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Abstract. The spectra of the 2 × 2 upper triangular operator matrix MC =
(

A C
0 B

)
acting on a Hilbert

space H1 ⊕ H2 are investigated. We obtain a necessary and sufficient condition of σ(MC) = σ(A) ∪ σ(B) for
every C ∈ B(H2,H1), in terms of the spectral properties of two diagonal elements A and B of MC. Also,
the analogues for the point spectrum, residual spectrum and continuous spectrum are further presented.
Moveover, we construct some examples illustrating our main results. In particular, it is shown that the
inclusion σr(MC) ⊆ σr(A)∪σr(B) for every C ∈ B(H2,H1) is not correct in general. Note that σ(T) (resp. σr(T))
denotes the spectrum (resp. residual spectrum) of an operator T, and B(H2,H1) is the set of all bounded
linear operators from H2 to H1.

1. Introduction

Let H1 and H2 be separable, infinite dimensional, complex Hilbert spaces. B(H1), B(H2) and B(H1 ⊕H2)
denote the set of all bounded linear operators on H1, H2 and H1 ⊕ H2, respectively. When the operators
A ∈ B(H1) and B ∈ B(H2) are given, the operator

MC =

(
A C
0 B

)
∈ B(H1 ⊕H2)

with C ∈ B(H2,H1) has been extensively studied. The spectrum and related problems of MC are considered,
for example, in [1–7, 9–11, 14] and the references therein. It is well known that the spectrum of upper
triangular block matrices is described as that of their diagonal elements, but this in general is not true for
upper triangular operator matrices in infinite dimensional spaces. In [5], the perturbation of spectra of 2×2
operator matrices is characterized, and it is further shown that if A ∈ B(H1) and B ∈ B(H2) are normal, then

σ(A) ∪ σ(B) = σ(MC) for every C ∈ B(H2,H1). (1.1)

The relationship between σ(A)∪σ(B) and σ(MC) is considered in [9], and the authors prove that if σ(A)∩σ(B)
has no interior points, then (1.1) is valid. In [1], the set of operators C ∈ B(H2,H1) for which (1.1) holds is
investigated. For more relevant researches, we refer the reader to [2, 3, 6, 7, 11].
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The purpose of this paper is to study when the spectrum and its certain parts of upper triangular operator
matrices can be formulated as the union of the corresponding spectrum of their diagonal elements. To be
precise, we obtain some necessary and sufficient conditions which ensure that (1.1) and the similar results
for the point spectrum, residual spectrum and continuous spectrum hold. See Theorems 2.1, 2.3–2.6 and
Corollary 2.2 in Section 2.

For the operators A ∈ B(H1) and B ∈ B(H2) (most of them appear in the literature) having certain
properties, we verify that these operators exactly satisfy our results. See Corollaries 3.4–3.8 in Section 3.
We also give examples showing that if all conditions in our theorems are not fulfilled, then, in general, (1.1)
and the similar results are invalid. See Examples 4.1–4.6 in Section 4. In addition, Example 4.3 shows that
the inclusion σr(MC) ⊆ σr(A) ∪ σr(B) for every C ∈ B(H2,H1) is not necessarily correct.

Our main tools are various parts of the point spectrum and residual spectrum, which are closely related
to the space decomposition technique.

In the following, we fix some notation and terminology. Let T ∈ B(H1,H2). Then, we useN(T) and R(T)
to denote the null space and range of T, respectively. The symbol n(T) represents the nullity of T which is
equal to dimN(T), and d(T) stands for the deficiency of T which is equal to dimN(T∗). As usual, we say T
is right (resp. left) invertible if there exists an operator S ∈ B(H2,H1) such that TS = IH2 (resp. ST = IH1 ); and
if T is both left invertible and right invertible, we call it invertible. It is well known that T is left invertible
if and only if T is bounded below, and if and only ifN(T) = {0} and R(T) is closed; and T is right invertible
if and only if T is surjective, i.e., R(T) = H2. Now, let H1 = H2, i.e., T ∈ B(H1). Then, by the Closed Graph
Theorem, the resolvent set ρ(T) of T consists of the complex numbers λ such that T − λI is a bijection on
H1; the spectrum σ(T) of T is the complement of ρ(T) in C; the approximate point spectrum or left spectrum
σap(T) of T is the set

σap(T) =
{
λ ∈ C; T − λI is not left invertible

}
:

the defect spectrum or right spectrum σδ(T) of T is defined by

σδ(T) =
{
λ ∈ C; T − λI is nonsurjective

}
:

and the sets

σp(T) =
{
λ ∈ C : T − λI is noninjective

}
,

σr(T) =
{
λ ∈ C : T − λI is injective and R(T − λI) , H1

}
,

σc(T) =
{
λ ∈ C : T − λI is injective,R(T − λI) = H1 and R(T − λI) , H1

}
are called the point spectrum, residual spectrum and continuous spectrum, respectively. The point spectrum
and residual spectrum are divided into the following disjoint union: σp(T) = ∪4

i=1σp,i(T) and σr(T) =
σr,1(T) ∪ σr,2(T), in terms of the density and closedness of the range R(T − λI) of T − λI, where

σp,1(T) =
{
λ ∈ C : λ ∈ σp(T) and R(T − λI) = H1

}
,

σp,2(T) =
{
λ ∈ C : λ ∈ σp(T),R(T − λI) = H1 and R(T − λI) , H1

}
,

σp,3(T) =
{
λ ∈ C : λ ∈ σp(T),R(T − λI) , H1 and R(T − λI) is closed

}
,

σp,4(T) =
{
λ ∈ C : λ ∈ σp(T),R(T − λI) , H1 and R(T − λI) is nonclosed

}
,

σr,1(T) =
{
λ ∈ C : λ ∈ σr(T) and R(T − λI) is closed

}
,

σr,2(T) =
{
λ ∈ C : λ ∈ σr(T) and R(T − λI) is nonclosed

}
.

Note that throughout this paper, for convenience, we write σp,i j(T) = σp,i(T) ∪ σp, j(T), σpr(T) = σp(T) ∪ σr(T)
and σcr(T) = σc(T) ∪ σr(T), and use M0 to denote the operator MC with C = 0.

The organization of this paper is as follows. In Section 2, the main results of this paper are given; while
proofs and some corollaries of the main results are presented in Section 3. Section 4 is devoted to examples
to illustrate the previous results.
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2. Main Results

First, we obtain a necessary and sufficient condition of σ(MC) = σ(A) ∪ σ(B) for every C ∈ B(H2,H1) by
using the spectral properties of the operators A and B.

Theorem 2.1. Let A ∈ B(H1) and B ∈ B(H2). Then, (1.1) is valid if and only if the following statements are fulfilled:
(i) λ ∈ σr,1(A) \ σδ(B) implies n(B − λI) = 0 or n(B − λI) , d(A − λI);
(ii) λ ∈ σp,1(B) \ σap(A) implies d(A − λI) = 0 or n(B − λI) , d(A − λI).

Proof. See Section 3. �

In this theorem, we actually emphasis the conditions n(B−λI) = 0 and d(A−λI) = 0 in the corresponding
statements. Indeed, they are contained by n(B − λI) , d(A − λI), since λ ∈ σr,1(A) (resp. λ ∈ σp,1(B)) implies
d(A − λI) , 0 (resp. n(B − λI) , 0). Note that σ(A) is the disjoint union of σap(A) and σr,1(A), and σ(B) is the
disjoint union of σp,1(B) and σδ(B). Then, we immediately have the following result.

Corollary 2.2. Let A ∈ B(H1) and B ∈ B(H2). Then, (1.1) is valid if and only if λ ∈ σr,1(A) ∩ σp,1(B) implies
n(B − λI) , d(A − λI).

Next, a necessary and sufficient condition of σp(MC) = σp(A) ∪ σp(B) for every C ∈ B(H2,H1) is given.

Theorem 2.3. Let A ∈ B(H1) and B ∈ B(H2). Then,

σp(MC) = σp(A) ∪ σp(B) for every C ∈ B(H2,H1) (2.1)

if and only if for each λ ∈ σp(B)\σp(A), one of the following statements is fulfilled:
(i) λ ∈ ρ(A);
(ii) λ ∈ σr,1(A) and n(B − λI) > d(A − λI).

Proof. See Section 3. �

Similarly, we may extend the previous theorems to some other parts of the spectrum, such as the residual
spectrum, point residual spectrum (the union of the point spectrum and residual spectrum) and continuous
spectrum.

Theorem 2.4. Let A ∈ B(H1) and B ∈ B(H2). Then,

σr(MC) = σr(A) ∪ σr(B) for every C ∈ B(H2,H1) (2.2)

if and only if the following statements are fulfilled:
(i) if λ ∈ σc(A) ∩ σp(B), then λ ∈ σp,12(B);
(ii) if λ ∈ σr(B), then λ < σp(A);
(iii) if λ ∈ σr(A) \ σr(B), then λ ∈ ρ(B).

Proof. See Section 3. �

Theorem 2.5. Let A ∈ B(H1) and B ∈ B(H2). Then,

σpr(MC) = σpr(A) ∪ σpr(B) for every C ∈ B(H2,H1) (2.3)

if and only if the statements (i) and (ii) are fulfilled.
(i) If λ ∈ σp(B) \ (σp(A) ∪ σp(B∗)), then one of the statements (a) and (b) holds:

(a) A − λI is left invertible and n(B − λI) > d(A − λI);
(b) λ ∈ σp,13(B) and n(B − λI) < d(A − λI).

(ii) If λ ∈ σr(A) \ σp(B∗), then one of the statements (c), (d) and (e) holds:
(c) λ ∈ σr,1(A) ∩ σp,12(B) and n(B − λI) > d(A − λI);
(d) λ ∈ σp,1(B) and n(B − λI) < d(A − λI);
(e) λ ∈ ρ(B) and d(A − λI) > 0.
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Proof. See Section 3. �

Theorem 2.6. Let A ∈ B(H1) and B ∈ B(H2). Then,

σc(MC) = σc(A) ∪ σc(B) for every C ∈ B(H2,H1) (2.4)

if and only if the statements (i), (ii) and (iii) are fulfilled.
(i) If λ ∈ σr(A) ∩ σp(B), then one of the statements (a)–( f ) holds:

(a) λ ∈ σr,1(A) and n(B − λI) > d(A − λI);
(b) λ ∈ σr,1(A) ∩ σp,34(B) and n(B − λI) ≤ d(A − λI);
(c) λ ∈ σr,1(A) ∩ σp,1(B) and n(B − λI) < d(A − λI);
(d) λ ∈ σr,1(A) ∩ σp,1(B) and n(B − λI) = d(A − λI) < ∞;
(e) λ ∈ σr,2(A) ∩ σp,34(B);
( f ) λ ∈ σr,2(A) ∩ σp,1(B) and n(B − λI) , d(A − λI).

(ii) If λ ∈ σc(A), then λ < σpr(B).
(iii) If λ ∈ σc(B), then λ < σpr(A).

Proof. See Section 3. �

3. Proofs

In this section, we first review some basic results, and then present proofs of the main results of this
paper, i.e., Theorems 2.1, and 2.3–2.6.

Lemma 3.1. Let X and Y be Hilbert spaces, and let T ∈ B(X,Y) with R(T) being nonclosed. Then, there exists a
closed subspace Ω $ R(T) of Y, such that R(T) ∩ Ω = {0} and dim Ω = ∞. Moreover, we may further require
R(T)+̇Ω $ R(T).

Proof. The lemma is a direct consequence of Lemma 16.2 in [12]. �

The following lemmas are obvious, for details, see [14].

Lemma 3.2. Let A ∈ B(H1) and B ∈ B(H2). Then, MC−λI is injective for every C ∈ B(H2,H1) if and only if A−λI
and B − λI are both injective.

Lemma 3.3. Let A ∈ B(H1) and B ∈ B(H2). Then, R(MC − λI) = H1 ⊕ H2 for every C ∈ B(H2,H1) if and only if
R(A − λI) = H1 and R(B − λI) = H2.

Proof of Theorem 2.1. Sufficiency. Obviously, σ(MC) ⊆ σ(A) ∪ σ(B) for every C ∈ B(H2,H1). Now, we
prove the opposite inclusion. Let λ ∈ σap(A) ∪ σδ(B). Then, MC − λI is not left invertible or is nonsurjective,
which indicates that λ ∈ σ(MC) for every C ∈ B(H2,H1). Let λ ∈ σr,1(A) \ σδ(B). Then, we know that
λ ∈ σr(A), R(B − λI) = H2 and R(A − λI) is closed. If n(B − λI) = 0, then λ ∈ ρ(B), and hence(

I −C(B − λI)−1

0 I

)
(MC − λI) =

(
A − λI 0

0 B − λI

)
, (3.1)

which deduces that λ ∈ σr(MC) ⊆ σ(MC) for every C ∈ B(H2,H1). If n(B − λI) , 0, then N(B − λI) and
R(A − λI)⊥ are nontrivial subspaces in H2 and H1, respectively. Thus, for every C ∈ B(H2,H1), MC − λI
admits the following block representation

MC − λI =

(A − λI)1 C1 C2
0 C3 C4
0 0 (B − λI)1

 :

 H1
N(B − λI)
N(B − λI)⊥

→
 R(A − λI)
R(A − λI)⊥

H2

 , (3.2)



J. Huang et al. / Filomat 30:13 (2016), 3587–3599 3591

where both (A − λI)1 : H1 → R(A − λI) and (B − λI)1 : N(B − λI)⊥ → H2 are invertible. So, we obtain

FC(MC − λI)EC =

(A − λI)1 0 0
0 C3 0
0 0 (B − λI)1


with

EC =

I −(A − λI)−1
1 C1 −(A − λI)−1

1 C2
0 I 0
0 0 I

 , FC =

I 0 0
0 I −C4(B − λI)−1

1
0 0 I

 . (3.3)

From n(B−λI) , d(A−λI), it follows that C3 : N(B−λI)→ R(A−λI)⊥ is either noninjective or nonsurjective,
which together with the invertibilities of EC and FC demonstrates that λ ∈ σ(MC) for every C ∈ B(H2,H1).
Letλ ∈ σp,1(B)\σap(A). Then, we see thatλ ∈ σp(B),R(B−λI) = H2 and A−λI is left invertible. If d(A−λI) = 0,
then λ ∈ ρ(A), and hence

(MC − λI)
(
I −(A − λI)−1C
0 I

)
=

(
A − λI 0

0 B − λI

)
, (3.4)

which derives that λ ∈ σp(MC) ⊆ σ(MC) for every C ∈ B(H2,H1). If d(A − λI) , 0, then the subspaces
N(B − λI) and R(A − λI)⊥ are nontrivial as above. Thus, for every C ∈ B(H2,H1), MC − λI has the matrix
form (3.2) with (A−λI)1 : H1 → R(A−λI) and (B−λI)1 : N(B−λI)⊥ → H2 being invertible. From the above
arguments, it follows that λ ∈ σ(MC) for every C ∈ B(H2,H1). Therefore, σ(MC) ⊇ σ(A) ∪ σ(B) for every
C ∈ B(H2,H1).

Necessity. By Theorem 2 in [5] and the assumption σ(MC) = σ(A) ∪ σ(B) for every C ∈ B(H2,H1), we
immediately have that the assertions (i) and (ii) hold. �

Corollary 3.4. Let A ∈ B(H1) and B ∈ B(H2). Then,

σ(MC) = σ(A) ∪ σ(B) for every C ∈ B(H2,H1)

if one of the following assumptions is fulfilled:
(i) σ(A) ∩ σ(B) has no interior point (see [9]);
(ii) A∗ or B has single valued extension property (SVEP) (see [7]);
(iii) A is cohypernormal, or B is hypernormal (see [9]).

Proof. Let the assumption (i) hold. It is clear that σ(A) ∩ σ(B) ⊆ σap(A) ∪ σδ(B), since σ(A) ∩ σ(B) has no
interior point. If λ ∈ σr,1(A) \σδ(B), then λ < σap(A)∪σδ(B), and hence λ < σ(A)∩σ(B). Thus, λ ∈ ρ(B), which
deduces n(B − λI) = 0. Similarly, λ ∈ σp,1(B) \ σap(A) implies d(A − λI) = 0. By Theorem 2.1, it follows that
σ(MC) = σ(A) ∪ σ(B) for every C ∈ B(H2,H1).

Let A∗ or B have SVEP. By Corollary 7 and Theorem 2 in [8], we see that σ(A) = σap(A) or σ(B) = σδ(B),
and hence σr,1(A) = ∅ or σp,1(B) = ∅. Thus, σ(MC) = σ(A) ∪ σ(B) for every C ∈ B(H2,H1) by Theorem 2.1.

To prove the case when the assumption (iii) is satisfied, it suffices to note thatσr(A) = ∅ for cohypernormal
operator A, and σp,12(B) = ∅ for hypernormal operator B. �

Proof of Theorem 2.3. Sufficiency. Obviously, σp(MC) ⊆ σp(A) ∪ σp(B) for every C ∈ B(H2,H1). We
prove the opposite inclusion as follows. Let λ ∈ σp(A). Set z0 = (x0, 0) with x0 ∈ N(A − λI) \ {0}, then
(MC − λI)z0 = 0, i.e., λ ∈ σp(MC) for every C ∈ B(H2,H1). Now, let λ ∈ σp(B)\σp(A). If λ ∈ ρ(A),
then for every C ∈ B(H2,H1), we have the factorization (3.4), and hence λ ∈ σp(MC). If λ ∈ σr,1(A) and
n(B − λI) > d(A − λI), thenN(B − λI) , {0}, d(A − λI) > 0 and R(A − λI) (, {0}) is closed. Suppose, without
loss of generality, thatN(B− λI) , H2. Then, we have the decompositions H1 = R(A− λI)⊕R(A− λI)⊥ and
H2 = N(B − λI) ⊕ N(B − λI)⊥. Thus, for every C ∈ B(H2,H1), MC − λI has the matrix form (3.2), in which
(A − λI)1 : H1 → R(A − λI) is invertible, and (B − λI)1 : N(B − λI)⊥ → H2 is injective. So, we obtain

(MC − λI)EC = ∆C
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with EC being defined as in (3.3), and

∆C =

(A − λI)1 0 0
0 C3 C4
0 0 (B − λI)1

 .
To prove λ ∈ σp(MC), it suffices to show that ∆C is noninjective, since EC is invertible. In view of n(B−λI) >
d(A − λI), it follows that C3 : N(B − λI) → R(A − λI)⊥ is noninjective. Set x2

0 ∈ N(C3) \ {0} and write
z0 = (0, x2

0, 0), then ∆Cz0 = 0, which shows that ∆C is noninjective. Therefore, σp(MC) ⊇ σp(A) ∪ σp(B) for
every C ∈ B(H2,H1).

Necessity. Assume not, and let λ0 ∈ σp(B)\σp(A), but neither of the assertions (i) and (ii) holds. There
are two possible cases.

Case 1: λ0 ∈ σp(B)\σp(A), but λ0 < ρ(A) ∪ σr,1(A). In this case, we see that R(A − λ0I) = H1 and
R(A − λ0I) , H1, or R(A − λ0I) , H1 and R(A − λ0I) is nonclosed, which both imply that R(A − λ0I) is
nonclosed. By Lemma 3.1, there exists a closed subspace

Ω1 $ R(A − λ0I), (3.5)

such that R(A − λ0I) ∩Ω1 = {0} and dim Ω1 = ∞. Then, there exists an isometry

C1 : N(B − λ0I)→ Ω1, (3.6)

since n(B − λ0I) ≤ dim Ω1. Without loss of generality, we may suppose that N(B − λ0I) , H2. Define an
operator C0 from H2 to H1 by

C0 = (C1 0) :
(
N(B − λ0I)
N(B − λ0I)⊥

)
→ H1. (3.7)

Thus, MC0 − λ0I admits the following block representation

MC0 − λ0I =

(
A − λ0I C1 0

0 0 (B − λ0I)1

)
:

 H1
N(B − λ0I)
N(B − λ0I)⊥

→
(
H1
H2

)
. (3.8)

Clearly, (B − λ0I)1 : N(B − λ0I)⊥ → H2 is injective, which together with the facts λ0 < σp(A) and R(A −
λ0I) ∩ R(C1) = {0} demonstrates that MC0 − λ0I is injective. Therefore, λ0 < σp(MC0 ). This contradicts the
assumption σp(MC) = σp(A) ∪ σp(B) for every C ∈ B(H2,H1), since λ0 ∈ σp(A) ∪ σp(B).

Case 2: λ0 ∈ σp(B)\σp(A), but λ0 < ρ(A) and n(B − λ0I) ≤ d(A − λ0I). In this case, we know that
N(B − λ0I) , {0}, and R(A − λ0I)⊥ is a nontrivial subspace in H1. Without loss of generality, suppose that
N(B − λ0I)⊥ , {0}. Since n(B − λ0I) ≤ d(A − λ0I), we can define an operator C0 from H2 to H1 by

C0 =

(
0 0

C3 0

)
:
(
N(B − λ0I)
N(B − λ0I)⊥

)
→

(
R(A − λ0I)
R(A − λ0I)⊥

)
with C3 : N(B − λ0I)→ R(A − λ0I)⊥ being an isometry. Then, MC0 − λ0I can be written as

MC0 − λ0I =

(A − λ0I)1 0 0
0 C3 0
0 0 (B − λ0I)1

 :

 H1
N(B − λ0I)
N(B − λ0I)⊥

→
 R(A − λ0I)
R(A − λ0I)⊥

H2

 .
where (A − λ0I)1 : H1 → R(A − λ0I) and (B − λ0I)1 : N(B − λ0I)⊥ → H2 are both injective. It is readily seen
that MC0 − λ0I is injective, i.e., λ0 < σp(MC0 ). Thus, the same contradiction as Case 1 appears. �
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Corollary 3.5. Let A ∈ B(H1) and B ∈ B(H2). Then,

σp(MC) = σp(A) ∪ σp(B) for every C ∈ B(H2,H1)

if one of the following assumptions is fulfilled:
(i) A is an operator with pure point spectrum;
(ii) A is cohypernormal and σc(A) = ∅.

Proof. Let the assumption (i) be satisfied. Since the operator A only has pure point spectrum, σcr(A) = ∅.
If λ ∈ σp(B) \σp(A), then λ ∈ ρ(A). By Theorem 2.3, This proves σ(MC) = σ(A)∪σ(B) for every C ∈ B(H2,H1).
The case, when the assumption (ii) holds, can be further verified, since σr(A) = ∅ for cohypernormal operator
A. �

Proof of Theorem 2.4. Sufficiency. Let λ ∈ σr(MC) for some C ∈ B(H2,H1). Obviously, λ < σp(A).
In the sequel, we claim λ < σc(A) ∩ σp(B). To see this, suppose to the contrary that λ ∈ σc(A) ∩ σp(B),
which implies λ ∈ σp,12(B) by the assertion (i). Then, R(A − λI) = H1 and R(B − λI) = H2. By Lemma
3.3, it follows that R(MC − λI) = H1 ⊕ H2 for every C ∈ B(H2,H1). Thus, λ < σr(MC) for every C ∈
B(H2,H1), giving a contradiction. This proves λ < σc(A) ∩ σp(B). From the above discussions, we have
λ ∈ ρ(A)∪σr(A)∪ρ(B)∪σrc(B)∪ (σc(A)\σp(B))∪ (σp(B)\σc(A)). Since λ ∈ σr(MC) and λ < σp(A), it is not hard
to show that if λ ∈ ρ(A) ∪ (σc(A) \ σp(B)), we clearly have λ ∈ σr(B), and if λ ∈ ρ(B) ∪ σc(B) ∪ (σp(B) \ σc(A)),
we must have λ ∈ σr(A). Therefore, σr(MC) ⊆ σr(A) ∪ σr(B) for every C ∈ B(H2,H1).

Now, we prove the opposite inclusion. If λ ∈ σr(B), then λ < σp(A) by the assertion (ii). Thus, for every
C ∈ B(H2,H1), we know by Lemma 3.2 that λ < σp(MC). Note that the fact λ ∈ σr(B) implies R(B − λI) , H2,
which immediately deduces R(MC − λI) , H1 ⊕ H2. Hence, λ ∈ σr(MC). If λ ∈ σr(A) \ σr(B), then λ ∈ ρ(B)
by the assertion (iii). Thus, for every C ∈ B(H2,H1), we have λ < σp(MC) and the factorization (3.1), which
together with λ ∈ σr(A) imply that λ ∈ σr(MC). Therefore, σr(MC) ⊇ σr(A) ∪ σr(B) for every C ∈ B(H2,H1).

Necessity. Assume to the contrary that there exists λ0 ∈ C, such that one of the assertions (i), (ii) and
(iii) fails to hold. There are three possible cases.

Case 1: λ0 ∈ σc(A) ∩ σp(B), but λ0 < σp,12(B), i.e., λ0 ∈ σc(A) ∩ σp,34(B). In this case, we see that
N(B − λ0I) , {0}, R(A − λ0I)⊥ = {0} and R(A − λ0I) is nonclosed. Without loss of generality, suppose that
N(B − λ0I)⊥ , {0}. Use the operator C0 defined as in (3.7), then MC0 − λ0I possesses the matrix form (3.8).
Thus, MC0 − λ0I is injective. Note that λ0 ∈ σp,34(B) implies R(B − λ0I) , H2. Therefore, λ0 ∈ σr(MC0 ). This
contradicts the assumption σr(MC) = σr(A) ∪ σr(B) for every C ∈ B(H2,H1), since λ0 ∈ σc(A) ∩ σp(B).

Case 2: λ0 ∈ σr(B), but λ0 ∈ σp(A), i.e., λ0 ∈ σr(B) ∩ σp(A). In this case, by λ0 ∈ σp(A), it can be readily
seen that λ0 ∈ σp(MC), and clearly λ0 < σr(MC), for every C ∈ B(H2,H1). This contradicts the assumption
σr(MC) = σr(A) ∪ σr(B) for every C ∈ B(H2,H1), since λ0 ∈ σr(A) ∪ σr(B).

Case 3: λ0 ∈ σr(A)\σr(B), but λ0 < ρ(B). In this case, it follows that λ0 ∈ σp(B) orR(B−λ0I) is nonclosed. If
λ0 ∈ σp(B), then λ0 ∈ σp(M0), and clearly λ0 < σr(M0), but λ0 ∈ σr(A)∪ σr(B). The same contradiction as Case
2 occurs. If λ0 < σp(B) andR(B−λ0I) is nonclosed, we combine λ0 ∈ σr(A)\σr(B) then have λ0 ∈ σr(A)∩σc(B).
To complete the proof of Case 3, it suffices to find some C0 ∈ B(H2,H1) satisfying λ0 < σr(MC0 ) (actually, λ0
must belong to σc(MC0 )).

Indeed, by Closed Range Theorem (see [13]),R(B−λ0I) is nonclosed implies thatR(B∗−λ0I) is nonclosed.
Then, by Lemma 3.1, there exists a closed subspace

Ω2 $ R(B∗ − λ0I), (3.9)

such that R(B∗ − λ0I) ∩Ω2 = {0}, dim Ω2 = ∞, and hence dim Ω2 = dim H1. Picking a unitary operator U1
from H1 onto Ω2, and writing C0 = U∗1, we have the operator matrix(

A∗ − λ0 0
U1 B∗ − λ0

)
. (3.10)
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Since λ0 ∈ σc(B) and R(B∗ − λ0I) ∩ R(U1) = {0}, we deduce that the operator matrix (3.10) is injective. Thus,
the range of its adjoint

MC0 − λ0I =

(
A − λ0I C0

0 B − λ0I

)
is dense in H1 ⊕H2. Therefore, λ0 < σr(MC0 ). �

Corollary 3.6. Let A ∈ B(H1) and B ∈ B(H2). Then,

σr(MC) = σr(A) ∪ σr(B) for every C ∈ B(H2,H1)

if one of the following assumptions is fulfilled:
(i) A and B are normal, and σp,34(B) = ∅;
(ii) A and B are hypernormal, and σp,34(A) = σp,34(B) = σc(B) = ∅;
(iii) A and B are cohypernormal, and σc(A) = ∅.

Proof. Note that the normal operators are hypernormal and cohypernormal. The proof follows from
Theorem 2.4 and the properties of point spectrum and residual spectrum of these three kinds of operators.
�

Proof of Theorem 2.5. Sufficiency. Obviously, σpr(MC) ⊆ σpr(A) ∪ σpr(B) for every C ∈ B(H2,H1). To
complete the proof, it suffices to prove the opposite inclusion.

Let λ ∈ σp(A) ∪ σp(B∗). Then, for every C ∈ B(H2,H1), we know that either MC − λI is noninjective or
R(MC − λI) , H1 ⊕H2, i.e., λ ∈ σpr(MC).

Letλ ∈ σp(B)\(σp(A)∪σp(B∗)). If the assertion (a) holds, i.e., A−λI is left invertible and n(B−λI) > d(A−λI),
then λ < σp(A), R(A − λI) is closed and n(B − λI) > d(A − λI). In this case, we see that N(B − λI) , {0} and
R(A − λI) , {0}. When d(A − λI) = 0, we have λ ∈ ρ(A), which together with λ ∈ σp(B) demonstrates that
λ ∈ σp(MC) ⊆ σpr(MC) for every C ∈ B(H2,H1); when d(A − λI) > 0, similar to the proof of Theorem 2.3, we
obtain that λ ∈ σp(MC) ⊆ σpr(MC) for every C ∈ B(H2,H1). If the assertion (b) is fulfilled, i.e., λ ∈ σp,13(B) and
n(B − λI) < d(A − λI), then R(B − λI) is closed, which together with λ < σp(B∗) deduces R(B − λI) = H2. In
this case, we see that N(B − λI) and R(A − λI)⊥ are nontrivial subspaces in H2 and H1, respectively. Thus,
for every C ∈ B(H2,H1), the operator matrix MC − λI has the matrix form

MC − λI =

(A − λI)1 C1 C2
0 C3 C4
0 0 (B − λI)1

 :

 H1
N(B − λI)
N(B − λI)⊥

→
 R(A − λI)
R(A − λI)⊥

H2

 .
It can be readily seen that (B − λI)1 : N(B − λI)⊥ → H2 is invertible, andI 0 −C2(B − λI)−1

1
0 I −C4(B − λI)−1

1
0 0 I

 (MC − λI) =

(A − λI)1 C1 0
0 C3 0
0 0 (B − λI)1

 ,
which implies thatR(C3) , R(A−λI)⊥, since n(B−λI) < d(A−λI). Thus, for every C ∈ B(H2,H1), we always
have R(MC − λI) , H1 ⊕H2, and hence λ ∈ σpr(MC).

Let λ ∈ σr(A) \ σp(B∗). If the assertion (c) is true, i.e., λ ∈ σr,1(A) ∩ σp,12(B) and n(B − λI) > d(A − λI), then
λ < σp(A) and R(A − λI) is closed. The rest of the proof is the same as in the case λ ∈ σp(B) \ (σp(A)∪ σp(B∗))
with the assertion (a). If the assertion (d) holds, i.e., λ ∈ σp,1(B) and n(B−λI) < d(A−λI), thenR(B−λI) = H2.
The rest of the proof is the same as in the case λ ∈ σp(B) \ (σp(A) ∪ σp(B∗)) with the assertion (b). If the
assertion (e) is fulfilled, i.e., λ ∈ ρ(B) and d(A − λI) > 0, then we derive that λ ∈ σr(MC) ⊆ σpr(MC) for every
C ∈ B(H2,H1).
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Now, let λ ∈ σr(B) \ σp(A). Then, we clearly have λ ∈ σr(MC) ⊆ σpr(MC) for every C ∈ B(H2,H1).
Therefore, σpr(MC) ⊇ σpr(A) ∪ σpr(B) for every C ∈ B(H2,H1).

Necessity. Assume not, and let λ0 ∈ C, but one of the assertions (i) and (ii) fails to hold. There are nine
possible cases.

Case 1: λ0 ∈ σp(B) \ (σp(A)∪ σp(B∗)), but λ0 < σp,13(B) and R(A− λ0I) is nonclosed. In this case, R(B− λ0I)

is nonclosed, then there exists a closed subspace Ω2 $ R(B∗ − λ0I) as in (3.9) with R(B∗ −λ0I)∩Ω2 = {0} and
dim Ω2 = ∞. Note that R(A − λ0I) , {0} andN(B − λ0I) is a nontrivial subspace. Without loss of generality,

suppose that R(A − λ0I)⊥ , {0}. Thus, there exists an isometry U2 from R(A − λ0I)⊥ to Ω2 $ R(B∗ − λ0I).
Also, since R(A−λ0I) is nonclosed, we may have the isometry C1 as in (3.6). Define an operator C0 from H2
to H1 by

C0 =

(
C1 0
0 C4

)
:
(
N(B − λ0I)
N(B − λ0I)⊥

)
→

(
R(A − λ0I)
R(A − λ0I)⊥

)
, (3.11)

where C4 = U∗2. Clearly, MC0 − λI is injective. Note that

C∗0 =

(
C∗1 0
0 U0

)
:
(
R(A − λ0I)
R(A − λ0I)⊥

)
→

(
N(B − λ0I)
N(B − λ0I)⊥

)
and λ0 < σp(A)∪ σp(B∗). It is readily seen that M∗C0

− λ0I is injective, i.e., R(MC0 − λ0I) = H1 ⊕H2. Therefore,
λ0 < σpr(MC0 ).

Case 2: λ0 ∈ σp(B) \ (σp(A)∪ σp(B∗)), but R(A − λ0I) is nonclosed and n(B − λ0I) ≥ d(A − λ0I). In this case,
we know that R(A−λ0I) , {0}, andN(B−λ0I) is a nontrivial subspace in H2. Without loss of generality, we
may assume that R(A − λ0I)⊥ , {0}. Since R(A − λ0I) is nonclosed, we have the operator C1 as in Case 1. By
n(B − λ0I) ≥ d(A − λ0I), there exists a bounded operator C3 : N(B − λ0I)→ R(A − λ0I)⊥ with densely range.
Define an operator C0 from H2 to H1 by

C0 =

(
C1 0
C3 0

)
:
(
N(B − λ0I)
N(B − λ0I)⊥

)
→

(
R(A − λ0I)
R(A − λ0I)⊥

)
.

Then, MC0 − λ0I is injective and R(MC0 − λ0I) = H1 ⊕H2, i.e., λ0 < σpr(MC0 ).
Case 3: λ0 ∈ σp(B) \ (σp(A)∪ σp(B∗)), but λ0 < σp,13(B) and n(B− λ0I) ≤ d(A− λ0I). In this case, we see that

N(B − λ0I) and R(A − λ0I)⊥ are nontrivial subspaces in H2 and H1, respectively. Since λ0 < σp,13(B) implies
that R(B− λ0I) is nonclosed, we have the operator C4 as in Case 1. By n(B− λ0I) ≤ d(A− λ0I), there exists an
isometry C3 : N(B − λ0I)→ R(A − λ0I)⊥. Define an operator C0 from H2 to H1 by

C0 =

(
0 0

C3 C4

)
:
(
N(B − λ0I)
N(B − λ0I)⊥

)
→

(
R(A − λ0I)
R(A − λ0I)⊥

)
. (3.12)

Then, λ0 < σpr(MC0 ).
Case 4: λ0 ∈ σp(B) \ (σp(A)∪ σp(B∗)), but n(B−λ0I) = d(A−λ0I). In this case, we still have thatN(B−λ0I)

and R(A− λ0I)⊥ are nontrivial subspaces in H2 and H1, respectively. By n(B− λ0I) = d(A− λ0I), there exists
a unitary operator C3 : N(B − λ0I)→ R(A − λ0I)⊥. Define an operator C0 from H2 to H1 by

C0 =

(
0 0

C3 0

)
:
(
N(B − λ0I)
N(B − λ0I)⊥

)
→

(
R(A − λ0I)
R(A − λ0I)⊥

)
.

Then, λ0 < σpr(MC0 ).
Case 5: λ0 ∈ σr(A) \ σp(B∗), but λ0 < σr,1(A), λ0 < σp,1(B) and λ0 < ρ(B), i.e., λ0 ∈ σr,2(A) and λ0 ∈

σp,2(B)∪σc(B). In this case, we see that λ0 < σp(A), and both R(A−λ0I) and R(B−λ0I) are nonclosed. Define
the operator C0 as in Case 1, then λ0 < σpr(MC0 ).
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Case 6: λ0 ∈ σr(A) \ σp(B∗), but λ0 ∈ σr,2(A), λ0 < ρ(B) and n(B − λ0I) ≥ d(A − λ0I), i.e., λ0 ∈ σr,2(A),
λ0 ∈ σp,12(B) and n(B − λ0I) ≥ d(A − λ0I) > 0. In this case, if λ0 ∈ σp,2(B), then λ0 < σp(A), and both
R(A − λ0I) and R(B − λ0I) are nonclosed. Define the operator C0 as in Case 1, then λ0 < σpr(MC0 ). However,
if λ0 ∈ σp,1(B), then λ0 < σp(A), n(B − λ0I) ≥ d(A − λ0I) and R(A − λ0I) is nonclosed. Define the operator C0
as in Case 2, then λ0 < σpr(MC0 ).

Case 7: λ0 ∈ σr(A) \σp(B∗), but λ0 < σp,12(B), λ0 < σp,1(B) and λ0 < ρ(B), i.e., λ0 ∈ σr(A)∩σc(B). In this case,
we see that λ0 < σp(A), N(B − λ0I) = {0} and R(B − λ0I) is nonclosed. Clearly, R(A − λ0I)⊥ is a nontrivial
subspace in H1. Since R(B − λ0I) is nonclosed, we may define the operator C4 as in Case 1. Define

C0 =

(
0

C4

)
: N(B − λ0I)⊥ = H2 →

(
R(A − λ0I)
R(A − λ0I)⊥

)
.

Then, λ0 < σpr(MC0 ).

Case 8: λ0 ∈ σr(A) \ σp(B∗), but λ0 < σp,1(B), λ0 < ρ(B) and n(B − λ0I) ≤ d(A − λ0I), i.e., λ0 ∈ σr(A),
λ0 ∈ σp,2(B) ∪ σc(B) and n(B − λ0I) ≤ d(A − λ0I). In this case, we see that λ0 < σp(A), R(B − λ0I) is nonclosed,
and R(A − λ0I)⊥ is clearly a nontrivial subspace in H1. If λ0 ∈ σc(B), then N(B − λ0I) = {0}. Define the
operator C0 as in Case 7, then λ0 < σpr(MC0 ). If λ0 ∈ σp,2(B), then N(B − λ0I) is a nontrivial subspace in H2.
By n(B − λ0I) ≤ d(A − λ0I), defining the operator C0 as in Case 3, we have λ0 < σpr(MC0 ).

Case 9: λ0 ∈ σr(A) \ σp(B∗), but λ0 < ρ(B) and n(B − λ0I) = d(A − λ0I), i.e., λ0 ∈ σr(A) ∩ σp,12(B) and
n(B − λ0I) = d(A − λ0I). In this case, we know that N(B − λ0I) and R(A − λ0I)⊥ are nontrivial subspaces in
H2 and H1, respectively. Define the operator C0 as in Case 4, then λ0 < σpr(MC0 ).

Note that λ0 ∈ σpr(A) ∪ σpr(B) in all above cases. Therefore, we always have the contradiction with the
assumption σpr(MC) = σpr(A) ∪ σpr(B) for every C ∈ B(H2,H1). This proves necessity. �

Corollary 3.7. Let A ∈ B(H1) and B ∈ B(H2). If A is cohypernormal and B is hypernormal, then

σpr(MC) = σpr(A) ∪ σpr(B) for every C ∈ B(H2,H1).

Proof. The proof is similar to that of the previous corollaries, and is omitted. �

Proof of Theorem 2.6. Sufficiency. Let λ ∈ σc(MC) for some C ∈ B(H2,H1). Obviously, λ < σp(A) ∪ σr(B).
We further claim that λ < σr(A) ∩ σp(B), otherwise λ < σc(MC) for every C ∈ B(H2,H1) follows from the
assertion (i), giving a contradiction. So, λ ∈ ρ(A) ∪ σc(A) ∪ ρ(B) ∪ σc(B) ∪ (σr(A) \ σp(B)) ∪ (σp(B) \ σr(A)).
Since λ ∈ σc(MC) and λ < σp(A) ∪ σr(B), it follows that if λ ∈ ρ(A) ∪ (σr(A) \ σp(B)), we have λ ∈ σc(B), and if
λ ∈ ρ(B) ∪ (σp(B) \ σr(A)), we obtain λ ∈ σc(A). Thus, σc(MC) ⊆ σc(A) ∪ σc(B) for every C ∈ B(H2,H1).

Now, we prove the opposite inclusion. If λ ∈ σc(A), then by the assertion (i) we have λ ∈ σc(B) ∪ ρ(B).
When λ ∈ ρ(B), the factorization (3.1) implies that λ ∈ σc(MC) for every C ∈ B(H2,H1); when λ ∈ σc(B),
we clearly have that λ ∈ σc(MC) for every C ∈ B(H2,H1). Thus, σc(A) ⊆ σc(MC) for every C ∈ B(H2,H1). If
λ ∈ σc(B)\σc(A), then by the assertion (ii) we have λ < σpr(A). This immediately implies that (σc(B)\σc(A)) ⊆
σc(MC) for every C ∈ B(H2,H1). Therefore, σc(MC) ⊇ σc(A) ∪ σc(B) for every C ∈ B(H2,H1).

Necessity. Assume to the contrary that there exists λ0 ∈ C, such that one of the assertions (i), (ii) and
(iii) fails to hold.

If the assertion (i) is invalid, then there are four possible cases.
Case 1: λ0 ∈ σr,1(A) ∩ σp,1(B), and n(B − λ0I) = d(A − λ0I) = ∞. In this case, we see that λ0 < σp(A),

R(A−λ0I) is closed, and R(B−λ0I) = H2. Since n(B−λ0I) = d(A−λ0I) = ∞, there exists a bounded operator
C3 : N(B − λ0I) → R(A − λ0I)⊥, such that C3 is injective, R(C3) = R(A − λ0I)⊥ and R(C3) , R(A − λ0I)⊥.
Define an operator C0 from H2 to H1 by

C0 =

(
0 0

C3 0

)
:
(
N(B − λ0I)
N(B − λ0I)⊥

)
→

(
R(A − λ0I)
R(A − λ0I)⊥

)
.
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Then, MC0 − λ0I admits the following block representation

MC0 − λ0I =

(A − λ0I)1 0 0
0 C3 0
0 0 (B − λ0I)1

 :

 H1
N(B − λ0I)
N(B − λ0I)⊥

→
 R(A − λ0I)
R(A − λ0I)⊥

H2

 .
Thus, we immediately have λ0 ∈ σc(MC0 ).

Case 2: λ0 ∈ σr,1(A) ∩ σp,2(B), and n(B − λ0I) ≤ d(A − λ0I). In this case, we see that λ0 < σp(A),
R(B − λ0I) = H2, and R(B − λ0I) is nonclosed. Since n(B − λ0I) ≤ d(A − λ0I), we may define the operator
C0 as in (3.12). Then, we know that λ0 < σpr(MC0 ). Clearly, R(MC0 − λ0I) is nonclosed in H1 ⊕ H2. Thus,
λ0 ∈ σc(MC0 ).

Case 3: λ0 ∈ σr,2(A) ∩ σp,2(B). In this case, we see that R(B − λ0I) = H2, and R(A − λ0I) and R(B − λ0I)
are nonclosed. Choose the operator C0 defined as in (3.11), then we know that λ0 < σpr(MC0 ). Clearly,
R(MC0 − λ0I) is nonclosed in H1 ⊕H2. Thus, λ0 ∈ σc(MC0 ).

Case 4: λ0 ∈ σr,2(A) ∩ σp,1(B), and n(B − λ0I) = d(A − λ0I). In this case, we see that R(A − λ0I) is
nonclosed, and R(B − λ0I) = H2. Then, there exists a closed subspace Ω1 $ R(A − λ0I) as in (3.5) with
R(A−λ0I)∩Ω1 = {0} and dim Ω1 = ∞. Let V $ Ω1 be a closed subspace with dim V = ∞. Thus, there exists
an isometry C1 : N(B−λ0I)→ V, since n(B−λ0I) ≤ dim V. By n(B−λ0I) = d(A−λ0I), there exists a unitary
operator C3 : N(B − λ0I)→ R(A − λ0I)⊥. Define an operator C0 from H2 to H1 by

C0 =

(
C1 0
C3 0

)
:
(
N(B − λ0I)
N(B − λ0I)⊥

)
→

(
R(A − λ0I)
R(A − λ0I)⊥

)
.

Then, it can be readily seen that λ0 ∈ σc(MC0 ).
Note that λ0 ∈ σc(MC0 ) in all previous cases. Therefore, we always have the contradiction with the

assumption σc(MC) = σc(A) ∪ σc(B) for every C ∈ B(H2,H1), since λ0 ∈ σr(A) ∩ σp(B).
If the assertion (ii) is not true, i.e., λ0 ∈ σc(A), but λ0 ∈ σpr(B). Then, it follows that λ0 ∈ σpr(M0), and

hence λ0 < σc(M0). However, λ0 ∈ σc(A)∪σc(B), which contradict the assumption σc(MC) = σc(A)∪σc(B) for
every C ∈ B(H2,H1). Similarly, we obtain the same contradiction, if the assertion (iii) is invalid. Therefore,
the assertions (i), (ii) and (iii) are all fulfilled. �

Corollary 3.8. Let A ∈ B(H1) and B ∈ B(H2). Then,

σc(MC) = σc(A) ∪ σc(B) for every C ∈ B(H2,H1)

if one of the following assumptions is fulfilled:
(i) A and B are hypernormal, and σp,34(A) = σp,34(B) = σr(A) = σr(B) = ∅;
(ii) A and B are cohypernormal, and σp(A) = σp(B) = ∅;
(iii) A and B are normal, and σp,34(A) = σp,34(B) = ∅.

Proof. The proof is trivial, and is omitted. �

4. Examples

In this section, some examples illustrating results of the previous sections are presented. To streamline
the calculations, we work in the infinite-dimensional Hilbert space `2(1,+∞) or simply `2, which consists
of square summable complex-valued sequences.

Example 4.1. Let H1 = H2 = `2, and use the right shift operator as A and left shift operator as B, i.e., for
(x1, x2, · · · ) ∈ H1 = H2,

A(x1, x2, · · · ) = (0, x1, x2, x3, · · · ), B(x1, x2, · · · ) = (x2, x3, · · · ).

Then, A and B are bounded operators on H1 and H2, respectively. We claim that 0 ∈ σr,1(A)\σδ(B) but n(B) = d(A) , 0;
meanwhile 0 ∈ σp,1(B) \ σap(A) but n(B) = d(A) , 0, and hence (1.1) is invalid.
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It can be readily seen that 0 ∈ σr,1(A)∩σp,1(B), and n(B) = d(A) = 1. Then, we deduce that 0 ∈ σr,1(A)\σδ(B),
0 ∈ σp,1(B)\σap(A), but n(B) = d(A) , 0. By Theorem 2.1, we immediately know that (1.1) is not true. Indeed,
define the operator C0 by

C0(x1, x2, · · · ) = (x1, 0, 0, · · · )

for (x1, x2, · · · ) ∈ H2, then 0 ∈ ρ(MC0 ), but 0 ∈ σ(A) ∪ σ(B).

Example 4.2. Let H1 = H2 = `2. Consider the operators A and B defined by

A(x1, x2, · · · ) = (x1, x2, x1 + x2, x3, x4, x3 − x4, x5, · · · ), B(x1, x2, · · · ) = (0, x2, x3, · · · ),

for (x1, x2, · · · ) ∈ H1 = H2. Then, A and B are bounded operators on H1 and H2, respectively. We claim that
0 ∈ σr,1(A), but n(B) < d(A), and hence (2.1) is invalid.

Direct calculations show that R(A) is closed, and for (x1, x2, · · · ) ∈ H1,

A∗(x1, x2, · · · ) = (x1 + x3, x2 + x3, x4 + x6, x5 − x6, x7, · · · ).

Since 0 ∈ σp(A∗), with an eigenspace spanned by (1, 1,−1, 0, 0, · · · ) and (0, 0, 0, 1,−1,−1, 0, 0, · · · ), we have
d(A) = dimN(A∗) = 2. Again, it can be seen that 0 ∈ σp(B) with an eigenspace spanned by (1, 0, 0, · · · ), and
hence n(B) = 1. Thus, 0 ∈ σr,1(A) and n(B) < d(A). By Theorem 2.3, we immediately know that (2.1) is
invalid. Indeed, define the operator C0 by

C0(x1, x2, · · · ) = (x1, 0, 0, ...)

for (x1, x2, · · · ) ∈ H2. Then, we actually have 0 < σp(MC0 ), but 0 ∈ σp(B) ⊆ σp(A) ∪ σp(B).
Analogously, we may construct various types of examples (e.g., 0 ∈ σr,1(A), but n(B) = d(A)), such that

neither of assertions (i) and (ii) holds. There are similar remarks for other examples below.

Example 4.3. As in Example 4.1, let H1 = H2 = `2, and use the right shift operator as A and the identity operator
as B. Then, A and B are bounded operators on H1 and H2, respectively. We claim that 1 ∈ σc(A) ∩ σp(B), but
1 < σp,12(B), and hence (2.2) is invalid.

The claim 1 ∈ σc(A)∩σp(B) is obvious. Since B− I is the zero operator on H2, i.e.,N(B− I) = H2, it follows
that 1 < σp,12(B). By Theorem 2.4, the assertion (2.2) is not true. Indeed, taking C0 = I yields 1 ∈ σr(MC0 ),
even though (σc(A) ∩ σp(B) 3)1 < σr(A) ∪ σr(B).

Remark 4.4. This example also shows that the inclusion σr(MC) ⊆ σr(A) ∪ σr(B) for every C ∈ B(H2,H1) is not
necessarily valid.

Example 4.5. As in Example 4.1, let H1 = H2 = `2, and use the right shift operator as A. For (x1, x2, · · · ) ∈ H2, the
operator B is defined by

B(x1, x2, · · · ) = (x2, x2 + x3, x3 + x4, x5, x6, · · · ).

Then, A and B are bounded operators on H1 and H2, respectively. We claim that 0 ∈ (σp(B) ∩ σr(A)) \ σp(B∗), but
n(B) = d(A), and hence (2.3) is invalid.

A straightforward calculation shows that 0 ∈ σp(B) ∩ σr(A) and n(B) = d(A) = 1. Note that

B∗(x1, x2, · · · ) = (0, x1 + x2, x2 + x3, x3, x4, · · · ),

for (x1, x2, · · · ) ∈ H2. Then, we have 0 < σp(B∗). By Theorem 2.5, it follows that (2.3) is invalid. Indeed, define
the operator C0 by

C0(x1, x2, · · · ) = (x1, 0, 0, · · · )

for (x1, x2, · · · ) ∈ H2, then 0 ∈ ρ(MC0 ), but clearly 0 ∈ σpr(A) ∪ σpr(B).
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Example 4.6. Let H1 = H2 = `2. Consider the operators A and B defined by

A(x1, x2, · · · ) = (x1,
x2
√

2
,

x3
√

3
, · · · ), Bx = (0, x1,

x2

2
,

x3

3
, · · · ),

for (x1, x2, · · · ) ∈ H1 = H2. Then, A and B are bounded operators on H1 and H2, respectively. We claim that
0 ∈ σc(A), but 0 ∈ σr(B), and hence (2.4) is invalid.

Direct calculations show that R(A) = H1 and R(A) is nonclosed. It is clear that A and B are injective, and
R(B) , H2. These prove 0 ∈ σc(A) and 0 ∈ σr(B). By Theorem 2.6, it follows that (2.4) is invalid. Indeed,
define the operator C0 by

C0(x1, x2, · · · ) = (x1, x2, x3, 0, 0, · · · ),

for (x1, x2, · · · ) ∈ H2. Since A and B are injective, MC0 is injective, which together with R(B) , H2 implies
0 ∈ σr(MC0 ). However, we clearly have 0 ∈ σc(A) ∪ σc(B).
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