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Abstract. We use the concept of set centroid to study the value distribution of L-functions in the (extended)
Selberg class, which shows how an L-function and a meromorphic function are uniquely determined by
their two sharing sets. The results in this paper extend Theorem 1 in Li [A result on value distribution of
L-functions, Proc. Amer. Math. Soc., 138(2010):2071–2077]. In addition, we show the accuracy of the results
by giving some examples.

1. Introduction and main result

The Riemann hypothesis, proposed by Bernhard Riemann [8] in 1859, is a conjecture that all the non-

trivial zeros of the Riemann zeta function ζ(s) =

∞∑
n=1

1
ns lie on the critical line consisting of the complex

numbers
1
2

+ ti, where t is a real number and i is the imaginary unit. It is a clue worth exploring that the
Riemann hypothesis implies results about the distribution of prime numbers. Along with suitable gener-
alizations, some mathematicians consider it the most important unresolved problem in pure mathematics
(see [2]). Furthermore, Riemann hypothesis can be generalized by replacing the Riemann zeta function by
the formally similar, but much more general, global L-functions. In this broader setting, L-functions, with
the Riemann zeta function as a prototype, are more important in mathematics, specially, in number theory.
Recently, the value distribution of L-functions has been studied extensively, such as Garunkstis [3], Li [5],
and Steuding [16].

Two meromorphic functions f and 1 are said to share a value a ∈ Ĉ = C
⋃
{∞} CM (counting multiplici-

ties) if E(a, f ) = E(a, 1). Here E(a, f ) := {s ∈ C : f (s)−a = 0} denotes the preimage of a under f , where a zero of
f −a with multiplicity m counts m times in E(a, f ). Moreover, f and 1 are said to share a value a IM (ignoring
multiplicities) if E(a, f ) = E(a, 1). Here E(a, f ) denotes the set of the distinct elements in E(a, f ), which is
called the simplified preimage of a under f . In terms of sharing values, two nonconstant meromorphic
functions in Cmust be identically equal if they share five values IM, and one must be a Möbius transform
of the other if they share four values CM, the numbers five and four are the best possible, as shown by
Nevanlinna (see [4, 19]). In recent thirty years, there have been many generalizations based on the Nevan-
linna’s results (see [7, 9, 17, 18, 20]). Similar to above definitions, E(S, f ) :=

⋃
a∈S{s ∈ C : f (s)− a = 0} denotes
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the preimage of S under f , where S ⊂ Ĉ, a zero of f − a with multiplicity m counts m times in E(S, f ). And
E(S, f ) denotes the set of the distinct elements in E(S, f ), which is called the simplified preimage of S under
f . If E(S, f ) = E(S, 1), then it is said that f and 1 share the set S CM. If E(S, f ) = E(S, 1), then it is said that f
and 1 share the set S IM. In this note, we present some new properties of L-functions with two shared-sets.

Throughout this paper, an L-function always means an L-function in the (extended) Selberg class, which
includes the Riemann zeta function and essentially those Dirichlet series where one might expect a Riemann
hypothesis. Introduced by Selberg [10], the Selberg class S is the set of all Dirichlet series

L(s) =

∞∑
n=1

a(n)
ns

absolutely convergent for Re(s) > 1 that satisfy four axioms:

(1) Ramanujan hypothesis: for any ε > 0, a(n)� nε;
(2) Analytic continuation: the function (s−1)k

L(s) is an entire function of finite order for some non-negative
integer k;
(3) Functional equation: L satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s), where ΛL := L(s)Qs
K∏

j=1

Γ(λ js + ν j)

with positive real numbers Q, λ j, and complex numbers ν j, ω with Re(ν j) ≥ 0 and |ω| = 1.
(4) Euler product hypothesis: L can be written as a product over primes:

L(s) =
∏

p

exp(
∞∑

k=1

b(pk)
pks

)

with suitable coefficients b(pk) satisfying b(pk)� pkθ for some θ <
1
2

.

The extended Selberg class S] is defined as the set of all functionsL(s) satisfying axioms (1)(3). Usually,
a function is said to be an L-function if it possesses an Euler product hypothesis. However, it appears that
S
] contains interesting examples of functions which do not have an Euler product, and in some aspects it

is worthwhile to study the extended Selberg class.
We first recall the following result, which actually holds without the Euler product hypothesis.

Proposition 1.1 ([15]). For any nonconstant L-function L, as r→∞, T(r,L) =
dL
π

r log r + O(r).

Here, dL is called the degree of L, which is given by dL = 2
K∑

j=1

λ j, where K and λ j are the numbers in the

axiom (3). Although the data of the functional equation are not unique, this quantity dL is well-defined.
It is known that the number of sharing values can be substantially reduced for the uniqueness of two

L-functions, as seen from the following result due to Steuding [16], which actually holds without the Euler
product hypothesis.

Theorem A ([16], page 152). Assume that L1, L2 satisfy the axioms (1)(3) with a(1) = 1. If L1, L2 share a value
c , ∞ CM, then L1 ≡ L2.

This implies that two L-functions with a(1) = 1 must be identically equal if they have the same zeros with
counting multiplicities, and two L-functions with “enough” common zeros (without counting multiplicities)
are expected to be dependent in a certain sense, see Bombieri and Perelli [1]. In addition, L-functions can be



P. Lin, W. Lin / Filomat 30:14 (2016), 3795–3806 3797

analytically continued as meromorphic functions in the complex plane,so the study on how an L-function
and a meromorphic function are uniquely determined seems to be quite valuable. In order to study how
an L-function is uniquely determined by preimages of complex values, one should examine the situation
involving an arbitrary L-function and an arbitrary meromorphic function. Considering the meromorphic
functions with finitely many poles, Li [5] established the following uniqueness theorem in Proc. Amer.
Math. Soc..

Theorem B ([5]). Let a, b ∈ C be two distinct values and let f be a meromorphic function in C with finitely many
poles. If f and a nonconstant L-function L share a CM and b IM, then L ≡ f .

Remark 1.2. The following example given by Li [5] shows that Theorem B no longer holds without “finitely many
poles”.

Example 1.3. Consider the function L = ζ and f =
2ζ
ζ + 1

, where ζ is the Riemann zeta function. It is clear that f

has infinitely many poles, and f and L share 0, 1 CM, but they are not identically equal.

In particular, note that s = 1 is the only possible pole for an L-function, Theorem B implies that f is
meromorphic in C and shares one value CM, a second value IM and the value ∞ IM with a non-constant
L-function L, then L ≡ f . Furthermore, under the condition that f and L have three shared-values,
Garunkštis, Grahl and Steuding [3] obtained the following result, which was established in Comment.
Math. Univ. St. Pauli.

Theorem C ([3]). Let a, b ∈ Ĉ = C
⋃
{∞} and c ∈ C be three distinct values and let f be a meromorphic function in

C. If f and a nonconstant L-function L share a, b CM and c IM, then L ≡ f .

Recently, investigating the case that f and L share three distinct finite complex values IM (without
counting multiplicities), Li and Yi [6] got the following result in Mathematische Nachrichten.

Theorem D ([6]). Let f be a transcendental meromorphic function in the complex plane such that f has finitely
many poles in the complex plane, and let b1, b2, b3 be three distinct finite complex values. If f shares b1, b2, b3 IM with
a nonconstant L-function L, then f ≡ L.

Remark 1.4. The condition that f is a meromorphic function with “finitely many poles” in Theorem D is necessary,
as shown by the following example. Moreover, Example 1.2 also shows that the condition that f and L share two
distinct complex values CM in Theorem C is necessary.

Example 1.5. Let L be a nonconstant L-function such that L has no poles, and f =
2L
L2 + 1

. We find that f has

infinitely many poles, f and L share 0 CM, −1, 1 IM. However, f . L.

It is desirable to explore a problem about the shared-sets between a meromorphic function and an
L-function. Furthermore, it would be valuable to know what characteristics these shared-sets would have
to be. In order to make our result concise, we need the following definition:

Definition 1.6. Suppose S is a subset of C, the centroid of S is defined by

C(S) =

∫
C

zχS(z)dz∫
C
χS(z)dz

,

where χS is the indicator function of the subset S of C, which is defined as

χS(z) :=

1 if z ∈ S,
0 if z < S.



P. Lin, W. Lin / Filomat 30:14 (2016), 3795–3806 3798

Especially, if S = {ai|i = 1, 2, · · · ,n} is a finite set in C, the centroid of S can also be computed by

C(S) =
1
n

 n∑
i=1

ai

 .
Using the notion of the centroid , we get the following main theorem.

Theorem 1.7. Suppose that f is a meromorphic function in C with finitely many poles, and S1,S2 ⊂ C are two
different sets such that S1

⋂
S2 = ∅ and #(Si) ≤ 2, i = 1, 2, where #(S) denotes the cardinality of the set S. Let f and

a nonconstant L-function L share S1 CM and S2 IM, then the following statements hold:

(i) L ≡ f , if C(S1) , C(S2),
(ii) L ≡ f or L + f ≡ 2C(S1), if C(S1) = C(S2).

As an immediate consequence of Theorem 1.7, we obtain the result as follows.

Theorem 1.8. Suppose that f is a meromorphic function in C with finitely many poles, and S1,S2 ⊂ C are two
different sets such that S1

⋂
S2 = ∅, C(S1) , C(S2) and #(Si) ≤ 2, i = 1, 2, where #(S) denotes the cardinality of the

set S. Let f and a nonconstant L-function L share S1 CM and S2 IM, then L ≡ f .

Remark 1.9. When #(S1) = #(S2) = 1, Theorem 1.7 and Theorem 1.8 yield that Theorem B is valid.

Remark 1.10. The condition that f is a meromorphic function with “finitely many poles” in Theorem 1.7 and
Theorem 1.2 is necessary, as shown by Example 1.5 and the following examples.

Example 1.5 implies that f has infinitely many poles, f and L share S1 = {0} CM, S2 = {−1, 1} IM, and
C({0}) = C({−1, 1}) = 0, but neither L ≡ f nor L + f ≡ 0.

Example 1.11. Let L = ζ and f =
1
ζ

, where ζ is the Riemann zeta function. We find that f has infinitely many

poles, f and L share S1 = {i,−i} CM, S2 = {1,−1} CM, and C(S1) = C(S2), but neither L ≡ f nor L + f ≡ 0.

Therefore, Example 1.5 and Example 1.11 show that Theorem 1.7 fails in the case that C(S1) = C(S2) if f
has infinitely many poles.

Example 1.12. LetL = ζ and f =
4ζ

3ζ − 4
, where ζ is the Riemann zeta function. We find that f has infinitely many

poles, f and L share S1 = {0} CM, S2 = {2, 4} CM, and C(S1) , C(S2), but L . f .

Example 1.13. Let L = ζ and f =
1
ζ

, where ζ is the Riemann zeta function. We find that f has infinitely many

poles, f and L share S1 = {i,−i} CM, S2 = {2,
1
2
} CM, and C(S1) , C(S2), but L . f .

Therefore, Example 1.12 and Example 1.13 show that Theorem 1.7 fails in the case that C(S1) , C(S2) if
f has infinitely many poles.

Remark 1.14. It is shown by the following example that L + f ≡ 2C(S1) is possible in Theorem 1.7 when C(S1) =
C(S2).

Example 1.15. Let L = ζ and f = −ζ, where ζ is the Riemann zeta function. We find that f has finitely many
poles, and f and L share {0} CM, {−1, 1} CM and {−2, 2} CM. Obviously, C({0}) = C({−1, 1}) = C({−2, 2}) = 0 and
L + f ≡ 0.

Above all examples, we can draw a conclusion that there exist a meromorphic function f and a non-
constant L-function L and two sets S1,S2 (#(Si) ≤ 2, i = 1, 2) such that f and L share S1,S2 CM, but f . L.
However, it is natural to pose the following two open questions:
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Question 1.16. Can CM shared-set S1 be replaced by an IM shared-set in Theorem 1.7 and Theorem 1.8?

Question 1.17. What happens to Theorem 1.7 and Theorem 1.8 if max{#(S1), #(S2)} ≥ 3?

To prove our results, we will employ Nevanlinna theory. For the convenience of the readers,next we list
the following standard notations and results from Nevanlinna theory(see the references [4, 18, 19]).

Let f be a nonconstant meromorphic function in the complex plane. Then the definitions of the prox-
imity function m(r, f ), the counting function N(r, f ), the reduced counting function N(r, f ), the Nevanlinna
characteristic function T(r, f ) of a nonconstant meromorphic function f and the order λ( f ) are defined as

m(r, f ) =
1

2π

∫ 2π

0
log+

| f (reiθ)|dθ,

N(r, f ) =

∫ r

0

n(t, f ) − n(0, f )
t

dt + n(0, f ) log r,

N(r, f ) =

∫ r

0

n(t, f ) − n(0, f )
t

dt + n(0, f ) log r,

T(r, f ) = m(r, f ) + N(r, f ),

λ( f ) = lim sup
r→∞

log T(r, f )
log r

,

respectively, where log+ x = max{log x, 0} for all x ≥ 0, n(t, f ) denotes the number of poles of f in the disc
|z| < t, counting multiplicities and n(t, f ) denotes the number of poles of f in the disc |z| < t, ignoring
multiplicities.

We recall the following results:
(i) The arithmetic properties of T(r, f ) and m(r, f ):

T(r, f1) ≤ T(r, f ) + T(r, 1),T(r, f + 1) ≤ T(r, f ) + T(r, 1) + O(1).

The same inequalities holds for m(r, f ).
(ii) T(r, f ) is an increasing function of r. Moreover, f is a rational function if and only if

T(r, f ) = O(log r).

(iii) The Nevanlinna first fundamental theorem: T(r, f ) = T(r,
1
f

) + O(1).

(iv) The logarithmic derivative lemma: m(r,
f ′

f
) = O(log r) if the order λ( f ) of f is finite.

(v) The Nevanlinna second fundamental theorem:

(q − 2)T(r, f ) ≤
q∑

j=1

N(r,
1

f − a j
) + S(r, f ),

where a1, a2, · · · , aq are distinct complex values in Ĉ = C
⋃
{∞} and S(r, f ) denotes a quantity satisfying

S(r, f ) = O(log(rT(r, f ))) for all r outside possibly a set of finite Lebesgue measure. If f is of finite order, then
S(r, f ) = O(log r) for all r.

In addition, we need the following definition:

Definition 1.18. Let f , 1 be nonconstant meromorphic functions in the complex plane, and a, b be two distinct
complex numbers.

N(r, f = a|1 = b) =

∫ r

0

n(t, f = a|1 = b) − n(0, f = a|1 = b)
t

dt + n(0, f = a|1 = b) log r,

where n(t, f = a|1 = b) denotes the number of common zeros of f − a and 1 − b in the disc |z| ≤ t, and any of them is
counted only once.
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2. Lemmas and Propositions

Next the following lemmas are given to prove the main results of this paper:

Lemma 2.1. Suppose that f is a meromorphic function in C with finitely many poles, and a, b, c ∈ C are three
distinct values. If f and a nonconstant L-function L share {a} CM and {b, c} IM, then 2T(r, f ) ≤ 3T(r,L) + S(r, f ),
2T(r,L) ≤ 3T(r, f ) + S(r,L).

Proof. Since f only has finitely many poles, then N(r, f ) = S(r, f ). Moreover, according to axioms (2) of the
Selberg class, the poles of L only occur at s = 1, then N(r,L) = S(r,L). Therefore, using the Nevanlinna
second fundamental theorem, we have

2T(r, f ) ≤ N(r, f ) + N
(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
+ N

(
r,

1
f − c

)
+ S(r, f )

= N
(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
+ N

(
r,

1
f − c

)
+ S(r, f )

= N
(
r,

1
L − a

)
+ N

(
r,

1
L − b

)
+ N

(
r,

1
L − c

)
+ S(r, f )

≤ 3T(r,L) + S(r, f ).

Similarly, we have 2T(r,L) ≤ 3T(r, f ) + S(r,L).

Remark 2.2. If f satisfies the conditions in Lemma 2.1, then f is a transcendental meromorphic function of finite
order, and λ( f ) = λ(L) ≤ 1, S(r, f ) = S(r,L) = O(log r).

Lemma 2.3. Suppose L is a nonconstant L-function, there is no generalized Picard exceptional value of L in the
complex plane.

Proof. Note that∞ is a generalized Picard exceptional value ofL, so there is at most one generalized Picard
exceptional value of L in the complex plane. According to axioms (2) of the Selberg class, (s − 1)k

L(s) is
an entire function of finite order for some non-negative integer k. Suppose a ∈ C is a generalized Picard
exceptional value of L, let α1, α2, · · · , αt be all the zeros with multiplicity k1, k2, · · · , kt of L − a respectively,
then

(s − 1)k(L(s) − a)
(s − α1)k1 (s − α2)k2 · · · (s − αt)kt

= ep(s),

where p(s) is a polynomial. According to Proposition 1.1, λ(L) ≤ 1. Obviously, de1(p) ≥ 1, or L will be a
rational function. Therefore, de1(p) = λ(L) = 1. Let p(s) = a0s + a1. By calculation, we have

T(r,L) =
|a0|

π
r + O(log r) = O(r),

which is in contradiction with Proposition 1.1. Therefore, there is no generalized Picard exceptional value
of L in the complex plane.

We also need the following main results, which play an important role in the proof of Theorem 1.7.

Proposition 2.4. Suppose f is a meromorphic function inCwith finitely many poles, and a, b, c ∈ C are three distinct
values. Let f and a nonconstant L-function L share {a} CM and {b, c} IM, then the following statements hold:

(i) L ≡ f , if 2a , b + c,
(ii) L ≡ f or L + f ≡ 2a, if 2a = b + c.
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Proof. Note that f only has finitely many poles, we let α1, α2, · · · , αt be all the poles of order k1, k2, · · · , kt of f
respectively, then (s− α1)k1 (s− α2)k2 · · · (s− αt)kt f (s) is an entire function of finite order. Moreover, according
to axioms (2) of the Selberg class, (s − 1)k

L(s) is an entire function of finite order for some non-negative
integer k. Let

F1 =
L − a

Q( f − a)
,

where

Q =
(s − α1)k1 (s − α2)k2 · · · (s − αt)kt

(s − 1)k
(1)

is a rational function. Since f and L share {a} CM, F1 has neither a pole nor a zero in complex plane. Note
that f , L, Q are the function of finite order, and hence there is a polynomial p such that

F1 =
L − a

Q( f − a)
= ep.

According to Proposition 1.1 and Lemma 2.1, we have λ( f ) = λ(L) ≤ 1. Obviously, de1(p) ≤ 1. Assume that
p(s) = a0s + a1. by calculation, we have

T(r, epQ) =
|a0|

π
r + O(log r).

Furthermore, we conclude that any zero of (L− b)(L− c) is a zero of (epQ− 1)(epQ−
c − a
b − a

)(epQ−
b − a
c − a

) since
f and L share {b, c} IM.

Suppose that L . f , (b − a)(L − a) . (c − a)( f − a) and (c − a)(L − a) . (b − a)( f − a). Note that
N(r,L) = S(r,L) = O(log r), by the Nevanlinna second fundamental theorem, we have

T(r,L) ≤ N
(
r,

1
L − b

)
+ N

(
r,

1
L − c

)
+ N(r,L) + O(log r)

≤ N
(
r,

1
epQ − 1

)
+ N

(
r,

1
epQ − c−a

b−a

)
+ N

r,
1

epQ − b−a
c−a

 + O(log r)

≤ 3T(r, epQ) + O(log r)

=
3|a0|

π
r + O(log r) = O(r),

which is in contradiction with Proposition 1.1. It follows that one of the following holds:

(i) L ≡ f ,
(ii) (b − a)(L − a) ≡ (c − a)( f − a),

(iii) (c − a)(L − a) ≡ (b − a)( f − a).

We distinguish the following two cases to discuss.
Case 1 When 2a , b + c, we claim that L ≡ f .
Indeed, if (b−a)(L−a) ≡ (c−a)( f −a), then the set sharing properties of f andL yield E(c,L) = E(b, f ), and

hence, E(b,L) = E(c, f ). Note that b is not the Picard exceptional value ofL, this implies that (b−a)2 = (c−a)2,
i.e. b = c or 2a = b + c. Thus we get a contradiction.

On the other hand, if (c − a)(L − a) ≡ (b − a)( f − a), we also can get a contradiction in the same way as
above. Therefore, we have L ≡ f .

Case 2 When 2a = b + c, we see that b − a = a − c. Therefore, we have L ≡ f or L + f ≡ 2a.

Proposition 2.5. Suppose f is a meromorphic function inCwith finitely many poles, and a, b, c ∈ C are three distinct
values. Let f and a nonconstant L-function L share {a} IM and {b, c} CM, then the following statements hold:
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(i) L ≡ f , if 2a , b + c,
(ii) L ≡ f or L + f ≡ 2a, if 2a = b + c.

Proof. We discuss the following two cases.
Case 1 When 2a , b + c, we are going to show that L ≡ f .
Let

F2 =
(L − b)(L − c)

Q2( f − b)( f − c)
,

where Q is defined by (1). In the same way in the proof of Proposition 2.4, we can prove that there exists a
polynomial q such that

F2 =
(L − b)(L − c)

Q2( f − b)( f − c)
= eq,

and de1(q) ≤ 1, T(r, eqQ2) = O(r). Note that a is not the Picard exceptional value of L, and L and f share a
IM, but 2a − b − c , 0. Therefore, we have

f +L − b − c . 0. (2)

Suppose L . f , note that

eqQ2
− 1 =

( f − L)( f +L − b − c)
( f − b)( f − c)

, (3)

thus eqQ2 . 1. We see that any zero of L − a is a zero of eqQ2
− 1, we have

N
(
r,

1
L − a

)
≤ N

(
r,

1
eqQ2 − 1

)
≤ T(r, eqQ2) + O(1) = O(r). (4)

Let’s consider the following two functions:

G0 =

(
L
′

(L − a)(L − b)(L − c)
−

f ′

( f − a)( f − b)( f − c)

)
( f − L)( f +L − b − c),

G1 =

(
(b − a)(b − c)L′

(L − a)(L − b)(L − c)
−

(c − a)(c − b) f ′

( f − a)( f − b)( f − c)

)
( f − L)( f +L − b − c).

First, we claim that G1 . 0. Otherwise, suppose that G1 ≡ 0. By (2) and L . f , we have

(b − a)(b − c)L′

(L − a)(L − b)(L − c)
≡

(c − a)(c − b) f ′

( f − a)( f − b)( f − c)
. (5)

Note that L has no Picard exceptional value in the complex plane, we may assume that s0 is a zero of
L− b of multiplicity k, the set sharing properties of f andL yield that s0 is the zero of f − b of multiplicity k
or the zero of f − c of multiplicity k.

If s0 is the zero of f − b of multiplicity k, then we can deduce that the principal part of the Laurent

expansion of
(b − a)(b − c)L′

(L − a)(L − b)(L − c)
at s = s0 is

k
s − s0

and the one for the function
(c − a)(c − b) f ′

( f − a)( f − b)( f − c)
is

(a − c)k
(b − a)(s − s0)

. It shows from (5) that
a − c
b − a

= 1, i. e , 2a = b + c. Thus we get a contradiction. Therefore, s0

should be the zero of f − c, and hence, E(b,L) ⊂ E(c, f ).
Similarly, we can also get E(c, f ) ⊂ E(b,L). Therefore, we obtain that E(b,L) = E(c, f ). Furthermore, we

have E(c,L) = E(b, f ).
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Assume that s1 is a zero ofL− c and f −b of multiplicity l, we know that the principal part of the Laurent

expansion of
(b − a)(b − c)L′

(L − a)(L − b)(L − c)
at s = s1 is

(b − a)l
(a − c)(s − s1)

and the one for the function
(c − a)(c − b) f ′

( f − a)( f − b)( f − c)

is
(a − c)l

(b − a)(s − s1)
. It implies that

b − a
a − c

=
a − c
b − a

, i.e. (b + c − 2a)(b − c) = 0, so b = c or 2a = b + c. Thus we get a

contradiction. Therefore, G1 . 0.
Next, we claim that G0 ≡ 0. Otherwise, suppose that G0 . 0.
Note that any zeros of L − a, L − b or L − c are not the poles of G0, we get to know that the possible

poles of G0 only come from the poles of f andL, which are finitely many. Therefore, G0 has at most finitely
many poles, which implies that

N(r,G0) = O(log r). (6)

According to (3), we can rewrite G0 as follows:

G0 =
L
′

L − a
(1 −

1
eqQ2 ) −

f ′

f − a
(eqQ2

− 1).

Thus

m(r,G0) ≤ m
(
r,
L
′

L − a

)
+ m

(
r, 1 −

1
eqQ2

)
+ m

(
r,

f ′

f − a

)
+ m(r, eqQ2

− 1) + log 2

≤ T
(
r, 1 −

1
eqQ2

)
+ T(r, eqQ2

− 1) + O(log r)

≤ 2T(r, eqQ2) + O(log r) = O(r),

which together with (6) obtains that T(r,G0) = O(r).
Note that G1 can be rewritten as

G1 =
(b − a)(b − c)L′

L − a
(1 −

1
eqQ2 ) −

(c − a)(c − b) f ′

f − a
(eqQ2

− 1).

From similar estimate, we can also deduce that T(r,G1) = O(r).
Suppose that s2 is a zero ofL− b of multiplicity k, then s2 is the zero of f − b of multiplicity k or the zero

of f − c of multiplicity k since f andL share {b, c} CM. If s2 is the zero of f − b of multiplicity k, we conclude
that s2 is also the zero of G0 of multiplicity at least k, then we have

N(r,L = b| f = b) ≤ N
(
r,

1
G0

)
≤ T(r,G0) + O(1) = O(r). (7)

If s2 is the zero of f − c of multiplicity k, we conclude that s2 is also the zero of G1 of multiplicity at least k,
then we have

N(r,L = b| f = c) ≤ N
(
r,

1
G1

)
≤ T(r,G1) + O(1) = O(r). (8)

Combining (4), (7), (8), and using the Nevanlinna second fundamental theorem, we have

T(r,L) ≤ N
(
r,

1
L − a

)
+ N

(
r,

1
L − b

)
+ N(r,L) + O(log r)

= N
(
r,

1
L − a

)
+ N(r,L = b| f = b) + N(r,L = b| f = c) + O(log r)

= O(r),

which is in contradiction with Proposition 1.1. Thus G0 ≡ 0, as claimed above.
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Since G0 ≡ 0, by (2) and the assumption that L . f , we have

L
′

(L − a)(L − b)(L − c)
≡

f ′

( f − a)( f − b)( f − c)
. (9)

Since f and L must share {a} IM, by Lemma 2.2, we assume that s3 is a zero of L − a of multiplicity m
and a zero of f − a of multiplicity n. By simple calculation, we get to know that the principal part of the

Laurent expansion of
L
′

(L − a)(L − b)(L − c)
at s = s3 is

m
(a − b)(a − c)(s − s3)

and the one for the function

f ′

( f − a)( f − b)( f − c)
is

n
(a − b)(a − c)(s − s3)

. It follows from (9) that m = n. Thus f and Lmust share {a} CM.

According to Proposition 2.4, we will get a contradiction. Therefore, L ≡ f .
Case 2 When 2a = b + c, let

P(ω) = ω2
− 2aω + bc.

It is easy to know that P(b) = P(c) = 0.
We claim that P( f ) ≡ P(L). Indeed, let’s consider the following function:

U =
P′(L)L′

P(L)
−

P′( f ) f ′

P( f )
.

Obviously, all zero of P( f ) and P(L) cannot be the poles of U since f and L share {b, c} CM. Thus, the poles
of U only occur at the poles of P′( f ) f ′ and P′(L)L′. Therefore,

N(r,U) ≤ N(r,P′( f ) f ′) + N(r,P′(L)L′) ≤ N(r, f ) + N(r,L) = O(log r). (10)

Note that

m(r,U) ≤ m(r,
P′( f ) f ′

P( f )
) + m(r,

P′(L)L′

P(L)
) + log 2 = S(r,P( f )) + S(r,P(L)) = O(log r). (11)

Combining (10), (11), we have

T(r,U) = O(log r).

This implies that U is a rational function. Moreover, it is obvious that any zero of L − a is a zero of P′(L).
Since L and f share a IM, any zero of L− a is a zero of P′( f ) as well. Hence any zero of L− a is a zero of U.

Suppose that U . 0, we see that U has at most finitely many zeros. Therefore, L− a has at most finitely
many zeros, that is, a is a generalized Picard exceptional value of L. It is in contradiction with Lemma 2.3.
Thus U ≡ 0, integrating this equation, we have P(L) ≡ AP( f ), where A is a non-zero constant. Clearly, a is
not the Picard exceptional value of f or L. Therefore, A = 1, i.e. P(L) ≡ P( f ).

Since P(L) ≡ P( f ), we have

(L + f − 2a)(L − f ) ≡ 0.

Therefore, we get L ≡ f or L + f ≡ 2a.

Proposition 2.6. Suppose f is a meromorphic function in C with finitely many poles, and a, b, c, d ∈ C are four
distinct values. Let f and a nonconstant L-function L share {a, b} CM and {c, d} IM, then the following statements
hold:

(i) L ≡ f , if a + b , c + d,
(ii) L ≡ f or L + f ≡ a + b, if a + b = c + d.
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Proof. Let

F3 =
(L − a)(L − b)

Q2( f − a)( f − b)
,

where Q is defined by (1). In the same way in the proof of Proposition 2.4, we can prove that there exists a
polynomial u such that

F3 =
(L − a)(L − b)

Q2( f − a)( f − b)
= eu,

where de1(u) ≤ 1.
Since f and L share {c, d} IM, it is easy to know that any zero of (L − c)(L − d) is a zero of (euQ2

−

1)
(
euQ2

−
(c − a)(c − b)
(d − a)(d − b)

) (
euQ2

−
(d − a)(d − b)
(c − a)(c − b)

)
.

Suppose that L . f , L + f . a + b, (d − a)(d − b)(L − a)(L − b) . (c − a)(c − b)( f − a)( f − b) and
(c−a)(c−b)(L−a)(L−b) . (d−a)(d−b)( f −a)( f −b), note that N(r,L) = S(r,L) = O(log r) and T(r, euQ2) = O(r),
by the Nevanlinna second fundamental theorem, we have

T(r,L) ≤ N
(
r,

1
L − c

)
+ N

(
r,

1
L − d

)
+ N(r,L) + O(log r)

≤ N
(
r,

1
euQ2 − 1

)
+ N

r,
1

euQ2 −
(c−a)(c−b)
(d−a)(d−b)

 + N

r,
1

euQ2 −
(d−a)(d−b)
(c−a)(c−b)

 + O(log r)

≤ 3T(r, euQ2) + O(log r) = O(r),

which is in contradiction with Proposition 1.1. It follows that one of the following holds:

(i) L ≡ f ,
(ii) L + f ≡ a + b,

(iii) (c − a)(c − b)(L − a)(L − b) ≡ (d − a)(d − b)( f − a)( f − b),
(iv) (d − a)(d − b)(L − a)(L − b) ≡ (c − a)(c − b)( f − a)( f − b).

We distinguish the following two cases to discuss.
Case 1 When a + b , c + d, we claim that L ≡ f .
Indeed, if L + f ≡ a + b, then f and L share c, d IM since a + b , c + d. This implies that a + b = 2c = 2d,

thus we get a contradiction.
If (c − a)(c − b)(L − a)(L − b) ≡ (d − a)(d − b)( f − a)( f − b), we obtain that E(d,L) = E(c, f ) since f and L

share {c, d} IM, and hence, E(c,L) = E(d, f ) . Note that c is not the Picard exceptional value ofL, this implies
that (c − a)2(c − b)2 = (d − a)2(d − b)2, so c = d or a + b = c + d. Thus, we get a contradiction.

If (d− a)(d− b)(L− a)(L− b) ≡ (c− a)(c− b)( f − a)( f − b), we can also get a contradiction in the same way
as above. Therefore, we have L ≡ f .

Case 2 When a + b = c + d, we can deduce that (c − a)(c − b) = (d − a)(d − b), thus (iii) and (iv) are both
equivalent to (L + f − a − b)(L − f ) ≡ 0. Therefore, we obtain that L ≡ f or L + f ≡ a + b.

3. Proof of Theorem

Proof. According to the cardinality of sharing sets, we distinguish the following four cases to discuss.
Case 1 When #(S1) = #(S2) = 1, the condition C(S1) , C(S2) yields that there exist two distinct finite

complex numbers a, b ∈ C such that f and L share a CM and b IM. Note that f has finitely many poles, by
Theorem B, we obtain L = f .

Case 2 When #(S1) = 1 and #(S2) = 2, we assume that S1 = {a}, S2 = {b, c}, where a, b, c ∈ C are three
distinct finite complex numbers. This shows that f and L share {a} CM and {b, c} IM, where C(S1) = a and

C(S2) =
b + c

2
. Note that f has finitely many poles, by Proposition 2.4, we conclude that Theorem 1.7 holds.
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Case 3 When #(S1) = 2 and #(S2) = 1, we assume that S1 = {b, c}, S2 = {a}, where a, b, c ∈ C are three

distinct finite complex numbers. This shows that f and L share {a} IM and {b, c} CM, where C(S1) =
b + c

2
and C(S2) =

a
2

. Note that f has finitely many poles, by Proposition2.5, we conclude that Theorem1.7 holds.
Case 4 When #(S1) = #(S2) = 2, we assume that S1 = {a, b}, S2 = {c, d}, where a, b, c, d ∈ C are four

distinct finite complex numbers. This shows that f andL share {a, b} CM and {c, d} IM, where C(S1) =
a + b

2
and C(S2) =

c + d
2

. Note that f has finitely many poles, by Proposition2.6, we conclude that Theorem1.7
holds.

4. Further Remarks

It is well known that the theory of the families of L-functions and partial zeta type functions, and also
the family of zeta functions themselves, has became a very important part of Analytic Number Theory. In
recent years, many authors introduced and investigated series associated with zeta functions and q-zeta
functions (see [11, 12]). Furthermore, H. M. Srivastava, etc. constructed and investigated various properties
of a unified presentation of certain meromorphic functions related to the families of the partial zeta type
functions, q-zeta functions and (q-)L-functions(see [13, 14]).

In this paper, we mainly study the uniqueness of L-functions in the (extended) Selberg class, which
include the Riemann zeta function and essentially those Dirichlet series where one might expect a Riemann
hypothesis(For details, in Section 1). Naturally, we are interesting to know what happen on the subject
of (q-)L-series and (q-)L-functions of the papers [13, 14] under the sharing-set conditions of Theorem1.7.
Unfortunately, we do not find the effective method to resolve it.

Acknowledgements. The authors wish to express thanks to the referee for reading the manuscript very
carefully and making a number of valuable suggestions and comments towards the improvement of the
paper.
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