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CR-Submanifolds with the Symmetric Vo in a Locally Conformal
Kaehler Space Form
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72-3-65 Nishi-Odori, Yonezawa, Yamagata, 992-0059, Japan

Abstract. In this paper, we consider CR-submanifolds with the symmetric Vo which is a generalization
of parallel second fundamental form, in a locally conformal Kaehler space form. About the symmetric
tensor field P defined in (1.7), we show that, in an anti-holomorphic submanifold in an l.c.K.-space form,
P is diagonal with respect to an adapted frame and has two eigenfunctions (See Theorem 3.1). Finally, we
consider the relation of the eigenfunctions of P and the Lee form (See Theorems 3.2 and 3.3).

1. Locally conformal Kaehler manifolds.

A Hermitian manifold M with structure (J, §) is called a locally conformal Kaehler (an 1.c.K.-) manifold
if each point x € M has an open neighbourhood U with a positive differentiable function p : U — R such
that §° = e~2p giu is a Kaehlerian metric on U, that is, V*] = 0, where ] is the almost complex structure, § is
the Hermitian metric, V* is the covariant differentiation with respect to §*, §j; is the restriction of § to U and
R is a real number space ([8] -[10],[13], etc.).

Remark 1.1. We know that a typical example of a compact l.c.K.-manifold is a Hopf manifold which has no Kaehler
structure ([11],[12]) and examples of non-compact case are in [7].

Then the following useful proposition is wellknown ([8]);

Proposition 1.1. A Hermitian manifold M with structure (], §) is l.c.K.- if and only if there exists a global 1-form «
which is called the Lee form satisfying

]2 — —I, (11)
FJV, Ju) = (v, 1), (12)
Ny(v,u) =0, (1.3)
da =0 (a:closed), (1.4)
(Vv DU = —(a#, )]V + GV, U)p# + GV, U)a* - G(B*, UV (1.5)
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for any V,U € TM, where V denotes the covariant differentiation with respect to g, a* is the dual vector field of
which is called the Lee vector field, the 1-form B is defined by p(X) = —a(JX), p* is the dual vector field of p, TM
means the tangent bundle of M and N denotes the Nijenhuis tensor with respect to ] which is defined by

Ny(V,U) = [JV,JU] = JIJV, Ul = JIV, JUl + J*[V, U]([14]).

We write such a manifold M(J, §, @).

An l.c.K.-manifold M(J,§, ) is called an Lc.K.-space form if it has a constant holomorphic sectional
curvature, that is, R(JU, U, U, JU) = constant for any unit U € TM, where R is the Riemannian curvature
tensor with respect to §. Then we know that the tensor R of an lL.c.K.-space form with the constant
holomorphic sectional curvature c is given by ([8])

4RW, Z,V, U) = c{gW, DF(Z, V) = (W, V)F(Z, U) + GUW, WDF(JZ, V) = GTW, V)F(JZ, U)
= 24(JW, 2)§(JV, U} + 3{P(W, DF(Z, V) = P(W, V)§(Z, U) + (W, U)P(Z, V) (1.6)
- §W, V)P(Z, )} = PW, DF(JZ, V) + P(W,V)§(JZ, U) - GJW, U)P(Z, V)

for any W, Z,V, U € TM, where P and P are respectively defined by
- 1
P(V,U) = =(Vva)l = a(V)a(U) + §|Ia||257(V, u), (1.7)
and
P(V,u) = P(JV, ) (1.8)

for any V, U € TM, where ||a]| is the length of the Lee vector field af with respect to g, that is, [la|f* = g(aﬁ, ab).

Remark 1.2. To get (1.6), we have to assume that the symmetric (0,2)-tensor P is hybrid or equivalently Dis
skew-symmetric. This means that the Ricci tensor Ry with respect to § is hybrid.

Remark 1.3. We know that a Hopf manifold is an l.c.K.-space form with the parallel Lee form (Va = 0). And it has
no hybrid P. But, we don’t know the representation of the Riemannian curvature tensor of an l.c.K.-space form with
non hybrid P.

We write M(c) an L.c.K.-space form with the constant holomorphic sectional curvature c.

2. CR-submanifolds in an l.c.K.-manifold.

In generally, between a Riemannian manifold (M, §) and its Riemannian submanifold M, the Gauss and
the Weingarten formulas are respectively given by

VxY = VxY + (X, Y), @2.1)
and
vxé = —AgX + V;E (22)

forany X,Y € TM and & € T+M, where ¢ is the second fundamental form, A; is the shape operator with
respect to &, V* is the normal connection and T+M is the normal bundle of M([6]). The second fundamental
form ¢ and the shape operator A are related by

gAY, X) = §(o(Y, X), &)

forany ¥, X €e TMand & € T*M.
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The Codazzi equation is given by
R NZY = (Vxo)(Y, 2) - (Vyo)(X, Z), (2.3)
for any X, Y, Z € TM, where {R(X, Y)Z}* denotes the normal part of R(X, Y)Z and (Vx0)(Y, Z) is defined by
(Vxo)(Y,Z) = Vxo(Y, Z) = o(VxY, Z) — o(Y, VxZ) (24)

forany X, Y, Z € TM ([6]).
The tensor field Vo is said to be symmetric if (Vz0)(Y, X) is symmetric with respect to any Z,Y, X € TM
and the second fundamental form ¢ is said to be parallel if it satisfies Vo = 0.

Remark 2.1. The above definitions mean that the normal part of R(Z, Y)X is identically zero for any Z,Y, X € TM,
that is, the Codazzi equation is zero.

Remark 2.2. In a Riemannian manifold M, a symmetric (0,2) tensor T is said to be a Codazzi type if (VxT)(Y, Z) is
symmetric with respect to any X, Y, Z € TM.

Definition 2.1. A submanifold M in an l.c.K.-manifold M is called a CR-submanifold if there exists a differentiable
distribution D : x — D, € T,M on M satisfying the following conditions;

(i) D is holomorphic, i.e., [Dy = Dy for each x € M and

(ii) the complementary orthogonal distribution D* : x — Dy C T M is totally real, i.e., [Dy C T+M for each
x € M, where T:M (resp. T+ M) denotes the tangent (resp. normal) vector space at x of M ([1]-[5] etc.).

In a CR-submanifold, the distribution D (resp. D*) is called a holomorphic (resp. totally real) distribution.

If dim Dy = 0 (resp. dim D, = 0) for each x € M, then the CR-submanifold is a holomorphic (resp. totally
real) submanifold. A CR-submanifold M is said to be anti-holomorphic if Dy = Ty M for any x € M.

For a CR-submanifold M of an almost Hermitian manifold M, we denote by v the complementary
orthogonal subbundle of D+ in the normal bundle T+M. Then we have the following direct sum decom-
position

T*M=]D*®v, |D1v. (2.5)

Remark 2.3. By the definition of the distribution v, a CR-submanifold in an l.c.K.-manifold is anti-holomorphic if
vy = {0} for any x € M.

In a CR-submanifold M of an l.c.K.-manifold M, let be dim D = 2p, dim D+ = g, dimM = n, dimv = 2s and
dim M = m. Then we know 2p + g = nand 2(p + q +s) = m.

Remark 2.4. We know that the dimensions of the distributions D and v are real even.

Now, we recall an adapted frame on M. We take a following local orthonormal frame on M,

@) {e1, ez, ..., €y, €1+, €2, ..., €y} is a local orthonormal frame of D,

(ii) {e2p+1, €2p42, --r €2p+q) is @ local orthonormal frame of D+,

(iii) {€n+q+1, €ntge2s Crtgrss E(nrqel) s Cintgr2y s s E(ntqesy | i @ local orthonormal frame of v. Then we know

@(iv) {e1, ..., €y, €1, ..., €y, €2py1, ..., €2pyq} is @ local orthonormal frame of TM,

(V) {e@pr1ys s €@ptqy s Crtgils -oor Crvgss Cntqily s s Enigrsy ) 1S @ local orthonormal frame of T+M, where
e = Jeiforanyi € {1,2,...,p}, eopivy = Jeop+aforanya € (1,2, .;.,q} and €(1g+ay = Jensgra forany a € {1,2, ..., s}.
We call such a local orthonormal frame an adapted frame of M ([9]).
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3. The Codazzi equation.

In this section, we consider the Codazzi equation in a CR-submanifold M in an 1.c.K.-space form M(c).

Let M be a CR-submanifold in an l.c.K.-space form M(c). Then the curvature tensor R is given by (1.6).
Thus, with respect to an adapted frame, {R(X, Y)Z}* is written by

4Ryjiaw = 3(Pra0ji — PjarOki) — PraOjei + Pjalpei + 2PiaOkc
4Ryjir = 3(Piy0ji — PjrOki) = Prerdji + Py Opei + 2PierOpe,
2Rk jpa = —COk jOpa + PiOpa + Pradicj,

2Ryjbr = PprOpej,

4Ripia = —CiiOpa — 3Py Oki + Pieilpa + Pralicis

4Ripir = =3Py Ok + PpyOpci,

4chba* = 3Pktz*6cb + Pk*béca + 2Pk*06ha/

4chbr = 3Pkr6cb,

4R cbr = 3(PaaOct = PewOap) + PabOca — PevOda + 2Pyt cOpa,
4R gepr = 3(PayOcy — PerOup),

3.1)

for anyl jakell,2,.,2p},a,b,.,d€2p+1,2p+2,.,2p+qg=n}ands,re {n+q+1,n+q+2,m} where
we put me = R(em,ev,ey,e,\) Py = P(ey, ey), ete. for any w, v, u, A €{1,2,..,n} and we used the properties
of Pand P.

By virtue of (2.4) and (3.1), we obtain

Hg((Vx0)ji, ea) = G((V0)ki, ea)} = 3(Pra-0ji — P Oxi)
_Pkuéj*i + P]-,,(Sk*i + 2Pia6k*]'/

Hg((Vio)ji,er) = G((Vjo)ki, er)} = 3(Prr0ji — PjrOri)
_Pk*r(sj*i + Pj*rék*i + 2Pi*r6k*j/

2{g((Vko) jp, €a) = G((V0)kp, €a)} = —COp jOpa
+(Pxj0pa + Ppadij),

2{g((Vko)jv, er) = G((Vj0)kv, )} = PprOr;, (3.2)

HG(Vio)vi, ear) — G((Vp0)ki, €2 )} = —COk-iOpa — 3Ppa O,

HG((Vko)vi, er) — G((Vp0)kis er)} = =3Py + PryOpcei,

HG(Vio)ev, ear) — G((Veo)kv, €r)} = 3PraOcp + PrirOca + 2PgcOpa,

Hg((Vio)ew, er) — G((Veo )k, €r)} = 3PirOct,

HG((Vao)ew, ear) — G((Ve0)ap, €a)} = 3(PaaOco — PearOap)
+Pd176m — Pc*béda + 2Pd66ba,

Hg((Vao)ew, er) = G((Veo)av, er)} = 3(ParOco — PerOap),

foranyi,j,..,k€{1,2,..,2p},a,b,.,d€2p+1,2p+2,...2p+qland s,r € {n + g+ 1,n + q + 2, m}, where we
put oy = o(ey,ex) and (V,0)ur = (Ve,0)(ey, e1) forany v, u, A € {1,2,...,n}.

Now, we assume that the submanifold M has the symmetric Vo, that is, 0 is a Codazzi type. Then we
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have from (3.2)

Ok jOpa — (P jOpa + Ppalij) = 0,
Pyy0rj = 0,

COkiOpa + 3PpgOki — PreiOba — Porar = 0,
PprOxi = PO = 0,

3Pka*6cb + Pkb*écg + ZPk*céba =0,
3P0 =0,

Pydep — Peydgy = 0.
By virtue of (3.3)3), we can easily see

Pji = Fbji, Py = Gopa

3(Pkn*6ji — P]‘u*(ski) - Pkgcs]'*,‘ + P/‘uék*i + ZP,‘ﬂ(Sk*j =0,
3(Pkr5ji — Pjyéki) — Pk*,éj*,- + P]‘*r(sk*i + 2Pi*r6k*j =0,

3(PazOct — PeaOap) + Pav0ca — Pepdan + 2P cOps = 0,

615

(3.3)

(3.4)

foranyi,j,..,k€{1,2,..,p},ab,..,de€{2p+1,2p+2,..,2p + g}, where F and G denote the eigenfunctions of

P which are given by
F

- p,b
q

7

— P,k
G=P "k

p

In particular, foranyi, j, ...k €{1,2,..,p},a,b,...d € 2p+1,2p+2, .., 2p+q} ands,r € {n+g+1,n+q+2,m},

the equation (3.3) is written as

Pyg0ji = Pjgbi = 0,
Py6ji = Pjybri = 0,
Prj=0, Py =0,

Pg6cp — Peybap = 0,

Using (1.8), the tensor field P satisfies

3Ppa+Oki = PrsiOpa = 0,
3pku*6ch + pkb*éca + 2Pk*c6bu =0,
3(Pda*6cb - Pca*édb) + Pd*bécﬂ

Pkr:0/

Pji=Psi, Pjo=Pw, Pjr=Pj, Py =Py

forany j,i€{1,2,..,p},byac{2p+1,2p+2,...2p+qg=nlandre{n+g+1,n+q+2,.,m}.

By virtue of (3.3)" and the above relations, we obtain

P]'»,'=0, P]'g:O, Pra=0, P, =0,
As a result, the tensor field P, is expressed as

Py Py Pjp Pi Py

P]'*Z' P]"'l‘” Pj*ﬂ Pj*tl* ijr

(Pur)=| Pvi Por Poa Poe P |=

Pyi Ppi Ppa Ppoe Py
Pri Pri* Pm Pm* Psr

Pbu* = Or

Py, = 0.
Pji Pja
P]'i Pj*”
Py Py,
Pyic Ppg
Pri* Pm

= Poybyq + 2P 0ps = 0,

(3.3

(3.5)

(3.6)

(3.7)



K. Matsumoto / Filomat 29:3 (2015), 611-618

F o .. 0|0 ... ... 0|0 ... 0
o F 0 .../]0 ... ... OO0 ... 0
0 0 F|O 010 0

=0 0|G 0 ... 0]0 0
0 0j]0 G O 0
o ... ... 0|0 ... 0 G|O ... 0
o ... ... 0|0 ... ... 0 Py,

Thus we have from (3.7)

616

Theorem 3.1. In a CR-submanifold M with the symmetric Vo in an l.c.K.-space form M(c), the tensor field Py,
is expressed by (3.7). In particular, if M is anti-holomorphic, then the matrix (Py,) is a diagonal one with two

eigenfunctions F and G.

By virtue of (1.7) and (3.7), we know
- 1, 5
Pﬁ = —V]'ai —aja; + Ellall (5]‘1‘ = Féj,’,

that is,

1
Viai = —aja; + (§||01||2 - F)oji.
The covariant differentiation of (3.8), (3.8)" and the Bianchi identity give us
.1 1o 1 1o
Ryji*aa = (§|Ia|| — F)(ajoxi — ax0ji) — (5 Villall” ~ Fr)oji + (Evj”a” = F})oxi,

where we put F; = W]-F and the suffix A run over the range 1,2, ..., m.
Next, using (1.6) and (3.7), we find

4Rkjih =(c+ 6F)(6kh5]'i - 6ki6jh) + (c = 2F){g(Jex, eh)g(]ej, e;)
—g(Jex, e)g(Je;j, en) — 24(Jexr, e;)g(Jei, en)},
Rijia =0, Ryjiw =0, Rijir =0,

foranyk, j,i,h€{1,2,..,2p},ac2p+1,2p+2,..,.2p+qlandre {n+q+1,n+g+2,..

From (3.10)y), for any &, j,i,h € {1, 2, ..., p}, we know
4Ryjin = Ry i = (¢ + 6F)(0ndji — Oxi0jn)-
On the other hand, we have from (3.10)

c—2F
4
- §(Jex, e)i(Jej, en)a” = 23(Jex, e))§(Jei, en)a’"}

- ~ c+ 6F ~ -
Ryjina” =Ryjia = T(akéﬁ — ajbm) + {g(Jej, e:)g(Jex, ex)a”

forany A €{1,2,..,m}and k, j,i,h € {1,2,..,2p}.
By virtue of (3.9) and (3.12), we obtain

c+2F
4

2F —
i C{ﬁ(fejr ei(Jex, en)a” — G(Jex, e)i(Jej, en)a’ — 24(Jex, e))i(Jei, en)a”

1 1~ 1-
(§||0é||2 + N jori — axdji) + (EV]'HOCHZ = Fj)ori — (EVkH(XHz — F)oji

(3.8)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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forany k, j,i € ({1,2,...,2p}.
In particular, for k, j,i € {1,2,..,p}ork,ji € {p + 1,p + 2, ..., 2p}, the above equation implies

c+2F 1- 1~
1 Najor — axdji) + (EV]'HOéH2 = Fj)owi — (§V1<||01||2 — F)oji = 0. (3.14)

L, 2
= +
(3l
Thus, we have from the above equation

c+2F
4

1. 1
EV]‘IIOZII2 —-F= —(§||a||2 + )aj (3.15)

forany j € {1,2,..,plif p # 1. Fork,ji€ {p+1,p+2,..2p}, we have the same equation with (3.15). Thus,
we have (3.15) for any j € {1,2, ..., 2p}, if p # 1, Thus, by virtue of (3.13) and (3.15), we have

(QF = o|d(Jej, e)d(Jex, en)a — G(Jex, e)G(Jej, en)a” — 24(Jex, e))d(Jei, en)a’} = 0.

From this, we know F = 5 or a; = 0 for any i € {1,2,...,,2p}. In the case of @; = 0 for any i € {1,2,...,2p}, we
have from Py; = 0 Via;, = 0, that is, the vector field aj, is parallel in ©. Thus we have from the definition of F

Theorem 3.2. If a CR-submanifold M in an l.c.K.-space form tildeM(c) has the symmetric Vo and p # 1, then we
have

(i) the eigenfunction F of P is constant (= 5) or

(ii) the Lee vector field af is orthogonal with to D and the Lee vector field ay is parallel in D for any b €
2p+1,2p+2,..,2p+q}.

Next, we assume that the Lee vector field a¥ is orthogonal to D.
From (3.7), we have Py, = Gy, that is,

- 1

Veay = —acay + (5llall* = G)da. (3.16)
Similarly with the last case, we have from (3.16) and Bianchi identity

= A 1. 1o 0 1o

Raav"aa = (Gllall” = G)(@cdap = aadea) = (5 Vallall” = Ga)oaw + (5 Vellall” = Ge)dan, (3.17)

where we put G, = V,G foranya € {2p +1,2p +2,...,2p + g = n}.
By virtue of (1.6) and (3.7), we have

I:Qdcba = %(5@5}&; = Oav0ca), (3.18)
Racon = Racber = Racpr = 0.
From (3.18), we have
~ 6G +c
Ricpat” = (Ocvrg — Ogpaxc). (3.19)
Thus we have from (3.17) and (3.19)
1 , 1 1. By i 1. By
(G +llall” + S0)Gavac = dcvata) = (5 Vallall” = Ga)oey = (5 Vellall” = G)oa- (3.20)
The contraction of the above equation by ¢ and b gives us
1. 1 1
EVdH!XHZ -Gy = _E(G + ||l + EC)%, (3.21)

ifg#1.
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On the other hand, we know from (3.16)
. 1
Villap:|? = 2(§||0£||2 - G — llap-|")aa,

where ap: denotes the D+-component of &. Moreover, we have from (3.7), using Py = 0

2
I~ =

Vallayp- =2llajp:|Pag,

where a;p: is the JD*-component of a. From the above 2 equations, we obtain

- 1
Vallap:syo: I = 2(§||0r||2 =G~ llapryp: IP)ag. (3.22)

Now, we assume that the submanifold M is anti-holomorphic (v = {0}), then ap.jp: = a. In this case, the
equation (3.22) is written as

2
lelallz = —2(G + @ 4.

Substituting the above equation into (3.21), we get

- 1

VG = E(c - G)ay (3.23)
By the similar calculation with the last case, we obtain

- 1

VG = E(C - G)ag. (3.24)

Theorem 3.3. In an anti-holomorphic CR-submanifold M in an I.c.K.-space form M(c), if the second fundamental
form o is the Codazzi type, the dimension of D* is not one and the Lee vector field ¥ is orthogonal to D, then the
eigen function G satisfies (3.23) and (3.24). In particular, if the function G is constant, then G = c.
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