))
≤ ψ

(
ρ
(
l
(
Tn−1x − Tnx

))
, ρ

(
l
(
Tn−1x − Tnx

))
, ρ

(
l
(
Tnx − Tn+1x

))
,

ρ
(
l
(
Tn−1x − Tnx

))
+ ρ

(
l
(
Tnx − Tn+1x

))
, 0

)
≤ ψ

(
ρ
(
c
(
Tn−1x − Tnx

))
, ρ

(
c
(
Tn−1x − Tnx

))
, ρ

(
c
(
Tnx − Tn+1x

))
,

ρ
(
c
(
Tn−1x − Tnx

))
+ ρ

(
c
(
Tnx − Tn+1x

))
, 0

) (3)
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≤ ψ
(
ρ
(
c
(
Tnx − Tn+1x

))
, ρ

(
c
(
Tnx − Tn+1x

))
, ρ

(
c
(
Tnx − Tn+1x

))
,

ρ
(
c
(
Tnx − Tn+1x

))
+ ρ

(
c
(
Tnx − Tn+1x

))
, 0

)
< ρ

(
c
(
Tnx − Tn+1x

))
a contradiction and hence we have ρ

(
c
(
Tnx − Tn+1x

))
< ρ

(
c
(
Tn−1x − Tnx

))
for all n ≥ 1. Set, Ln =

ρ
(
c
(
Tnx − Tn−1x

))
. Thus, from (2), we have that {Ln} is a nonincreasing sequence and bounded from below.

So convergent to some L ≥ 0. Note that

Ln ≤ ψ (Ln,Ln,Ln, 2Ln, 0) .

On taking limit as n→∞ on both sides of above inequality,we have L ≤ ψ (L,L,L, 2L, 0) .Now L > 0 further
implies that L ≤ ψ (L,L,L, 2L, 0) < L a contradiction. Hence,

ρ
(
c
(
Tnx − Tn+1x

))
→ 0, as n→∞. (4)

Next, we show that {lTnx}n∈N is a ρ-Cauchy sequence. If not, then there exist ε > 0 and two subsequences{
xmk

}
,
{
xnk

}
with mk > nk ≥ k such that the following hold:

ρ (l (Tnk x − Tmk x)) ≥ ε, and ρ
(
c
(
Tnk−1x − Tmk x

))
< ε. (5)

Now, choose α ∈ R+ such that l
c + 1

α = 1, then we have

ρ (l (Tnk x − Tmk x)) ≤ ρ (c (Tnk x − Tmk x))

≤ ψ
(
ρ
(
l
(
Tnk−1x − Tmk−1x

))
, ρ

(
l
(
Tnk−1x − Tnk x

))
, ρ (l (Tmk−1 x − Tmk x)) ,

ρ
(

l
2

(
Tnk−1x − Tmk x

))
, ρ

(
l
2

(
Tmk−1x − Tnk x

)))
.

(6)

Also, we have

ρ (l (Tnk x − Tmk x)) = ρ
(
l
(
Tnk x − Tnk−1x + Tnk−1x − Tmk x

))
= ρ

(
1
ααl

(
Tnk x − Tnk−1x

)
+ l

c c
(
Tnk−1x − Tmk x

))
≤ ρ

(
αl

(
Tnk x − Tnk−1x

))
+ ρ

(
c
(
Tnk−1x − Tmk x

))
≤ ρ

(
αl

(
Tnk x − Tnk−1x

))
+ ε.

(7)

Now by (4), (5), (7) and Proposition 2.5, we have

lim
k→∞

ρ (l (Tnk x − Tmk x)) = ε. (8)

From inequality (6), we have

ρ
(
l
(
Tnk−1x − Tmk−1x

))
= ρ

(
l
(
Tnk−1x − Tmk x + Tmk x − Tmk−1x

))
= ρ

(
l
c c

(
Tnk−1x − Tmk x

)
+ 1

ααl
(
Tmk x − Tmk−1x

))
≤ ρ

(
c
(
Tnk−1x − Tmk x

))
+ ρ

(
αl

(
Tmk x − Tmk−1x

)) (9)
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≤ ε + ρ
(
αl

(
Tmk x − Tmk−1x

))
.

Note that

ρ
(

l
2

(
Tnk−1x − Tmk x

))
= ρ

(
l
2

(
Tnk−1x − Tnk x + Tnk x − Tmk

))
= ρ

(
1
2 l

(
Tnk−1x − Tnk x

)
+ 1

2 l (Tnk x − Tmk )
)

≤ ρ
(
l
(
Tnk−1x − Tnk x

))
+ ρ (l (Tnk x − Tmk )) .

(10)

Also,

ρ
(

l
2

(
Tmk−1x − Tnk x

))
= ρ

(
l
2

(
Tmk−1x − Tmk x + Tmk x − Tnk

))
= ρ

(
1
2 l

(
Tmk−1x − Tmk x

)
+ 1

2 l (Tmk x − Tnk )
)

≤ ρ
(
l
(
Tmk−1x − Tmk x

))
+ ρ (l (Tnk x − Tmk )) .

(11)

Using (8), (9), (10) and (11), and arranging the (6), we obtain that

ρ (l (Tnk x − Tmk x)) ≤ ρ (c (Tnk x − Tmk x))

≤ ψ
(
ρ
(
l
(
Tnk−1x − Tmk−1x

))
, ρ

(
l
(
Tnk−1x − Tnk x

))
, ρ (l (Tmk−1 x − Tmk x)) ,

ρ
(

l
2

(
Tnk−1x − Tmk x

))
, ρ

(
l
2

(
Tmk−1x − Tnk x

)))
≤ ψ

(
ε + ρ

(
αl

(
Tmk x − Tmk−1x

))
, ρ

(
l
(
Tnk−1x − Tnk x

))
,

ρ
(
l
(
Tmk−1x − Tmk x

))
, ρ

(
l
(
Tnk−1x − Tnk x

))
+ ρ (l (Tnk x − Tmk x)) ,

ρ
(
l
(
Tmk−1x − Tmk x

))
+ ρ (l (Tnk x − Tmk x))

)
.

(12)

On taking limit as k → ∞, (4), (8) and Proposition 2.5 give ε ≤ ψ (ε, 0, 0, ε, ε) < ε, a contradiction.
Thus {lTnx}n∈N is ρ-Cauchy sequence. Since Xρ is a ρ-complete, there exists a point z in Xρ such that
ρ (l (Tnx − z))→ 0 as n→∞.
Suppose that Tz , z, that is, ρ (c (z − Tz)) > 0. Thus

ρ (c (Tnx − Tz))

≤ ψ
(
ρ
(
l
(
Tn−1x − z

))
, ρ

(
l
(
Tn−1x − Tnx

))
, ρ (l (z − Tz)) ,

ρ
(

l
2

(
Tn−1x − Tz

))
, ρ

(
l
2 (z − Tnx)

))
≤ ψ

(
ρ
(
l
(
Tn−1x − z

))
, ρ

(
l
(
Tn−1x − Tnx

))
, ρ (l (z − Tz)) ,

ρ
(
l
(
Tn−1x − Tnx

))
+ ρ (l (Tnx − Tz)) , ρ

(
l
2 (z − Tnx)

))
(13)

for all n ∈N. Taking limit as n→∞, we get that

ρ (c (z − Tz)) ≤ ψ
(
0, 0, ρ (l (z − Tz)) , ρ (l (z − Tz)) , 0

)
< ρ (l (z − Tz)) < ρ (c (z − Tz)) (14)

a contradiction. Hence, Tz = z.
Uniqueness can be obtained easily, so we omit it.
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4. Fixed Points of
(
G, ψρ

)
-Contractive Mappings

We define the
(
G, ψρ

)
-contractive mappings as follows:

Definition 4.1. Let Xρ be a modular space endowed with a graph G. A self mapping T on Xρ is called(
G, ψρ

)
-contractive mapping if

i. T preserves edges of G;

ii. there exist nonnegative numbers l, c with l < c such that

ρ
(
c
(
Tx − Ty

))
≤ ψ

(
ρ
(
l
(
x − y

))
, ρ (l (x − Tx)) , ρ

(
l
(
y − Ty

))
, ρ

(
l
2
(
x − Ty

))
, ρ

(
l
2
(
y − Tx

)))
holds for all (x, y) ∈ E(G), where ψ ∈ Ψ.

Remark 4.2. Let Xρ be a modular space endowed with a graph G and T : Xρ → Xρ a
(
G, ψρ

)
-contractive

mapping. If there exists x0 ∈ Xρ such that Tx0 ∈ [x0]G̃, then following statements hold:

i. T is both a
(
G−1, ψρ

)
-contractive mapping and

(
G̃, ψρ

)
-contractive mapping,

ii. [x0]G̃ is T−invariant and T|[x0] G̃
is a

(
G̃x0 , ψρ

)
-contractive mapping.

Theorem 4.3. Let Xρ be ρ-complete modular space endowed with a graph G and T : Xρ → Xρ. If following
statements hold:

i. G is weakly connected and Cρ−graph;

ii. T is a
(
G̃, ψρ

)
-contractive mapping;

iii. XT is nonempty.

Then T is a PO.
Proof. If x ∈ XT, then Tx ∈ [x]G̃ and

(
Tnx,Tn+1x

)
∈ E (G) for all n ∈N. Note that

ρ
(
c
(
Tnx − Tn+1x

))
< ρ

(
c
(
Tn−1x − Tnx

))
. (15)

holds all n ∈N. Indeed, from Definition 4.1, Remark 2.2 and (3), we have

ρ
(
c
(
Tnx − Tn+1x

))
< ρ

(
c
(
Tn−1x − Tnx

))
. (16)

Set hn = ρ
(
c
(
Tnx − Tn+1x

))
. Following arguments similar to those in the proof of Theorem 3.1, we obtain

that

ρ
(
c
(
Tnx − Tn+1x

))
→ 0, n→ ∞. (17)

and {lTnx} is ρ-Cauchy sequence. By ρ-completeness of Xρ, there exists x∗ ∈ Xρ such that ρ (l (Tnx − x∗)) →
0 as n→∞ and

(
Tnx,Tn+1x

)
∈ E (G) for all n ∈N and G is a Cρ-graph, then there exists subsequence {Tnp x}
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such that (Tnp x, x∗) ∈ E (G) for each p ∈ N. Also, (Tnp x, x∗) ∈ E (G) for each p ∈ N. From Definition 4.1, and
Remark 2.2, we have

ρ
(
c
(
Tnp+1x − Tx∗

))
≤ ψ

(
ρ (l (Tnp x − x∗)) , ρ

(
l
(
Tnp x − Tnp+1x

))
, ρ (l (x∗ − Tx∗)) ,

ρ
(

l
2 (Tnp x − Tx∗)

)
, ρ

(
l
2

(
x∗ − Tnp+1x

)))
≤ ψ

(
ρ (l (Tnp x − x∗)) , ρ

(
l
(
Tnp x − Tnp+1x

))
, ρ (l (x∗ − Tx∗)) ,

ρ (l (Tnp x − x∗)) + ρ (l (x∗ − Tx∗)) , ρ
(

l
2

(
x∗ − Tnp+1x

)))
.

Taking limit as n→∞, we get

ρ (c (x∗ − Tx∗)) ≤ ψ
(
0, 0, ρ (l (x∗ − Tx∗)) , ρ (l (x∗ − Tx∗)) , 0

)
≤ ψ

(
0, 0, ρ (c (x∗ − Tx∗)) , ρ (c (x∗ − Tx∗)) , 0

)
< ρ (c (x∗ − Tx∗)) ,

which implies that ρ (c (x∗ − Tx∗)) = 0, that is, x∗ = Tx∗.
To prove the uniqueness, we proceed as follows: Let y∗ ∈ Xρ − {x∗} be a fixed point of T. As G is a Cρ-graph,
there exists a subsequence {Tnp x} of {Tnx} such that (Tnp x, x∗) ∈ E (G) and

(
Tnp x, y∗

)
∈ E (G) for each p ∈ N.

Since G is weakly connected, so we have
(
x∗, y∗

)
∈ E

(
G̃
)
. Thus,

ρ
(
c
(
x∗ − y∗

))
= ρ

(
c
(
Tx∗ − Ty∗

))
≤ ψ

(
ρ
(
l
(
x∗ − y∗

))
, ρ (l (x∗ − Tx∗)) , ρ

(
l
(
y∗ − Ty∗

))
,

ρ
(

l
2
(
x∗ − Ty∗

))
, ρ

(
l
2
(
y∗ − Tx∗

)))
≤ ψ

(
ρ
(
l
(
x∗ − y∗

))
, ρ (l (x∗ − Tx∗)) , ρ

(
l
(
y∗ − Ty∗

))
,

ρ
(
l
(
x∗ − y∗

))
+ ρ

(
l
(
y∗ − Ty∗

))
, ρ

(
l
(
y∗ − x∗

))
+ ρ (l (x∗ − Tx∗))

)
,

so

ρ
(
c
(
x∗ − y∗

))
≤ ψ

(
ρ
(
l
(
x∗ − y∗

))
, 0, 0, ρ

(
l
(
x∗ − y∗

))
, ρ

(
l
(
x∗ − y∗

)))
< ρ

(
l
(
x∗ − y∗

))
< ρ

(
c
(
x∗ − y∗

))
,

a contradiction and the result follows.
In Theorem 4.3, if we replace the condition that G is a Cρ-graph with orbitally Gρ-continuity of T, then we
have the following theorem.
Theorem 4.4. Let Xρ be a ρ-complete modular space endowed with a graph G, and T : Xρ → X a

(
G̃, ψρ

)
-

contractive and orbitally Gρ-continuous mapping. If XT is nonempty and the graph G is weakly connected,
then T is a PO.
Proof. Let x ∈ XT. From Theorem 4.3, it follows that {lTnx} is a ρ-Cauchy sequence in Xρ. By ρ-completeness
of Xρ, there exists x∗ ∈ Xρ such that ρ (l (Tnx − x∗))→ 0. As

(
Tnx,Tn+1x

)
∈ E (G) for all n ∈N and T is orbitally

Gρ-continuous, so we have ρ (l (T (Tnx) − T (x∗)))→ 0, as n→∞. That is, Tx∗ = x∗. Assume that y∗ is another
fixed point of T. Following arguments similar to those in the proof of Theorem 4.3, we obtain that x∗ = y∗.

Define Φ = {ϕ : R+ −→ R+ : ϕ is a Lebesgue integral mapping which is summable, nonnegative and

satisfies
ε∫

0
ϕ(t)dt > 0, for each ε > 0}.
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Corollary 4.5. Let Xρ be ρ-complete modular space endowed with a graph G and T : Xρ → Xρ. Suppose
that:

i. G is weakly connected and Cρ−graph;

ii. there exist nonnegative numbers l, c with l < c such that∫ ρ(c(Tx−Ty))

0
ϕ (t) dt ≤

∫ ψ(ρ(l(x−y)),ρ(l(x−Tx)),ρ(l(y−Ty)),ρ( l
2 (x−Ty)),ρ( l

2 (y−Tx)))

0
ϕ (t) dt

for all
(
x, y

)
∈ E

(
G̃
)
, ψ ∈ Ψ and ϕ ∈ Φ;

iii. XT is nonempty.

Then T is a PO.
Corollary 4.6. Let Xρ be ρ-complete modular space endowed with a graph G and T : Xρ → Xρ. Suppose
that:

i. G is weakly connected;

ii. there exist nonnegative numbers l, c with l < c such that∫ ρ(c(Tx−Ty))

0
ϕ (t) dt ≤

∫ ψ(ρ(l(x−y)),ρ(l(x−Tx)),ρ(l(y−Ty)),ρ( l
2 (x−Ty)),ρ( l

2 (y−Tx)))

0
ϕ (t) dt

for all
(
x, y

)
∈ E

(
G̃
)
, ψ ∈ Ψ and ϕ ∈ Φ;

iii. XT is nonempty;

iv. T is orbitally Gρ-continuous.

Then T is a PO.
Corollary 4.7. Let Xρ be ρ-complete modular space and T : Xρ → Xρ. Suppose that there exist nonnegative
numbers l, c with l < c such that

∫ ρ(c(Tx−Ty))

0
ϕ (t) dt ≤

∫ ψ(ρ(l(x−y)),ρ(l(x−Tx)),ρ(l(y−Ty)),ρ( l
2 (x−Ty)),ρ( l

2 (y−Tx)))

0
ϕ (t) dt

holds for all x, y ∈ Xρ, where ψ ∈ Ψ and ϕ ∈ Φ. Then T has a unique fixed point.
Example 4.8. Let Xρ = [0, 1] and ρ (x) = |x| for all x ∈ Xρ. Consider

E (G) =
{(

x, y
)

: x, y ∈ [0, 1]
}
.

Define the mapping ψ : R+
5
→ R+ by

ψ (t1, t2, t3, t4, t5) =
1
5

max
{
t1, t2, t3,

t4

2
,

t5

2

}
,

Define T : Xρ → Xρ as Tx = x
4 .

Note that G is weakly connected and Cρ-graph, XT is nonempty and T is both a (G̃, ψρ)-contractive
mapping and a ψρ-contractive mapping with c = 1

2 , l = 1
3 . In addition, T is orbitally Gρ-continuous. Thus,

all the conditions of Theorem 3.1, Theorem 4.3, and Theorem 4.4 are satisfied. Moreover x = 0 is a unique
fixed point of T.
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Example 4.9. Let Xρ = {0, 1, 2, 3} and ρ (x) = |x| for all x ∈ Xρ. Consider

E
(
G̃
)

= {(0, 0) , (0, 1) , (1, 1) , (1, 3) , (2, 2) , (0, 3) , (2, 3) , (3, 3)} .

Define T : Xρ → Xρ by

Tx =

{
0, x ∈ {0, 1}
1, x ∈ {2, 3} .

A mapping ψ : R+
5
→ R+ is defined by

ψ (t1, t2, t3, t4, t5) =
2
3

max
{
t1, t2, t3,

t4

2
,

t5

2

}
.

Clearly, G is weakly connected and Cρ-graph, XT is nonempty and T is orbitally Gρ-continuous and (G̃, ψρ)-
contractive mapping with c = 4, l = 3. Note that T is not ψρ-contractive mapping. Indeed, we have

ρ (c (T1 − T2)) ≤ ψ
(
ρ (l (1 − 2)) , ρ (l (1 − T1)) , ρ (l (2 − T2)) , ρ

(
l
2 (1 − T2)

)
, ρ

(
l
2 (2 − T1)

))
.

4 ≤ 2 is obtained, an absurd statement. Hence all the conditions of Theorem 4.3 and Theorems 4.4 are
satisfied. However, Theorem 3.1 is not applicable in this case.
Remark 4.10. Recently, Paknazar et al. [28] gave an existence of solution of integral equations in Musielak-
Orlicz modular spaces. Hajji and Hanebaly [10] also applied their fixed point result to obtain the solution of
perturbed integral equations in modular function spaces ( see also [30] ). Our results can also be employed
to solve such integral equations in the framework of modular function space endowed with a graph.
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