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Second Order Alternating Harmonic Number Sums

Anthony Sofo?

*Victoria University, P. O. Box 14428, Melbourne City, Victoria, 8001, Australia

Abstract. We develop new closed form representations of sums of alternating harmonic numbers of order
two and reciprocal binomial coefficients. Moreover we develop new integral representations in terms of
harmonic numbers of order two.

1. Introduction and Preliminaries

Let R and C denote, respectively the sets of real and complex numbers and let N := {1,2,3, - -} be the

set of positive integers, and INy := IN U {0} . A generalized binomial coefficient (2) (A, u € €) is defined, in
terms of the familiar (Euler’s) gamma function, by
A r(A+1)
T T+ Ir(A-p+1)
which, in the special case when u =1, n € INy, yields

(A) (A) AA=1)---A-n+1) (=1)"(=7),
=1 and = =
0 n !

A ueQ),

- (neIN),

where (1), (A,v € C) is the Pochhammer symbol defined, also in terms of the gamma function, by
1
T'(A+v)
(A = =

(v=0;, AeC\{0})
T()

AA+1) (A +n—1) (v=neN; 1eQ),

it being understood conventionally that (0)p := 1 and assumed that the I'-quotient exists. Let

H—Zl— +yp(n+1)= f-r
n= 1,—7/ Y (n = ;

17 dt
r=1

(Ho :=0)
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be the nth harmonic number. Here, as usual, y denotes the Euler-Mascheroni constant and (z) is the Psi
(or Digamma) function defined by

I"(2)

P(z) = log I'(z)} = I or logI'(z) = fl Y(t) dt.

A generalized harmonic number HY" of order m is defined, for positive integers n and m, as follows:

n
1
H™ .= 2 —, (mneN) and H":=0 (meN).
r=1

In the case of non-integer values of n such as (for example) a value p € R, the generalized harmonic numbers

H(m+1)

p  may be defined, in terms of the Polygamma functions

n+1

d
PO = ) = T llogT@) (1€ No)
by

HY"™Y = Cm o+ 1) + —(_,i,)m P (p+1) )

(peR\{-1,-2,-3,--}; meN),

where C(2) is the Riemann zeta function. Whenever we encounter harmonic numbers of the form Hf)m) at

admissible real values of p, they may be evaluated by means of this known relation (2). In the exceptional
case of (2) when m = 0, we may define Hf)l) by

H’(Jl):sz‘)/-l-ll}(p-f-l) (pe R\ {-1,-2,-3,---}.
We assume (as above) that
(m) _
Hy" =0 (m € IN).

In the case of non integer values of the argument z = 7, we may write the generalized harmonic numbers,

H®*Y, in terms of polygamma functions

HYY = C(a +1)+( )W)( ),Si{—l,—Z,—Bv,...},

q

where C(z) is the zeta function. When we encounter harmonic numbers at possible rational values of
the argument, of the form H® they maybe evaluated by an available relation in terms of the polygamma
q

function Y@ (z) or, for rational arguments z = g, and we also define
H“) —y+¢( +1),andH =0.

The evaluation of the polygamma function ¢(“>( ) at rational values of the argument can be explicitly
done via a formula as given by Koélbig [10], or Choi and Cvijovic [2] in terms of the Polylogarithmic or
other special functions. Some specific values are listed in the books[16], [19] and [20]. In this paper we
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will develop identities, closed form representations of alternating harmonic numbers of order two and
reciprocal binomial coefficients of the form:

0 -1 n+1 H(Z)
Sf><p>=2( )n+kn , (3)
(7]

for p = 0 and 1. While there are many results for sums of harmonic numbers with positive terms, there are
fewer results for sums of the type (3). Let us define the alternating zeta function

(o)

_ _1\ntl
(@)=Y % =(1-2"7)C@

n=1
with E (1) =In2,and
~ ©0 (_1)n+1 H;(f)
Sp=),

n=1

nq

SitaramachandraRao [12] gave, for 1 + g4 an odd integer,

-1
281 = (1 +q)C(1+q) - C(1+9)-2)  C(2)) C(1+q-2))
j=1
and in another special case, gave the integral

1 2q
G- _ f In“T(x)In(1 +x)dx
0

L1+ x(1+%)

In the case where p and g are both positive integers and p + g is an odd integer, Flajolet and Salvy [9] gave
the identity:

p+i—-1

257 = (-cmepi@e2 Y (T Jeon ten

i+2k=q

+Hp+q-2 ), ("”‘1 )(—1)fé(q+j)i<zk),

j+2k=p 1= 1

where 6(0) = %, i(l) =1In2, (1) =0,and C(0) = —% in accordance with the analytic continuation of the
Riemann zeta function. Flajolet and Salvy [9] further, gave some specific examples, such as

> (-)"™'H,  nin2

2n+1 = — =6

_ n
G:= Z L ~ 91596 is Catalan’s constant.
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Some other interesting cases are given by Coffey [6]

L (_1)n+1 H;(,,Z) ~ 65

2 1 4 7 ‘ 1
T T 1@ @2 g 2—55(3)1112—4@4( )

2
n=1
where

o0 Zn
Li, () := Z P p € Cwhen |z] <1; R(p) > 1when |z|] =1

n=1

is the Polylogarithm, or deJonquiére’s function, Coffey, [7] also gave the expression

> ()" P+ a+1) ~ el In?™ () I (x)
Z ni B (_1)qf0 fo 1+xy)(1-x) axdy,

n=1

where 1?)(-) is the Polygamma function. Some results for finite sums of alternating harmonic numbers
may be seen in the works of [1], [3], [4], [8], [11], [13], [14], [15], [18], [21], [22], [23] and references therein.
Chu [5] has also given some closed form representations of mainly finite alternating sums of first order
harmonic numbers. The following lemma will be useful in the development of the main theorems.

Lemma 1.1. Let r be a positive integer and p € IN. Then:

- (1)
b

where [x] is the integer part of x, and when p =1,

_ 10 ® \_
= 3 (0 + B0 = i @

o (-1
= = H;) — Hr. .
Forp =2,
;‘ 2 T4 (H[%] H[%]_%) 5CQ). o

yeoo iy § o
o7 e =21
= 150 40 150
AR O CYSRE TR £
= L(g®) L yg® )40
A CARE )
Forp=1,
! (-1 . . ce .
Z ; = H7+H[y]—2H[M , since r is a positive integer
j=1
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Forp =2,
ST PR
j=1 2 4 j=1 2 j=1 (2j-1)°
_ 1.9 3 1 L
= e glco-ni )

_ 1o o 1
- 4(H[5] H ) 2C(2)‘

[5]-4

Lemma 1.2. The following identity holds.

s (_1)n+1 HE[Z) _ 1
—,  =tB-;t@nh2

n=1

Proof. From the definition of the trigamma function, or from (1),

1 n
mWW+DV=Wm+D=cm—H9=—f‘ﬂhﬁw
Ny
then
g - _ [T A=x)inx

0 1_x

or more generally, for p € IN,

(+1) _ (=1 Y1 -x") (Inxy
Hn - P' f() dx.

1—-x
Forp=1,
00 _1 n+1 H(Z) 1 1 sl _1 n 1_ n
I ML ES JC LS
n=1 n 0 1_xnzl n

1
fo frlxx (log (1 + x) — log 2) dx

c@ - %C(Z)an +C(2)In2,

hence (7) follows. By a change of counter we also have the identity

= (C)™MHY 1 1

n=1

Lemma 1.3. Let r be a positive integer, then

5(2) _ e (_1)Vl+1 H-SlZ)
r L

+r
n=1 n

3515

(8)

©)
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= cv(iem 2L M( _ )
= V(300 - 3e@m2)+ 5= (H - Hy,
1
+(-1)! (H(2> - —(H<2> +H® ) +H® )1n2
A e | e R S AR T
r=j1 = dy—j @)
i ) I
72 j+1

’“Z‘ D (3 ) - )

Proof. by a change of counter

+(-1y H® (H ~H, )+( 1) Z (-1)/*!

00 1 2 00 — n-r (2)
o =Z Y+ @ Z( 1" H?,
o n+r n+1

n=1 n=r
(2)

i (Y &
- n+1 | _yr-1__1

n=r 21:1 (n+1_],)2

00 -1
— (_1)1’+1 Z (_1)”+1 H1(12) _ (_1)}'+1 rz (_1)”+1 H1(12)
— n+1 o n+1

i D" i 1
n=r n+l j=1 (ﬂ+1—j)2
From lemma 1.1 and using the known results,

-1 _1\yn+1 14(2)
9 = (1 (0@ - 0@ In2) - (-1 ey EDTH
n=1

n+1
(&S] (_1)71_7 r—1 1
. _. (10)
HZ:: n+1 ]Z:f(n+1—])2

Let us now consider the last term in (10).

) (_1)n_r r—1 1
n=r n+1 j=1 (Tl+1—j)2

(11)

1 1
1)n—r n? + (n-1)?

- (

prp n+1 + 1
L_(l_L)+;_l(L_L)
n? n n+1 2(n—1) 4 \n-1 n+1

n—r 1 __1( 1 _ 1 S —
=Y 0|tk - F (F )t ey

1 (1 _ 1
(r=1)% \n+2-r n+1
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1 00 771
o Z‘ = Z‘]z(”+1—])

=

MH

(-1
B _Z n+1

(=1)"" L
Z j= ](T‘l+1—])

Consider the first term in (12).

1) v 1 SR 1)
__Z n+1 Z_z_(_l) n+1

:] n=r

—.
—_

<
I

(12)

. Sl (_1)n+1 . x (_1)n+1 r (_1)n+1
=(HY ) — =D Hﬁiﬁ[z ——)

n=r+1 n=1 n=1

— (2)
- (_1)7’ Hr—l

In2 + Z D } ~1)'H?, (In2 + (Hp,| - Hy))
and from Lemma 1.1

T, = (1) (H?, In2+ H?, (H[;) - H,)).
The second term in (12) we write as

1 1
+ 22(n 1) 32(n-2)

]2(”+1 Z‘( v fo. L ’

+ (r-1)*(n—-(r-2))

o r—

W, = Z (-1)""

1
n=r j=1

changing the counter term by term, we have

W,

+22

S

M(Z< ) i( 1)””] 1y | o

n+l

( 1)r (r-1) (.= (_1)n+1 1 (-1)
ey [Z i Ve

r—1 r—2
1 ]+1 )V (_1)]+1
= (-1)*'{mn2- - In2 -
[ n N
(r-1) 1 4\l
( Dl IHZ—Z( 1.)
(r— ) =1 J
and collecting like terms
b o+l =l o) m il
W, = ( 1)”12( 3 In2 + (-1)’ (1,)2
j=1 j=1 m=1 rm
r—1 (_1)]+1
= VY (2 (g - )
= ]
j=1
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The last term in (12) is

1 1
r—1 0 n2 + 2(n—1)2 +

Z( 1) VZ Z(_l)nﬂ—r 1

n+1- -
=i = D

1 n? n2
n=1

(_1)r © (_1)n+1 r=3 (_1)n+1
N [Z D ME, ]+

n=1 n=1

2 B

= (-1 [ o (—1)" r-1 (_1)n+1] . (-1)*! Yo %
- - Zn_:1

o 1 n+1
(_1)"—(7’—1) Zn:l %
et ——

(1’ - 1) 7(’,71) (_1)n+1
- Z‘;:1 n?
Replacing T, W, and X, in (12) and then from (10) we can write
=1 (= 1)]+1
S = (1 (O -5 In2) - (-1
= j+ 1

+T, + W, + X,

and after simplification (9) follows. [

Remark 1.4. The alternating harmonic sum, S\ admits a recurrence relation as follows.

2) In2 Ho-He
5(2)+S ¢ + 2 2 forr>1
TT20-1) -1 20 -1) 4
with

$>:c@—¥@mzmd

1 1
@ _ _Z Z
sP = —3L@)+5l@m2.

By successive iteration the recurrence relation admits the solution

(-1 L)
5 (He - H[%])
+ (_1)r+1 (H(Z) _

(2) 2)
L] (H[v; i 1))

-1 (H;—Hi
(-1 ) (1) (2—]2] (13)
j=1

Analytically (9) and (13) are identical although all the In2 coefficients in (13) have not been isolated, however they
are embedded in the harmonic numbers of the form H .
2

s~ (c1y S§Z)+

N
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It is of some interest to note that 5 may be expanded in a slightly different way so that it gives rise to
another unexpected harmonic series identity. This is pursued in the next lemma.

Lemma 1.5. For a positive integer r > 1, we have the identity

Vo - i (87 =4j+1)(Hyz —Hp)

p= 2 (2j-1)°
(1 , 4Hzm
=4 (5@ - C@I2) 4 L@ Hn - Hy ) - —5
2C(2) v e Lo @ )
+r—1 +8(-1) [Hr_1 4(H[’21] +H[%] +H2[%]71 In2

Hirj1—H,_; H(.2)
+8(~1)"H? (H - H, )+8( 1)2( 1)+ [ [2]. j ]

72 j+1
r—1 i
v (-1 (1( @ @ ) @ )
+8(-)"* Yy ——(=|H?, +H? |-H? .. | 14
0 L i e ey .
Forr=1,
o0 8 —4j +1 H»l—H-_
-y (&7 -4 P) s sama,
= 1(21 1)°
and forr =0,
s 8]'2—4]'+1)(H]'_1—H;§)
v - ( 2]~ 87 (3) —4C(2)In2 — 2C(2) + 81In2.
’ ]Z P (2j-1)°

Proof. By expansion

00 (2)
5@ . - ()" HY Z Hy, 1
r = 7
— o n+r — @n+r) (2n+r—l) n)?@Cn+r-1)
since we know that H(Z) iH; @y i1 o )2 then,

S @
@ _ 1 H,
' 422{(27“”’)(2’“”_1) Z‘Z‘(Zj—l) (2n+r)(2n+r—1)

1j=1

Mg

(Zn) (Zn +7r—1)

n=1
1o Y 1
- ZZ_‘{ 2(2n+r)(2n+r—1)+n2]1(2]_1) (2n+r)(2n+r—1)

He @
200-1)2 4@ -1)

(15)
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For an arbitrary double sequence Yj; we have that

%) k 00
Z Z Yy = Z Z Y1+t

1j=

[Se) [oe]
; ;‘) + 1
472 (2n+2j+r)(2n+2j+r-1)

1
(2j-1)’ (2n+2j+7) (2n+2j+r-1)

~

(872 —4j+1)(Hjpz —Hj, 2
= j (21—1)

Mz

1 1 R
* (2j-1) (2n+r)(2n+r_1)+ZZ

n

n=1j=1

Upon utilizing (15) and the known result (9) for 552), we are able to write

ve . = i (8j2 _4]""'1)('Hj+'2; -H; ,53)
j=1 2@2j-1)

Substituting for $¥ and upon simplification we have the result (14) for %20

Example 1.6. We have some examples as follows:

= 8552) +

®» _ v (8j2_4j+1)(Hf‘1_Hf*%)_ B _
Ve = ; P = 8C(3) — 4C(2)In2 - 2L (2)
+81In2,
@ _ S (8j2_4j+1)<Hf—%_Hf‘1)__
Ve = ]Z:; P =-C(3)+4C(2)In2,
< (872 —4j+1)(H;—H,_1)
Ve = ( 22 =20(3) - 4C(2)In2 + 6L (2)
2 ;‘ 22— 1) e
—8In2, and
oo D 4 L —H
Ve = 2(8] 4+ 1) (s H]):—zc(3)+4c(2)1n2—c(z)

p= P2 -1y
+16In2 - 10.

4 2 2n+r)(2n+r—1)

2w 4y
r=1 (-1

3520

The next few theorems relate the main results of this investigation, namely the closed form and integral

representation of (3).
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2. Closed Form and Integral Identities
We now prove the following theorems.

Theorem 2.1. Let k be real positive integer, then from (3) with p = 0 we have

5P (0) =

o

) 2
(1" Hy

n+k
k

(=]
H[ f;/']_HH‘

12

SPYEICViE (»—+

1] - 7—1)

+(H£2_)1—}1(H[ ]+H(2) )+H<2 )an

_ zk-zk(c @)In2 - %c(s))

3]+

H(Z)
i
j+1

-1 (D @ @) @
R 4 ) )

Proof. Consider the expansion

5@ )" H? & (1) ke H?
= Z ( +k) Sl e,

k

) k
=Y )R HP Y £
- o Hn+r

where

1yl
Q, = lim 4 L&D r(’;)

n——r k!
H n+r
r=1
hence
® k . o n+1
_ 1y
5 O = ;( 1 (r)nZl n+r

k
Z (-1 r(l;)5§2>.
r=1

From lemma 1.3, (9) substituting into (17), yields the result (16). O

3521

(16)

(17)

The other case of SI(P (1), can be evaluated in a similar fashion. We list the result in the next corollary.
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Corollary 2.2. Under the assumptions of Theorem 2.1, then from (3) with p =1

52 = (3 +2k)c<3> 21C@)In2 (18)

- Hr—l)

+(H<2> —l(Hf};l +HE€>Z])+H‘?] )an

i X r—j r—j H(Z)
S (“] - )

+ 25 S ( (Hfz’)’ﬁH[z')”]) P 1)

n+1 H(Z)

FE)

Proof. The proof follows directly from theorem 2.1 and using the same technique. [J

Mg

It is possible to represent the alternating harmonic number sums (16)and (18) in terms of an integral,
this is developed in the next theorem. The following integral representations are new identities.

Theorem 2.3. Let k be a positive integer, then we have:

Inx ,F b2
xXinx - X
1 1 2 24k

dx (19)

k
= S]((Z) (0)+C(2)[2k—1kln2+27’( I; )(H[y] —Hr)],
r=1 ?

where Sff) (0) is given by (16).

Proof. From lemma 1.2,

(D™ HP fl Inx ¥ (1" (A=)
= [ n+k 0 1-x& n+k
k k

1 1lnx 1/2 1/2
= — | 2 r —x|=,F —1|ax
1+k01—x(21[2+k| ]21[2+k

1,2 ) 1 ' xInx 1,2
= 2F1[2+k’_1}1+k+1+kf0 1—x 2F1 24k — x| dx.
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Using the techniques developed in [17], we can write

]. 1/2 k—1 k
=7 b [ ok ‘—1] = -2 kan—Z;r( ) )(H[é]—Hr)

and by substitution (19) follows. [

A Similar integral representation can be evaluated for Sf(z)

theorem.

(1), the results are recorded in the next

Theorem 2.4. Let the conditions of theorem 2.3 hold, then we have:

| F 1,1
X X — X
A 2 2+k

T+k Jy 1—x ax

—C(z)[z’fmuzk‘(k)(H —H)]—S(z)(l)
- o\ r )\ ) T

where S]((z) (1) is given by (18).
Proof. The proof follows the same pattern as that employed in theorem 2.3. O

Example 2.5. Some illustrative examples follow.

X q\ntl 2)
s20) = Z (1)—5H =40C(2)In2 + 1—1nz 20C (3)
el n+

(5)

655 145795
@ "' H? 35 160
P = Z = 7C(3)-16((2)In2~ —=-1In2

(5)

79 C 2) - 16469

3. Concluding Remarks
The alternating sums of harmonic numbers S](cz) (p), for p = 0 and 1 have been successfully represented

in integral form and in terms of zeta functions, harmonic numbers and In functions. It may also be possible
to represent the sums

e (_1)n+1 H;V)
S =),

”‘1717”( nzk )q
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in closed form, this work is currently under investigation. It does appear however, that there is an impasse
with the representation of

in closed form. In the evaluation of

oo 1 1,2
@) _ (-)"" H
sP@1,2)=)

= [ n+k
1)

S}(cz) (2) we require the closed form representation of

n+1 H(2

Z(l)
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_-c(4) f Inx 7Ly (-3)dx.
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