
Filomat 30:7 (2016), 1919–1930
DOI 10.2298/FIL1607919J

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Special Lightlike Hypersurfaces of Indefinite Kaehler Manifolds
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Abstract. In this paper, we define three types of lightlike hypersurfaces of an indefinite Kaehler manifold,
which are called Hopf, recurrent and Lie recurrent lightlike hypersurfaces. After that we provide several new
results on such three type lightlike hypersurfaces of an indefinite Kaehler manifold or an indefinite almost
complex space form.

1. Introduction

A hypersurfaces M of an almost complex manifold M̄ has an almost contact structure (F,u,U) induced
from the almost complex structure J of M̄, where F is a (1, 1)-type tensor field, U is a vector field which
is called the structure vector field of M, and u is a 1-form associated with U. There exist three types of
hypersurfaces of an almost complex manifold. First, U is called principal if AU = αU, where A is the shape
operator of M and α is a smooth function. A real hypersurface of M̄ is said to be a Hopf hypersurface if its
structure vector field U is principal. Next, the structure tensor field F is called recurrent (resp. Lie recurrent )
if, for any vector fields X and Y on M, there exists a 1-form ω (resp. a 1-form θ) on M such that

(∇XF)Y = ω(X)FY (resp. (LX F)Y = θ(X)FY ),

where ∇ andL denote the covariant and Lie derivative on M respectively. A real hypersurface is said to be
a recurrent (resp. Lie recurrent) hypersurface if its structure tensor field F is recurrent (resp. Lie recurrent)
([2], [9]∼[13]).

The theory of lightlike submanifolds is an important topic of research in differential geometry and
mathematical physics. The study of such notion was initiated by Duggal and Bejancu [3] and later studied
by many authors (see up-to date results in two books [4, 5]). Moreover, Sahin and Yildirim ([10]) studied
both slant lightlike submanifolds and screen slant lightlike submanifolds of an indefinite Sasakian manifold.
They obtained necessary and sufficient conditions for the existence of a slant lightlike submanifold. In
addition, Jin and Lee studied the geometry of half lightlike submanifolds of quasi-constant curvature
with some conditions ([8]). Although now we have lightlike version of a large variety of Riemannian
submanifolds, the geometry of the above three types of lightlike hypersurfaces of indefinite almost complex
manifolds have not been introduced as yet. The purpose of this paper is to extend and study the concepts
of these three types of hypersurfaces in case that M is a lightlike hypersurface of an indefinite Kaehler
manifold M̄.

2010 Mathematics Subject Classification. 53C25, 53C40, 53C50
Keywords. Hopf lightlike hypersurface, recurrent lightlike hypersurface, Lie recurrent lightlike hypersurface, indefinite Kaehler

manifold
Received: 28 October 2014; Accepted: 13 April 2015
Communicated by Hari M. Srivastava
Email address: jindh@dongguk.ac.kr (Dae Ho Jin)



D. H. Jin / Filomat 30:7 (2016), 1919–1930 1920

2. Lightlike Hypersurfaces

Let (M, 1) be a lightlike hypersurface of a semi-Riemannian manifold (M̄, 1̄). Then the normal bundle
TM⊥ of M is a vector subbundle of the tangent bundle TM, of rank 1, and coincides with the radical
distribution Rad(TM) = TM ∩ TM⊥ of M. A complementary vector bundle S(TM) of TM⊥ in TM is non-
degenerate distribution on M, which is called a screen distribution on M, such that

TM = TM⊥ ⊕orth S(TM),

where⊕orth denotes the orthogonal direct sum. We denote such a lightlike hypersurface by M = (M, 1,S(TM)).
Denote by F(M) the algebra of smooth functions on M, by Γ(E) the F(M) module of smooth sections of any
vector bundle E over M and by (−.−)i the i-th equation of (−.−). We use same notations for any others. It
is well-known [3] that, for any null section ξ of TM⊥ on a coordinate neighborhoodU ⊂ M, there exists a
unique null section N of a unique lightlike vector bundle tr(TM) in S(TM)⊥ satisfying

1̄(ξ,N) = 1, 1̄(N,N) = 1̄(N,X) = 0, ∀X ∈ Γ(S(TM)).

We call tr(TM) and N the transversal vector bundle and the null transversal vector field of M with respect to the
screen distribution S(TM), respectively. Then the tangent bundle TM̄ of M̄ is decomposed as follow:

TM̄ = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM).

From now and in the sequel, let X, Y, Z and W be the vector fields on M, unless otherwise specified. Let
∇̄ be the Levi-Civita connection of M̄ and P the projection morphism of TM on S(TM). Then the local Gauss
and Weingarten formulas of M and S(TM) are given respectively by

∇̄XY = ∇XY + B(X,Y)N, (2.1)
∇̄XN = −AN X + τ(X)N; (2.2)
∇XPY = ∇∗XPY + C(X,PY)ξ, (2.3)
∇Xξ = −A∗ξX − τ(X)ξ, (2.4)

where∇ and ∇∗ are the liner connections on TM and S(TM) respectively, B and C are the local second funda-
mental forms on TM and S(TM) respectively, which are called the lightlike and screen second fundamental
forms of M, AN and A∗ξ are the shape operators on TM and S(TM) respectively and τ is a 1-form on TM.
Since ∇̄ is torsion-free, ∇ is also torsion-free and B is symmetric on TM.

The induced connection ∇ of M is not metric and satisfies

(∇X1)(Y,Z) = B(X,Y) η(Z) + B(X,Z) η(Y), (2.5)

where η is a 1-form on M such that

η(X) = 1̄(X,N).

From the fact B(X,Y) = 1̄(∇̄XY, ξ), we show that B is independent of the choice of S(TM) and satisfies

B(X, ξ) = 0. (2.6)

The above second fundamental forms are related to their shape operators by

B(X,Y) = 1(A∗ξX,Y), 1̄(A∗ξX,N) = 0, (2.7)
C(X,PY) = 1(AN X,PY), 1̄(AN X,N) = 0. (2.8)

From (2.7), A∗ξ is S(TM)-valued self-adjoint on Γ(TM) with respect to the induced metric 1 on M such that

A∗ξξ = 0. (2.9)
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Denote by R̄, R and R∗ the curvature tensors of the Levi-Civita connection ∇̄of M̄, the induced connection
∇ on M and the induced connection ∇∗ on S(TM), respectively. Using the Gauss-Weingarten formulas for
M and S(TM), we obtain the Gauss equations for M and S(TM) such that

R̄(X,Y)Z = R(X,Y)Z + B(X,Z)AN Y − B(Y,Z)AN X (2.10)
+ {(∇XB)(Y,Z) − (∇YB)(X,Z) + τ(X)B(Y,Z) − τ(Y)B(X,Z)}N,

R(X,Y)PZ = R∗(X,Y)PZ + C(X,PZ)A∗ξY − C(Y,PZ)A∗ξX (2.11)
+ {(∇XC)(Y,PZ) − (∇YC)(X,PZ) + C(X,PZ)τ(Y) − C(Y,PZ)τ(X)}ξ.

In case R = 0, we say that M is flat.

Definition 2.1. A lightlike hypersurface M of a semi-Riemannian manifold M̄ is said to be

(1) totally umbilical [3] if there exist a smooth function ρ on a coordinate neighborhoodU such that A∗ξX = ρPX,
or equivalently,

B(X,PY) = ρ1(X,Y).

In case ρ = 0 onU, we say that M is totally geodesic.

(2) screen totally umbilical [3] if there exist a smooth function λ on a coordinate neighborhood U such that
AN X = λPX, or equivalently,

C(X,PY) = λ1(X,Y).

In case λ = 0 onU, we say that M is screen totally geodesic.

(3) screen conformal [1] if there exist a non-vanishing smooth function ϕ on a coordinate neighborhood U such
that AN = ϕA∗ξ, or equivalently,

C(X,PY) = ϕB(X,Y).

3. Recurrent Lightlike Hypersurfaces

Let M̄ = (M̄, 1̄, J) be a real 2m-dimensional indedinite Kaehler manifold, where 1̄ is a semi-Riemannian
metric of index q = 2v (0 < v < m) and J is an indefinite almost complex structure on M̄ satisfying

J2 = −I, 1̄(JX, JY) = 1̄(X,Y), (∇̄X J)Y = 0, (3.1)

for any vector fields X and Y of M̄ ([3, 5, 7]).
An indefinite complex space form, denoted by M̄(c), is a connected indefinite Kaehler manifold of constant

holomorphic sectional curvature c such that

R̄(X,Y)Z =
c
4
{1̄(Y,Z)X − 1̄(X,Z)Y + 1̄(JY,Z)JX − 1̄(JX,Z)JY + 21̄(X, JY)JZ}, (3.2)

for any vector fields X, Y and Z on M̄.

Suppose that M is a lightlike hypersurface of an indefinite Kaehler manifold M̄. Then its screen
distribution S(TM) splits as follows [3, 7]:

If ξ and N are local sections of TM⊥ and tr(TM) respectively, then

1̄(Jξ, ξ) = 1̄(Jξ,N) = 1̄(JN, ξ) = 1̄(JN,N) = 0, 1̄(Jξ, JN) = 1.
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It follow that the vector fields Jξ and JN belong to S(TM). Thus J(TM⊥) and J(tr(TM)) are distributions
on M of rank 1 such that TM⊥ ∩ J(TM⊥) = {0} and TM⊥ ∩ J(tr(TM)) = {0}. Hence J(TM⊥) ⊕ J(tr(TM)) is a
subbundle of S(TM), of rank 2. Therefore, there exists a non-degenerate almost complex distribution Do on
M with respect to J, i.e., J(Do) = Do, such that

TM = TM⊥ ⊕orth {J(TM⊥) ⊕ J(tr(TM)) ⊕orth Do}.

Consider the 2-lightlike almost complex distribution D such that

D = {TM⊥ ⊕orth J(TM⊥)} ⊕orth Do, TM = D ⊕ J(tr(TM)). (3.3)

Consider the local lightlike vector fields U and V such that

U = −JN, V = −Jξ. (3.4)

Denote by S the projection morphism of TM on D with respect to the decomposition (3.3)2. Then any vector
field X on M is expressed as

X = SX + u(X)U,

where u and v are 1-forms locally defined on M by

u(X) = 1(X,V), v(X) = 1(X,U). (3.5)

Using (3.4), the action JX of any vector field X on M by J is expressed as

JX = FX + u(X)N, (3.6)

where F is a tensor field of type (1, 1) globally defined on M by F = J ◦ S.
Applying J to (3.6) and using (3.1) and (3.4), we have

F2X = −X + u(X)U, FU = 0, u(U) = 1. (3.7)

Therefore, the structure set (F, u, U) defines an indefinite almost contact structure on M. The vector field U
is called the structure vector field of M.

Applying ∇̄X to (3.4), (3.5) and (3.6) by turns, and using (2.1)∼(2.8), (3.1), (3.4), (3.5) and (3.6), we have

B(X,U) = C(X,V), (3.8)
∇XU = F(AN X) + τ(X)U, (3.9)
∇XV = F(A∗ξX) − τ(X)V, (3.10)

(∇XF)(Y) = u(Y)AN X − B(X,Y)U, (3.11)
(∇Xu)(Y) = −u(Y)τ(X) − B(X,FY), (3.12)
(∇Xv)(Y) = v(Y)τ(X) − 1(AN X,FY). (3.13)

Definition 3.1. The structure tensor field F of M is said to be recurrent if there exists a 1-form ω on M such that

(∇XF)Y = ω(X)FY. (3.14)

A lightlike hypersurface M of an indefinite almost complex manifold M̄ is called recurrent if it admits a recurrent
structure tensor field F.

In the sequel, we shall denote σ the 1-form defined by

σ(X) = B(X,U) = C(X,V), and let α = σ(V), β = σ(U).
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Proposition 3.2. Let M be a recurrent lightlike hypersurface of an indefinite Kaehler manifold M̄. Then F is parallel
with respect to ∇, and

A∗ξX = σ(X)V, AN X = σ(X)U. (3.15)

Moreover, if M is screen conformal, then it is totally and screen totally geodesic.

Proof. Assume that M is recurrent. From (3.11) and (3.14), we get

ω(X)FY = u(Y)AN X − B(X,Y)U. (3.16)

Replacing Y by ξ and using (2.6), (3.5) and the fact that Fξ = −V, we get ω(X)V = 0. Taking the scalar
product with U to this, we obtain ω = 0. It follows that ∇XF = 0. Therefore, F is parallel with respect to ∇.

Replacing Y by U to (3.16) such that ω = 0, we get AN X = σ(X)U. Taking the scalar product with V to
(3.16), we have B(X,Y) = u(Y)σ(X), that is,

1(A∗ξX,Y) = 1(σ(X)V, Y).

As S(TM) is non-degenerate, we get A∗ξX = σ(X)V. Thus we obtain (3.15).
If M is screen conformal, then, from the two equations of (3.15), we have

σ(X)U = ϕσ(X)V.

Taking the scalar product with V to this, we have σ = 0. Thus, by (3.15), we get A∗ξ = 0 and AN = 0.
Therefore, M is totally and screen totally geodesic.

Definition 3.3. Let ∇⊥XN = π(∇̄XN), where π is the projection morphism of TM̄ on tr(TM). Then ∇⊥ is a linear
connection on tr(TM). We say that ∇⊥ is the transversal connection. We define the curvature tensor R⊥ of tr(TM) by

R
⊥

(X,Y)N = ∇
⊥

X∇
⊥

YN − ∇
⊥

Y∇
⊥

XN − ∇
⊥

[X,Y]N.

The transversal connection ∇⊥ is called flat if R⊥vanishes identically [6].

As ∇
⊥

XN = τ(X)N, we show [6] that the transversal connection is flat if and only if the 1-form τ is closed,
i.e., dτ = 0, on anyU ⊂M.

Theorem 3.4. Let M be a recurrent lightlike hypersurfaces of an indefinite complex space form M̄(c). Then c = 0,
i.e., M̄(c) is flat ; M is also flat, and the transversal connection of M is flat.

Proof. Comparing the tangential parts of (2.10) and (3.2), we get

R(X,Y)Z =
c
4
{1(Y,Z)X − 1(X,Z)Y + 1̄(JY,Z)FX − 1̄(JX,Z)FY + 21̄(X, JY)FZ} (3.17)

+ B(Y,Z)AN X − B(X,Z)AN Y.

Taking the scalar product with N to (2.10) and (2.11), we have

1̄(R̄(X,Y)PZ, N) = 1̄(R(X,Y)PZ, N),
1̄(R(X,Y)PZ, N) = (∇XC)(Y,PZ) − (∇YC)(X,PZ) + C(X,PZ)τ(Y) − C(Y,PZ)τ(X).

From these two equations and (3.2), we see that

(∇XC)(Y,PZ) − (∇YC)(X,PZ) + τ(Y)C(X,PZ) − τ(X)C(Y,PZ) (3.18)

=
c
4
{1(Y,PZ)η(X) − 1(X,PZ)η(Y) + 1̄(JY,PZ)v(X) − 1̄(JX,PZ)v(Y) + 21̄(X, JY)v(PZ)}.

As F is recurrent, taking the scalar product with U to (3.15)2, we have

C(Y,U) = 0, ∀Y ∈ Γ(TM).
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Applying ∇X to this and using (3.9), (3.15)2 and the result: FU = 0, we have

(∇XC)(Y,U) = 0.

Replacing PZ by U to (3.18) and using the last two equations, we obtain

c
2
{v(Y)η(X) − v(X)η(Y)} = 0.

Taking X = ξ and Y = V to this equation, we see that c = 0.
As c = 0, substituting (3.15)1, 2 into (3.17), we get

R(X,Y)Z = {σ(Y)σ(X) − σ(X)σ(Y)}u(Z)U = 0,

for all X, Y, Z ∈ Γ(TM). Therefore R = 0 and M is a flat manifold.
From (3.9), (3.15)2 and the fact that FU = 0, we get

∇XU = τ(X)U.

Substituting this into ∇X∇YU − ∇Y∇XU − ∇[X,Y]U = 0, we get dτ = 0.

4. Lie Recurrent Lightlike Hypersurfaces

Definition 4.1. The structure tensor field F of M is said to be Lie recurrent if there exists a 1-form θ on M such that

(LX F)Y = θ(X)FY, (4.1)

here LX denotes the Lie derivative on M with respect to X, that is,

(LX F)Y = [X,FY] − F[X,Y] = (∇XF)Y − ∇FYX + F∇YX. (4.2)

The structure tensor field F is called Lie parallel if LX F = 0.
A lightlike hypersurface M of an indefinite almost complex manifold M̄ is called Lie recurrent if it admits a Lie

recurrent structure tensor field F.

Proposition 4.2. Let M be a Lie recurrent lightlike hypersurface of an indefinite Kaehler manifold M̄. Then the
structure tensor field F is Lie parallel ; and the shape operators A∗ξ and AN and the 1-form σ are satisfied

A∗ξV = 0, A∗ξU = AN V = 0, σ = 0.

Proof. As F is Lie recurrent, from (3.11), (4.1) and (4.2) we get

θ(X)FY = u(Y)AN X − B(X,Y)U − ∇FYX + F∇YX. (4.3)

Replacing Y by ξ to (4.3) and using (2.6), (3.5) and Fξ = −V, we have

−θ(X)V = ∇VX + F∇ξX. (4.4)

As 1(F∇ξX,V) = 0, taking the scalar product with V to (4.4), we get

u(∇VX) = 1(∇VX,V) = 0. (4.5)

On the other hand, taking Y = V to (4.3) and using (2.6) and (3.5), we have

θ(X)ξ = −B(X,V)U − ∇ξX + F∇VX.
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Applying F to this and using (3.7)1, (4.5) and the fact that FU = 0, we have

θ(X)V = ∇VX + F∇ξX.

From this equation and (4.4), we obtain θ = 0. Therefore, F is Lie parallel.

Taking X = U to (4.3) and using (3.7)1, (3.8), (3.9) and FU = 0, we get

u(Y)AN U − F(AN FY) − τ(FY)U − AN Y = 0. (4.6)

Taking Y = V to (4.6) and using (3.8) and the fact that FV = ξ, we obtain

F(ANξ) + τ(ξ)U + AN V = 0.

Taking the scalar product with V and U to this equation by turns, we get

α = C(V,V) = −τ(ξ), C(V,U) = 0. (4.7)

On the other hand, taking the scalar product with V to (4.6), we have

B(Y,U) = −τ(FY) + u(Y)C(U,V). (4.8)

Replacing X by V to (4.3) and using (3.10), (3.7)1 and FV = ξ, we obtain

u(Y)AN V − F(A∗ξFY) + τ(FY)V − A∗ξY − τ(Y)ξ = 0. (4.9)

Taking Y = ξ to (4.9) and using (2.9) and the fact that τ(V) = 0, we obtain

F(A∗ξV) − τ(V)V − τ(ξ)ξ = 0.

Taking the scalar product with N and U to this equation by turns, we have

α = C(V,V) = τ(ξ), τ(V) = 0.

Comparing this and (4.7), we obtain α = τ(ξ) = 0.
Replacing X by U to (4.9) and using (3.9), (3.7)1 and FU = 0, we obtain

AN V − A∗ξU − τ(U)ξ = 0.

Taking the scalar product with N to this result, we have τ(U) = 0. Thus

AN V = A∗ξU. (4.10)

Taking the scalar product with X to (4.10), we have B(X,U) = C(V,X). From this and (3.8), we see that
C(X,V) = C(V,X). Replacing X by U to this, we get γ = C(U,V) = C(V,U) = 0. If follows from (4.8) that

B(X,U) = −τ(FX).

Taking the scalar product with U and V by turns to (4.9), we have

B(Y,U) = τ(FY), B(Y,V) = 0.

Comparing the last two equations, we get σ(X) = B(X,U) = 0 and τ(FX) = 0. From the facts that B(V,X) =
B(U,X) = 0, we obtain

1(A∗ξV, X) = 0, 1(A∗ξU, X) = 0. (4.11)

As S(TM) is non-degenerate, from (4.10) and (4.11), we have our assertion.
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Definition 4.3. The Jacobi operator on M with respect to the vector field X is defined by R(· , X)X. In case X = U,
the Jacobi operator is called structure Jacobi operator and is denoted by φ = R(· , U)U.

Theorem 4.4. Let M be a Lie recurrent lightlike hypersurfaces of an indefinite complex space form M̄(c). Then c = 0,
i.e., M̄(c) is flat, and the structure Jacobi operator φ is satisfied φ = 0.

Proof. Comparing the transversal parts of (2.10) and (3.2), we get

(∇XB)(Y,Z) − (∇YB)(X,Z) + B(Y,Z)τ(X) − B(X,Z)τ(Y)

=
c
4
{1̄(JY,Z)u(X) − 1̄(JX,Z)u(Y) + 21̄(X, JY)u(Z)}.

Taking Z = U to this equation and using (3.1) and (3.4), we obtain

(∇XB)(Y,U) − (∇YB)(X,U) + B(Y,U)τ(X) − B(X,U)τ(Y) (4.12)

=
c
4
{u(Y)η(X) − u(X)η(Y) + 21̄(X, JY)}.

Assume that F is Lie recurrent. Taking the scalar product with X to A∗ξU = 0, we have

B(X,U) = 0, ∀X ∈ Γ(TM). (4.13)

Substituting this equation into (4.12) and using (3.9), we obtain

B(X,F(AN Y)) − B(Y,F(AN X)) =
c
4
{u(Y)η(X) − u(X)η(Y) + 21̄(X, JY)}.

Taking X = ξ and Y = U to this equation, we get c = 0.
Taking Y = Z = U to (3.17) we obtain

φX = B(U,U)AN X − B(X,U)AN U. (4.14)

Substituting (4.13) into (4.14), we see that φ = 0.

5. Hopf Lightlike Hypersurfaces

In the classical geometry of non-degenerate submanifolds, each submanifold has only one type of fun-
damental forms with their one type of respective shape operators. It is known that the second fundamental
forms and their respective shape operators of a non-degenerate submanifolds are related by means of the
metric tensor. Contrary to this, each lightlike submanifold has two types of fundamental forms with their
two types of respective shape operators. We see from (2.7) and (2.8) that there are interrelations between the
lightlike and screen second fundamental forms and their respective shape operators. Due to this reason,
we define Hopf lightlike hypersurfaces M of an indefinite almost complex manifold M̄ as follow:

Definition 5.1. The structure vector field U on a lightlike hypersurface M of an indefinite almost complex manifold
M̄ is called principal, with respect to the shape operator A∗ξ, if there exists a smooth function α such that

A∗ξU = αU. (5.1)

A lightlike hypersurface M of an indefinite almost complex manifold M̄ is called a Hopf lightlike hypersurface if it
admits a principal structure vector field U, with respect to the shape operator A∗ξ.

Taking the scalar product with X to (5.1) and using (2.7) and (3.5), we get

B(X,U) = α v(X). (5.2)

Using (3.8) and (5.2), for all X ∈ Γ(TM), we see that

C(X,V) = α v(X). (5.3)



D. H. Jin / Filomat 30:7 (2016), 1919–1930 1927

Example 5.2. Every totally umbilical lightlike hypersurfaces M of indefinite almost complex manifolds M̄ is a Hopf
lightlike hypersutface of M̄.

Theorem 5.3. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M̄. If V is parallel with respect to
the induced connection ∇ on M, then M is a Hopf lightlike hypersurface of M̄ such that σ = 0, and τ = 0.

Proof. If V is parallel with respect to ∇, then, from (3.6) and (3.10), we have

J(A∗ξX) − u(A∗ξX)N − τ(X)V = 0, ∀X ∈ Γ(TM).

Applying J to this equation and using (3.1) and (3.4), we obtain

A∗ξX − u(A∗ξX)U + τ(X)ξ = 0.

Taking the scalar product with N to this equation, we get τ = 0. Therefore,

A∗ξX = u(A∗ξX)U, ∀X ∈ Γ(TM). (5.4)

This implies that A∗ξU = αU. Thus M is a Hopf lightlike hypersurface. Taking the scalar product with U to
(5.4), we get σ(X) = B(X,U) = 0.

Theorem 5.4. Let M be a Hopf lightlike hypersurfaces of an indefinite complex space form M̄(c). Then c = 0, i.e.,
M̄(c) is flat.

Proof. Applying ∇Y to (5.2) and using (3.1), (3.6), (3.9) and (3.13), we have

(∇XB)(Y,U) = (Xα)v(Y) − α1(AN X,FY) + 1(AN X,F(A∗ξY)).

Substituting this equation and (5.2) into (4.12), we have

(Xα)v(Y) − (Yα)v(X) + 1(AN X,F(A∗ξY)) − 1(AN Y,F(A∗ξX))
+ α{1(AN Y,FX) − 1(AN X,FY) + τ(X)v(Y) − τ(Y)v(X)}

=
c
4
{u(Y)η(X) − u(X)η(Y) + 21̄(X, JY)}.

Taking X = ξ and Y = U to this equation and using (2.9), (3.5), (5.1), (5.3) and the facts that FU = 0 and
Fξ = −V, we obtain c = 0.

Theorem 5.5. Let M be a Hopf lightlike hypersurfaces of an indefinite Kaehler manifold M̄. If (1) M is screen totally
umbilical or (2) F is parallel with respect to ∇, then σ = 0 and M is screen totally geodesic.

Proof. (1) If M is screen totally umbilical, then, by replacing PY by V to C(X,PY) = λ1(X,PY) and using (3.5)
and (5.3), we have αv(X) = λu(X). Taking X = U to this, we have λ = 0. As λ = 0, we have AN = C = 0 and
σ(X) = 1(AN X,V) = 0. Therefore, M is screen totally geodesic and σ = 0.

(2) If F is parallel with respect to ∇, then, from (3.11), we have

u(Y)AN X = B(X,Y)U. (5.5)

Replacing Y by U to this and using the fact that σ(X) = B(X,U), we have

AN X = σ(X)U. (5.6)

Assume that M is Hopf lightlike hypersurface. From (5.2) and (5.6), we get

AN X = αv(X)U. (5.7)
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On the other hand, taking the scalar product with V to (5.5), we have

B(X,Y) = u(Y)u(AN X).

Replacing X by U to this and using the fact that u(AN U) = 0, we obtain

σ(X) = B(X,U) = 0.

It follows from (5.6) that AN = 0. Therefore, M is screen totally geodesic.

Theorem 5.6. Let M be a Hopf lightlike hypersurface of an indefinite Kaehler manifold M̄. If U is parallel with
respect to the induced connection ∇ on M, then S(TM) is an integrable distribution and τ = 0.

Proof. If U is parallel with respect to ∇, then, from (3.9), we have

J(AN X) − u(AN X)N + τ(X)U = 0, ∀X ∈ Γ(TM).

Applying J to this equation and using (3.1) and (3.4), we obtain

AN X − u(AN X)U − τ(X)N = 0.

Taking the scalar product with ξ to this equation, we get τ = 0 and

AN X = σ(X)U. (5.8)

As M is Hopf lightlike hypersurface, from (5.3) and (5.8), we obtain

AN X = αv(X)U. (5.9)

Taking the scalar product with Y to the last equation, we see that

1(AN X, Y) = αv(X)v(Y).

It follow that AN is self-adjoint operator with respect to 1. Consequently, C is symmetric on S(TM) due to
(2.8). By using (2.3) we obtain

η([X,Y]) = C(X,Y) − C(Y,X) = 0,

which implies that [X,Y] ∈ Γ(S(TM)) for any X, Y ∈ Γ(S(TM)). Thus S(TM) is an integrable distribution.

Theorem 5.7. Let M be a Hopf lightlike hypersurface of an indefinite complex space form M̄(c). If F or U is parallel
with respect to the induced connection ∇ on M, then the structure Jacobi operator φ is satisfied φ = 0.

Proof. Assume that M is a Hopf lightlike hypersurface. Then c = 0 by Theorem 5.4. Substituting (5.2), (5.7)
and (5.9) into (4.14), we see that φ = 0.

Definition 5.8. A lightlike hypersurface M of an indefinite almost complex manifold M̄ is called a quasi-Hopf lightlike
hypersurface if it admits a principal structure vector field U, with respect to the shape operator AN , that is,

AN U = βU. (5.10)

Taking the scalar product with PX to (5.10) and using (2.8), we get

C(U,PX) = β v(X). (5.11)

Remark 5.9. Let M be a screen conformal lightlike hypersurface of M̄. Then, from (5.10) and the fact that AN = ϕA∗ξ,
we see that the definitions of Hopf and quasi-Hopf lightlike hypersurfaces are equivalent to each other.
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Theorem 5.10. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M̄. If F or U is parallel with
respect to ∇, then M is a quasi-Hopf lightlike hypersurface of M̄. Moreover if the ambient manifold M̄ is an indefinite
almost complex space form M̄(c), then c = 0.

Proof. Assume that F or U is parallel with respect to ∇. Then, from (5.6) and (5.8), we obtain AN U = βU.
Thus M is a quasi-Hopf lightlike hypersurface.

By taking the scalar product with U to (5.6) and (5.8), we get

C(X,U) = 0, ∀X ∈ Γ(TM).

Replacing PZ by U to (3.18) and using (3.9), (5.6) and (5.8), we obtain

c
2
{v(Y)η(X) − v(X)η(Y)} = 0.

Taking X = ξ and Y = V to this equation, we get c = 0.

Theorem 5.11. Let M be a screen conformal lightlike hypersurface of an indefinite Kaehler manifold M̄. If F or U is
parallel with respect to ∇, then M is a Hopf lightlike hypersurface of M̄ such that α = β = 0. Moreover if M̄ is an
indefinite almost complex space form M̄(c), then c = 0.

Proof. As M is screen conformal, by Remark 5.9 and Theorem 5.10 if F or U is parallel with respect to ∇,
then M is a Hopf lightlike hypersurface of M̄. Moreover if M̄ is an indefinite almost complex space form
M̄(c), then c = 0. As M is Hopf lightlike hypersurface, from (5.3) we obtain

C(U,V) = 0.

Since M is quasi-Hopf lightlike hypersurface, taking PX = V to (5.11) we get β = C(U,V) = 0. As M is screen
conformal, we see that

0 = C(U,V) = ϕB(U,V) = ϕC(V,V) = αϕ.

As ϕ , 0, we see that α = 0. This completes the proof of the theorem.

Theorem 5.12. Let M be a Hopf and quasi-Hopf lightlike hypersurface of an indefinite complex space form M̄(c). If
φ is non-vanishing and parallel with respect to ∇, then M is screen totally geodesic.

Proof. Assume that M is Hopf lightlike hypersurface. Then c = 0 by Theorem 5.4. Substituting (5.2) and
(5.10) into (4.14), we have

φX = −αβv(X)U. (5.12)

Applying ∇Y to (5.12) and using (3.9), (3.13) and (5.12), we obtain

{X[αβ] + 2αβτ(X)}v(Y)U = αβ{1(AN X,FY)U − v(Y)F(AN X))},

as φ is parallel with respect to ∇. Taking the scalar product with V to this equation, we have

{X[αβ] + 2αβτ(X)}v(Y) = αβ1(AN X,FY).

Replacing Y by V to this, we get X[αβ] + 2αβτ(X) = 0. As φ is non-vanishing, we see from (5.12) that αβ , 0.
Thus, from the last two equations, we obtain

1(AN X,FY) = 0, F(AN X) = 0. (5.13)

Replacing Y by FZ to (5.13)1 and using (3.7)1, we have

1(AN X,Z) = 1(C(X,U)V, Z).
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As S(TM) is non-degenerate, it follows that

AN X = C(X,U)V.

On the other hand, applying F to (5.13)2 and using (3.7)1, we have

AN X = σ(X)U.

Comparing the last two equations, we see that

σ(X)U = C(X,U)V.

This implies that σ(X) = 0 and C(X,U) = 0. Therefore, we have AN = 0 and M is screen totally geodesic.
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