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Abstract. In this paper, we introduce a new iterative method for finding a common element of the set
of solution of a general equilibrium problem system (GEPS) and the set of fixed points of a nonexpansive

semigroup. Furthermore, we present some numerical examples (by using MATLAB software) to guarantee
the main result of this paper.

1. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space with inner product and norm are
denoted by (.,.) and ||.||, respectively and let C be a nonempty closed convex subset of H. A mapping
T : C — Cis called nonexpansive if [|Tx — Ty|| < |[lx — yl|, for all x,y € C. We use F(T) to denote the set of
fixed points of T, thatis, F(T) = {Tx = x}. Recall that a self-mapping f : H — H is a contraction on H if there

exists a constant p € (0,1) and x, y € H such that ||f(x) — f(y)l| < pllx — yll. We denote weak convergence and
strong convergence by notations — and —, respectively. Moreover, H satisfies the Opial’s condition [27], if
for any sequence {x,} with x, — x, the inequality

lim infllx, — x|| < lim inflbx, - yll,
holds for every y € H with x # v.
A nonexpansive semigroup is a family {T(s) : s € [0, c0)} of self-mappings on C such that:
(i) T(O)x =x, forallx € C;
(ii) T(s+t)=T(s)T(t), foralls,t > 0;
@iii) IT(s)x = TS)yll < llx = yll, for all x, y € Cand s > 0;

(iv) s — T(s)x is continuous for all x € C.
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We denoted by F(S) the common fixed points set of nonexpansive semigroup S, that is, F(S) = (¢ F(T(s)).
It is well known that F(S) is closed and convex [1]. Recall that given a closed convex subset C of a real
Hilbert space H, the nearest point projection Pc from H onto C assigns to each x € H its nearest point
denoted by Pcx in C from x to C; that is, Pcx is the unique point in C with the property [|lx — Pcx|| < [|lx — yl|
for all y € C. Pc is call the metric projection of H into C.

Lemma 1.1. ([2]) Let H be a real Hilbert space. Then the following hold:
@ lx+ ylP* < lyl* + 2{x, x + y) forall x, y € H;
(®) llax + 1 = a)yl? = allxl? + (1 = D)yl - a1 - a)llx =yl
() Ik =yl = Il + lyll> = 2¢x, y).
Let A be a strongly positive linear bounded operator on H: that is, there exists a constant y > 0 such that
(Ax, x) > y‘llxllz, for all x € H.

Lemma 1.2. ([25]) Assume A is a strongly positive linear bounded operator on a Hilbert space H with coefficient
Y >0and f : H— H is a contractive mapping with coefficient p , 0 < p < ||All"Y. Then ||l - pAll < I - py.

A mapping B : C — H is called a—inverse strongly monotone [26, 36] if there exists a positive real
number a > 0 such that forall x,y € C

(Bx — By,x — y) > a||Bx — By|*.

Shimizu et al. [30] studied the strongly convergent of the sequence {x,} which is defined by

1 tn
Xpp1 = apx + (1 — a”)t— f T(s)x,ds, x€C,
n Jo
in a real Hilbert space, where {T(s) : s € [0,00)} is a strongly continuous semigroup of nonexpansive
mappings on a closed convex subset C of a Hilbert space and limt, = co.

n—oo

Later, Plubtieng et al. [29] introduced the following iterative method for nonexpansive semigroup
{T(s) : s € [0, 00)}.
Let f : C — C be a contraction and the sequence {x,} be defined by x; € C,

tn
Xn+l = anf(xn) + Bux, + 1-a,- ﬁn)tl f T(s)xnds,
n Jo

where {a,,}, {B.} are the sequences in (0, 1) and {s,} is a positive real divergent sequence. Under the conditions

E ay =00, a, + Py <1, lima, = 0and lim B, = 0, they proved the strong convergence of the sequence.
n—oo n—oo
n=1

Many authors used iterative method to find the solution of equilibrium problem, mixed equilibrium
problem for nonexpansive semigroups ([6-9, 14, 15, 17-22, 38]).
In 2007, Plubtieng et al. [28] introduced the following iterative scheme for finding a common element of
the set equilibrium problem (EP) and the set of fixed points of a nonexpansive mapping in a Hilbert space.
Let S : C — H be a nonexpansive mapping, defined sequences {x,} and {u,} by

F(itn, Y) + =Y = thny thn = X) 2 0;
Xps1 = Ay f(xn) + ([ — @ A)Su,, Yy € H.

They proved, under the certain appropriate conditions, the sequence {x,} converges strongly to the unique
solution of the variational inequality

((A=yf)z,x—z) 20,¥x € F(S) N EP(F),
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which is the optimality condition for the minimization problem

. 1
xeF(rsr)lrlw%P(F) §<Ax’ x) = h(x),

where & is a potential function for y f.

In 2009, Kumam [18] proved that the sequence x, generated by

F(un/]/) + ,%1(]/ — U, Up — xn> = Ozv]/ € C/
Yn = PC(”n - /\nAun)/
Xpt1 = Qull + Xy + VnSPC(xn - /\nAyn)/

is strongly convergent to a common fixed point of a nonexpansive mapping, the set of solutions of an
equilibrium problem, and the solution set of the variational inequality problem for a monotone k-Lipschitz-
continues mapping in a real Hilbert space.

In 2010, Kumam et al. [24] introduced the following iterative scheme an iterative scheme by the shrinking
projection method for finding a common element of the set of solutions of generalized mixed equilibrium
problems, the set of fixed points of a finite family of quasi-nonexpansive mappings and the set of solutions
of variational inclusion problems in a real Hilbert space. Starting with an arbitrary xy € H, x; = Pc, xo,
u, € C define sequences {x,}, {y.}, {v.} and {z,} by

F(itn, Y) + (y) = @(thn) + (AX, Y = thn) + Y = th, U, ) 2 0,Vy € C,
Yn = ]M,(S,,(un - 5nBun)/

Uy = ]M,A,,(yn - AnByn)l

Zy = apXy + (1 — ay)Kyo,,

Ci1 =1{z€Cy:lzn —zll < llxy —2ll},

Xn+1 = Pcwxo/” € IN.

They proved that under certain appropriate conditions imposed on {a,} and {B,}, {A,},{6,} and {r,}, the
sequence {x,} is strongly convergent to z = P\v pr)nGmEp(Ep,a)ni(sm)X0-

In the same year, Kumam and Jaiboom [23] used a new approximation iterative method to prove a strong
convergence theorem for finding a common element of the set of fixed points of strict pseudocontractions,
the set of common solutions of the system of generalized mixed equilibrium problems, and the set of a
common solutions of the variational inequalities for inverse-strongly monotone mappings in a real Hilbert
space. Furthermore, they obtained a strong convergence theorem for the sequences generated by these
processes under some parameter controlling conditions.

Katchang et al.[13] introduced modified Mann iterative algorithms by the new hybrid projection method
for finding a common element of the set of fixed points of a countable family of nonexpansive mappings,
the set of solutions of the generalized mixed equilibrium problems and the set of solutions of the general
system of the variational inequality for two inverse-strongly monotone mappings in a real Hilbert space.
They proved some convergence theorems for the sequences generated by these process which connected
with minimize problems.

In 2011, Sunthrayuth and Kumam [32] introduced a new iterative scheme for finding common element of the
set of solutions of the variational inclusion with set-valued maximal monotone mapping and Lipschitzian
relaxed cocoercive mapping and the set of fixed point of nonexpansive semigroups in a uniformly convex
and 2-uniformly smooth Banach space. They proved the strong convergence of the proposed iterative
method under some certain control conditions.

Furthermore, Sunthrayuth and Kumam [31] proved that the sequence x,, generated by

xo € C chosen arbitriraly,
tn
2w = Yuxu + (L= )t [ T(s)xuds,
Yn = any f(za) + (I — anA)zy,
Xn+1 = ﬁnxn + (1 - ,Bn)]/n/ Vn >0,
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is strongly convergent to a common fixed point x*, in which x* € F(S), is the unique solution of the variational
inequality (yf(x") — Ax", J,(x —x7)) < 0, Vx € F(S).

Jitpeera and Kumam [11] considered a shrinking projection method for finding the common element of the
set of common fixed points for nonexpansive semigroups, the set of common fixed points for an infinite
family of a &-strict pseudocontraction, the set of solutions of a system of mixed equilibrium problems, and
the set of solutions of the variational inclusion problem. They proved strong convergence theorems of the
iterative sequence generated by the shrinking projection method under some suitable conditions in a real
Hilbert space.

Later, Kamraska et al. [12] introduced a new iterative by viscosity approximation methods in a Hilbert
space. To be more precisely, they proved the following result:

Theorem 1.3. Let S = (T(5))s>0 be a nonexpansive semigroup on a real Hilbert space H. Let f : H — H be an
a-contraction, A : H — H a strongly positive linear bounded self-adjoint operator with coefficient y. Let y be a real
number such that 0 <y < L. Let G : H x H — R be a mapping satisfying hypotheses (A1) — (A4) and ¥ : H —» H
an inverse-strongly monotone mapping with coefficients 6 > 0 such that F(S) N GEP(G, V) # 0. Let the sequences
{xn}, (u,} and {y,,} be generated by

x1 € H chosen arbitrary,
G(un/ y) + <\yxnr y - un> + %(}/ — Up, Up — xn>;
Yo = Buxn + (L= Bu) 2 [ T(s)undds, 1 = @y f0n) + ([ = gAYy, V1 2 1.

Under the certain appropriate conditions, they proved that the sequences {x,}, {u,} and {y,} is strongly
convergent to z, which is a unique solution in F(S) N GEP(G, W) of the variational inequality

((yf - A)z,p —z) <0,Vp € F(S) N GEP(G, ¥).

Recently, Wattanawitoon and Kumam [39] introduced the following new hybrid proximal-point algorithms
defined by x; = x € C:

Wy = HC ]_1(]xn — AnAxy),

Zpn = I_l(ﬁn](xn) +(1- ﬁn)]([r,,wn))/

Yn = ]_1(an](x1) + (1 = an)](z4)),

u, € C such that,

O(uy, ]/) + <P(]/) - (P(un) + rl,,(]/ = Uy, JUy — ]yn> >0,Yye C
Chr1 =1z € C: Pz, uy) < anP(z,x1) + (1 — ay)P(z, x1)},
Xn+1 = HCn+1 X

and
u, € C such that,

Otn, ) + P(y) = P(utn) + 3y = thn, Jtn = Jyu) 2 0,Vy € C,
Zn = HC ]_1(]un - AAuy),

Yu = T (Bu] () + (1 = Bu)](Jr,20)),

Xnr1 = [le T @] (1) + (1= @) J(yn))-

Under appropriate conditions, they proved that the sequence {x,} generated by above algorithms is strongly
convergent to the point [ Ty a)nr-1 (0)mep(@© ) ¥ and converges weakly to the point im [Ty a)nr-10)nmep@©,p) X1s
’ ’ n—oo 4 ’

respectively. Very recently, Sunthrayuth and Kumam [33] introduced a general implicit iterative scheme
base on viscosity approximation method with a ¢-strongly pseudocontractive mapping for finding a com-
mon element of the set of solutions for a system of mixed equilibrium problems, the set of common fixed
point for a nonexpansive semigroup, and the set of solutions of system of variational inclusions with set-
valued maximal monotone mapping and Lipschitzian relaxed cocoercive mappings in Hilbert spaces. They
proved that the proposed iterative algorithm is strongly convergent to a common element of the above
three sets, which is a solution of the optimization problem related to a strongly positive bounded linear
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operator.

In this paper, by intuition from [5, 10, 12], a new iterative scheme is introduced. Indeed, we consider C; and
C; be closed convex subsets in H. Let F(x, ) be a bifunction satisfy conditions (A1) — (A4) with C replaced
by C; and let {T(s) : s € [0, o0)} be a nonexpansive semigroup on C,. By this scheme find a common element
of the set of solution of the generalized equilibrium problem system (GEPS) and the set of all common fixed
points of a nonexpansive semigroup in the framework of a real Hilbert space. Furthermore, by using these
results, we obtain mean eragodic theorems for a nonexpansive mapping in a real Hilbert space. Finally,
some numerical examples are also given.

2. Generalized Equilibrium Problems System
A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive
mappings on a real Hilbert space H:

min %(Ax,x) — h(x),

where A is strongly positive linear bounded operator and  is a potential function for y f, i. e., ' (x) = yf,
forall x € H.

Let A : H — H be an inverse strongly monotone mapping and F : C X C — R be a bifunction. Then we
consider the following GEPS

Find % € C such that F(%, y) + (Ax,y —x) > 0, forall y € C. (1)
The set of such x € C is denoted by GEPS(F, A), i.e.,
GEPS(EA)={xeC:F(x,y) +(Ax,y—x) 2 0,Yy € C}.
To study the generalized equilibrium problem (1), let F satisfies the following conditions:
(Al) F(x,x) =0, forallx € C;
(A2) Fismonotone,i.e., F(x,y) + F(y,x) <0forallx,y € C;
(A3) foreachx,y,z€C, limsup, , F(tz+ (1 -t)x,y) < F(x,y);
(A4) for each x € C y = F(x, y) is convex and weakly lower semi-continuous.

In case that C; = H, F(x,y) = 0, C, = C, and T(s) = T is a nonexpansive mapping on C, (1) is the fixed point
problem of a nonexpansive mapping.

Lemma 2.1. ([3]) Let C be a nonempty closed convex subset of H and F : C x C — R be a bifunction satisfying
(A1) — (A4). Then, for any r > 0 and x € H there exists z € C such that

F(z,y) + %(y—z,z—x> >0,YyeC.
Further, define
Tx=(zeC:FEy)+ {y-22-0)20¥yC)

forallr > 0and x € H. Then
(a) T, is single-valued;
(b) T, is firmly nonexpansive, i.e., for any x,y € H

ITyx = Toyl? < (Tox — Try, x — y);
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(¢) E(T,) = GEP(F);
(d) ||Tsx — Toxl|l < S| Tsx — x]|;
(e) GEP(F) is closed and convex.

Remark 2.2. It is clear that for any x € H and r > 0, by Lemma 2.1(a), there exists z € H such that

F(z,y) + %(y—z,z—x) >0, forall yeH. (2)
Replacing x with x — ¥Wx in (2), we obtain

Fz,y)+ (Wx,y—z) + %(y -z,z-x)>0, forall y€H.

Lemma 2.3. ([35]) Let {x,} and {y,} be bounded sequences in a Banach space E and {B,,} be a sequence in [0, 1] with
0 < liminfB, < limsuppB, < 1. Suppose
n—oo Nn—0co
Xns1 = (1= Bn)Yn + Buxn for all integers n > 1 and im sup(||yn+1 — Yall = IXns1 — x4ll) < 0. Then lim|ly, — x,|| = 0.
n—00 n—-oo
Lemma 2.4. ([30]) Let C be a nonempty bounded closed convex subset of H and let S = {I(s) : s € [0, 00)} be a
nonexpansive semigroup on C. Then for any h € [0, 00),

1 1
- f T(s)xds — T(h)(= f T(s)xds)
t Jo t Jo

lim sup =0,

t—>o0  xeC

forxeCandt> 0.
Lemma 2.5. ([40]) Assume {a,} is a sequence of nonnegative numbers such that
Ape1 < (1 - an)an + On,

where {a,) is a sequence in (0,1) and {0,} is a sequence in real number such that

(1) lima, =0, Zan = oo;
n=1

n—o0

(e8]

(ii) Timsup22 < 0 or Y 10ul < oo;

a
n—oo n n=1

Then lima, = 0.

n—oo

Lemma 2.6. ([4]) If Cis a closed convex subset of H, T is a nonexpansive mapping on C, {x,} is a sequence in C such
that x, = x€ Cand x,, — Tx,, > 0, then x — Tx =0
3. Strong Convergence for an Iterative Algorithm

In this section, we introduce a new iterative for finding a common element of the set of solution for an
equilibrium problem involving a bifunction defined on a closed convex subset and the set of fixed points
for a nonexpansive semigroup.

Theorem 3.1. Let H be a real Hilbert space. Asuume that

o Cy, Gy are two nonempty convex closed subsets H,
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Fi,F,, ..., Fy be bifunctions from Cy X C; to R satisfying (A1) — (A4),

Wi, Wy,. .., Vg is ui—inverse strongly monotone mapping on H,

e f:H — Hisa p—contraction,

A is a strongly positive linear bounded operator on H with coefficient A and
0<y<?3,
P

o F(S) ={TI(s) : s € [0, 00)} is a nonexpansive semigroup on C, such that
N F(S) N GEPS(F;, ;) # 0,

o (x,} is a sequence generated in the following manner:

X1 € H and u,(f) e Cy,

Pl(”n ry)+<\y1x‘rl/y M1)>+ 7’n<y ul 1 xn> >0 fOT'ﬂllyE Cl/
F2(un JY) +(Wox,, y — u®y+ 1 Y- u®? —x,) 20, forall y € Cy,

Fk(un ,y) + (Wyx, y —uldy + L =y - u® u® —x,y >0, forally € Cy,
Wn =% DI v, t
Xui1 = Q) f(xn) + Buxn + (1= B)l — s A)E [ T(s)Pc,wnds,

1399

where {a,},{Bn} are the sequences in [0,1] and {r,} C (0, 00) is a real sequence which satisfy the following

conditions:
(C1) lima, =0, ) a, = oo;
n—oo
n=1

(C2) 0 <liminfg, <limsupf, <1;

n—oo

(C3) lim|rys1 =1l =0and 0 <b<r, <a<2u;foriefl,2,...,k};
(C4) limt, = oo, and sup |ty1 — tu| is bounded.

Then

(i) the sequence {x,} is bounded;

(if) lim |\W;x, = Wigll = 0, for q € "y F(S) N GEPS(F, W) i € {1,2,..., K);

tn
—lf T(s)Pc,wnds|| = 0.
tn Jo

= 0and lim ||w,,

n n—oo

£
Xy _tl f T(s)Pc,wnds
0

Proof. (i) By the same argument in [10, 16],
(1 =B —a,All < 1=, —ayA.

Letg € ﬂle F(S) N GEPS(F;, ;). Observe that I —r,\V; for any i = 1,2, ...,k is a nonexpansive mapping.

Indeed, for any x, y € H,
I =7, W)x — (I = P)YIF = ll(x—y) —ra(Wix = Yyl
llx — Yl = 2ru(x — y, Wix — Wiy) + r3[|Wix — Wyl
< e =yl = raQui = r)lWix — Wiyl
< -yl
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So
14 = qll < llx, = qll, (3)
and hence
llwn = qll < 1%, = qll. (4)
Thus
1 tn
Bt =gl = ) + o+ (L= )l - a, ) [ TOPewads =)
n Jo
< aullyf(a) = Aqll + Bullx, — g

tn
(1 = ) = oan)IIIItl j; T(s)Pc,wuds — 4|
anllly f(en) = v @I + Iy f(q) — Aqll} + Bullx, — 4l
t”
+1=p,-a) [ ITEPew, - Pelds
n Jo

anp)/Hxn - qll + anllyf(q) - Aq” + ,Bonn - qll
+(1 = Bn — an)llw, — 4l
anpyllxn = qll + anlly f(q) — Aqll + Bullx, — qll
+(1 - ﬁn - an/\)”xn - q||
= (1-ayA=yp)llxy —qll + anlly f(q) — Aqll
Iy f(q) — Aqll

A=yp

IN

IN

IA

IN

max{llx, — qll,

By induction

llyf(q) — Aqll

1.
A=yp

I, — gll < max{|lx1 —qgll,

Therefore, the sequence {x,} is bounded and also {f(x,)}, {w,} and {;- fo (s)Pc,w,ds} are bounded.
(ii) Note that u,, can be written as ufl) = T,o0(xn —raVixy). By Lemma 21,foranyi=1,2,...,k

ey =l < T (= Widxnes = T (1= 1 Wil
"'”T,U)H (I =raWix, — T,g) (I =1, Wi)xyll

I(I = 71 Wi)xpr — (L = 1 WPi)xnll
+“TV(111 (I - rn\yi)xn - T"S) (I - rn\yi)an

IN

< e = Xall + lrasn = 7alllWix, |
Tyel — 7
+u”Tr(i) (I - rn‘I/i)xn - Tr(i) (I - rn‘lf,-)xnll.
7’”+1 n+1 n

Then

11 = Ul < a1 = xall + 2Milren = 72l, )
where IT0 (1= 1 W, = T (1 = 1 W)

M; = max{sup{—= ,sup{[[Wix,|[}}}-

Tn+1
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Also
1 Eral 1 i
f T(s)Pc,wn1ds — — f T(s)Pc,wnds
) 0 tn 0
1 tn+1 1 tn
- i [ o0 - 1o 5 [ e, - Toms
tn+1 0 n+1 tn 0
tn+1
+ f [T(s)wn — T(s)glds
tn+1 t,
2lthe1 — ta
< N — @l + 2 =By g
n+1

k
Let M = £} 2M; < o0, since
i=1

=~

leowr = wnll < 7 Y I, =l < 1o = xall + Mirs = 72l

i=1

U

hence

s t
I T6)Pe,wniads =+ [ T(s)Pc,wnds

tnl

2|t
< st = Xall + Mg = 1] + 2

Lt'”wn qll-

aﬂyf(xn)+((1_Bn)l_“nA)An tn

Suppose z,, = 5, ,where A, := = | " T(s)Pc,wyds. It follows from (5), (6)
an+1yf(xn+l) + ((1 - ﬁn+1)l - Ofn+1A)An+1
lzne1 —zall = |l
1- ﬁn+1
_anyf(xn) + ((1 - ﬁn)l - anA)An “
1- B,
_ ”an+1yf(xn+1) " (1 _ﬁn+1)An+l _ len+1AAn+1
1- ﬁn+1 1- ﬁn+1 1- ﬁn+1

_anyf(xn) _ (1 - ﬁn)An 4 anAAn
1- ﬁn 1- 511 1- ﬁn

= IO )~ A+ 5 ﬁ<AA = )+ (e = A

< 1%; by f @) = Al + 1 ﬁ — AN = Y Fll + 1A — Aull

< 1anﬁ+1 1y fGtnnn) = Al + 1 ﬁ AN, =y F DI+ [ne — Xl
w1 = bl

+M|rn+1 - rnl + ”wn - q”

n+1

(C1), (C3) and (C4) implies that

lim SuP(||Zn+1 = Zu|l = lIxp+1 — x4ll) < 0.

n—-oo
By Lemma 2.3, lim ||z, — x,|| = 0
n—o0
Consequently

lim |[x1 — xpl| = Em (1 = By)llzn — xaull = 0.
n—oo n—oo

1401
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Moreover, for any i € {1,2,...,k},

1 —gl? < 10 — q) = ra(Wixy — Wig)IP
= lxw — gl = 2ruCxn — q, Vixy, — Wig) + 1211Wix, — Wigll®
<l = gl = 1 Qui — 1) lWixy — Wigll?,
and then
k 1 1 k
e 19 o1 @ _ e
laon = qlP* = ||; L)~ I < k;nun gl
= .- ®)
<l =gl = 1) Qu = )W, = Pl
i=1
By (8), we have
IIxp1 — q||2 = “an(yf(xn) - Aq) + ﬁn(xn - Q) +((1- ,Bn)l - a,A) Ny — Q)Hz
< aully fOo) = AqIE + Bl — gl + (1= B = and)lIA, - gl
< aully fOo) = AqiP + Bl = gIF + (1= B, — auM)llwn — qIP
< ocnllyf(xn) — AqlP? + Ballcy — gl + (1 = B — anM)llx — gl
k
k Qi — r)lIWix, — Wiq)|*}
i=1
< allyf(xn) — AglP + llx, — gl
k
1
(U= By = and) ) (i = ra)lIWis — WiglP,
i=1
and hence

(1= - )} Zb(zuz - 0)[Wix, — WiglP

anll)/f(xn = AqlP +[lxn = qIP = a1 — gl
aully f(xn) = AP + le1 = xall(nsr = gll = llx = gll).-

INIA

Since a;;, = 0 and ||x,01 — x,|| = 0, it follows that

Hm|[Wx, — Wigl = 0,¥i = 1,2,...,k. (9)
n—oo

(iii) By Lemma 2.1, forany i = 1,2,...,k,

1 —qlP < (T=rWx, — (I = r,W))g, ul — g)

1

= U= Wixn = (= WP + e = gl
(I = 7 W), = (I =7, W) — W? = )IP)
1 .

< ol =g+ 1? = gl vy = ) = ru( Wiy = Wi
1 .

= {lwe — ql? + 11 — qli? = (llx, — u?)?
2
21ty — Ul Wix, — Wig) + P|[Wix, — Wigll?).

This implies

4 = gl < 1lxn = ql? = ey — uPIP + 2rllx, — w12, — Pigll, (10)
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and hence

1
low =gl = 1Y ) = gIP

IA
=
.M»
=
==
=
o

(11)
i=1
< e —qlP - Z‘uu‘” xlP + ZZrnnxn — ulIWix, — Wigll
Observe that
Ixusr =4l < anlly f(xn) = AqIP + Ballxw = gl + (1 = B = @uA)llwn — g1
< aullyf(x) = AqIP + Bullxs = gl + (1 = B = anMllx, — g1
Iy 2. 1y 0)
—2 ) =P+ 2} 2l = W, — Wigll).
i=1 i=1
It follows that
k P
A==} Y ) =P < ully fn) = AqIP + I = g1 = e = P
i=1
(1= pu - anA)kZZrnuxn — ul I, — gl
< anlly f(xn) — Aqll2 + 111 = xall(xn = gll = 1201 = gll)
(1= B - anA);ZZrnuxn — u vz, - Wigl.
i=1
Since a,, = 0 and ||x,+1 — xx|| = 0, we have
lim [ — x,|| = 0. (12)
n—oo
It is easy to prove
lim [|w,, — x| = 0. (13)
n—00
The definition of {x,} shows
1A =2l < losn = Xl + X1 = Al
< e = xall + ”an)/f(xn) + ,ann +((1- ﬁn)l — apA)Ay — Ayl
<l = xall + an”Yf(xn) - AN + ﬁn”xn = Ayl
That is
1
1An = xull < mllxm Xall + 7= ﬁnllyf(xn) ANl
The condition (C1) together (7) implies that
lim||A,, — x,|| = 0. (14)
n—oo

Moreover, [lwy — Anll < llwn = xull + llx, — Aull, we get

lim||A,; — || = 0. (15)
n—o0
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Then,
1 ("
lim|x, — — f T(s)Pc,w,ds|| =0,
n—oo t, 0
1 ("
lim a)n——f T(s)Pc,wnds|| = 0.
n—oo tn 0
O

Theorem 3.2. Suppose all assumptions of Theorem 3.1 are hold. Then the sequence {x,} is strongly convergent to a
point %, where X € ('_, F(S) N GEPS(F;, W;), which solves the variational inequality

(A-yf)z,x—x)<0.
Equivalently, ¥ = Pﬂ;c:l F(S)ﬂGEPS(Fi,\IJi)(I - A+yH)(®).
Proof. Forall x,y € H, we have

1P rynceps,wyd = A+ 7O = P pncepse,wyd = A+ HWI
II-A+y)Hx)—T-A+yHY

I = Allllx = yll + Yl f(x) = fW)l

(1= Mllx =yl + ypllx = yll

1=@A=yp)llx =yl

INIAN A

This implies that P rynceps,wy — A +7f) is a contraction of H into itself. Since H is complete, then
there exists a unique element ¥ € H such that

2= Pry psynceps, vy = A+ 7).

Next, we prove

tn
lim sup{(A - yf)x, % — tl f T(s)Pc,wnds) < 0.
0

n—o0 n

Let ¥ = Py pis)nceps(r,w) 1, Set
llyf(x) - AX||

L= {7eColly -l < Iy — 3l +
yEmrl ' A=yp

3

It is clear, X is nonempty closed bounded convex subset of C, and S = {I(s) : s € [0, o0)} is a nonexpansive
semigroup on X.

Let A, = & fo " T(s)Pc,wnds, since {A,} C L is bounded, there is a subsequence {An/.} of {A,} such that

T b

limsup((A - )X, x — Ap) = im{((A — y /)%, X — Ay)). (16)
j—oo

n—oo

As {wy,} is also bounded, there exists a subsequence {wnjl} of {wy,} such that wn, — & Without loss of
generality, let w,, — &. From (iii) in Theorem 3.1, we have A,, — &.

Since {w,} € C; and {A,;} € C; and Cq, C, are two closed convex subsets in H, we obtain that £ € C; N C,.
Now, we prove the following items:
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(i) € € F(S) = Nsz1 F(T(s))

Since {A,} € C,, we have

1A, — PCZ(L)nH ”PCzAn - PCZ(L)nH

1A = @l

IN

By (iii) in Theorem 3.1, we have

lim[IA, = Pe,wqll = 0. (17)
By using (iii) in Theorem 3.1 and (17), we obtain

lim [lwy, = Pe,wall = 0. (18)

This shows that the sequence Pc,w,, — & as j — .
For each i > 0, we have

IT(h)Pc,wy — Pc,wnll IT(M)Pc,wn = T Al + IT(R) A = Al + 1An — Peywnll

<
< 20An = Pewnll + IT(M) Ay = Aull.

The lemma 2.4 implies that

Hm[IT(h) Ay = Aull =0, (19)
the equalities (17, 18) and (19)implies that

Tim|[T() P, = wyll = 0.
Note that F(TPc) = F(T) for any mapping T : C — C. The Lemma 2.6 implies that & € F(T(h)Pc,) =

F(T(h)) for all h > 0. This shows that & € F(S).

(i) &€ Ny GEPS(F;, W)).

Since {w,} is bounded and as respects (15), there exists a subsequence {wy,} of {w,} such that w,, — &.
By intuition from [12],

Fl-(u,(?, Y+ (Vixy, y — uﬁ,’)) + r—(y - ufj), u,(? —x,) 20, forall y € C;.

n

By (A2), we have
(Wi, y = 1) + —Cy =), 1) = ) 2 Fi(y, u)).
n

Substitute n by n;, we get

(@)
. LUy — Xy .
(Wi, y = 1)) +y = g, ——=) > Fi(y, ). (20)

nj



H. R. Sahebi, A. Razani / Filomat 28:7 (2014), 1393-1415 1406

ForO<Il<landye Cy,sety; =1Ily+ (1-1)E. Wehave y; € C; and

(y1 — uff?,‘l’iyﬁ > (y - uffl), Wiyi) — (Wixy, y1 — 1452)
(@)
Uy —x, A
~(y1 =y, ———) + Fi(y, )

nj
= (y—ul), Wiy — W)y + (yy - ), W) = Wix,, )
u? —x,
Ul -, .
—y1 = 1451?, /r—]> + Fi(yi, uﬁ?).

nj

The condition (A4), monotonicity of W; and (12) implies that
(y1 - uﬁ,’l),\lf,'yl - ‘I’iu,(j?) > 0and ||‘I’iu,(2 — ‘I’,-xnjll — 0as j — co. Hence

(i = &YWy = Fi(yi, &). (21)
Now, (A1) and (A4) together (21) show

0=Fi(y,y) < IFi(y,y)+ A -DFi(y,<)
< IFi(y,y)+ Q=D - & Wiy
= IFi(y,y)+ A =DKy - &, Wiy,

which yields Fi(y;, y) + (1 = I){y = &, Wiy;) = 0.
By taking I — 0, we have

This shows & € GEPS(F;, V;), foralli=1,2,...,k. Then, £ € ﬂ;‘:l GEPS(F;, ;).
Now, in view of (16), we see

limsup{((A—-yf)x,x —Ap) =((A—yf)x, ¥ - &) <0. (22)

n—oo

Finally, we prove {x,} is strongly convergent to x.

1 = %P = Nlany f(xn) + Buxn + (1 = B)] — anA)A, — I
= ||05n(7/f(xn) - Ax) + ﬁn(xn -x)+((1- ﬁn)l — a, A) (A, — 3‘()”2
= IBu(xn — %) + (1 = Bu)] — awA) Ay — DI + adlly f(xn) — Azl
200Xy — X, Y f (%) — AT)
+2a,((1 = Bu)] — anA) Ay — %), y f(x5) — A)
< (1= Bu — anMlIAy = XU + Bullxy — Xl + adlly f(xn) — Azl

+2anﬁn7/<xn - 'X_:I f(xn) - f(f» + 2anﬁn<xn - f/ Vf(x) - AX‘)
+2(1 = Bu)yan{u — %, f(xn) — f(X))
+2(1 = (A, — X,y f(%) — AZ) — 202(A(Ay — %), v f(x,) — AZ).
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Consequently

A

o1 =2 < (1= and)? +2paBay +2p(1 = Bu)yanlix, — I
+aglly f(xn) = AZIP + 200, B(x — %,y f(%) = AX)
+2a,(1 = Bu){ Ay — &, Y f(F) — AX) — 2a2(A(Ay — %), Y f(x,) — A%)
(1 = 2a0s(A = py)lixy = I + A2agllx, — XU + aglly f(xn) — AZI
+2anﬁn<xn - J?, Vf(f) - AJ?) + Zan(l - ﬁnx/\n - f/ Vf(x) - AJ—C)
2031 A(Aw = D)llly £ (xa) — Al
= (1= 2a,(A = py))llxy = ZIP + aulan(A?|lx, — 3P

Hly fxn) = AZIP + 211 AN, = D)llly £ (x2) = Al

+2Bn(xn — X, f(%) = AX) + 2(1 = Bu){An — X,y f(X) — AD)}.

Since {x,}, {f(x,)} and {A,} are bounded, one can take a constant I" > 0 such that

IA

T > A2, — &P + [y f(xn) — AZIP + 2AA, = DIy f () — AZ]l.
Let

En = 2Bp{xn — %,y f(%) — AX) + 2(1 — Bu)(An — X,V f(X) — AX) + Ty,
Hence
xns1 = 2I* < (1= 2a,(A = py))llxn — %I + AuZ. (23)

With respect to (22), lim supE, < 0 and so all conditions of Lemma 2.5 are satisfied for (23). Consequently,

n—oo

the sequence {x,} is strongly convergent to . [J

As a result, by intuition from [12], the following mean ergodic theorem for a nonexpansive mapping in
Hilbert space is proved.

Corollary 3.3. Suppose all assumptions of Theorem 3.1 are holds. Let {T'} be a family of nonexpansive mappings on
Cyforalli=1,2,...,ksuch that ﬂle F(T" N GEPS(F;, ;) # 0. Let {x,} and {u,(f)} C C; be sequences generated in
the following manner:

x1 € H choosen arbitrary,
Fl(u(l) y) + (Wix,, vy — uly 4 1 =y - uP M — x>0, forally € Cy,
FZ(M” s ]/) + <\y2x7l/ y- u( )> + <]/ u(Z) xn> > 0 fOT’ all y € Cl/

( O+ <‘Ikan, —uly + =y - u® u® —x,y >0, forall y € Cy,

Wn =% Zz 1 u .
Xn+l = Oanf xn + BnXn + (- ﬁn)l anA) e Z?:O Pe,T'wn,

where {a,}, {Bn} are the sequences in [0,1] and {r,} C (0, o) is a real sequence. Suppose the following conditions are
satisfied:

n—o0

(C1) limay, = O,Zan = o0;

(C2) 0< hm 1nf,[3n <limsupf, <1;

n—oo

(C3) lim|rys1 =1yl =0and 0 <b<r, <a<2u;forie(l,2,...,k}.
n—oo
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Then the sequence {x,} is strongly convergent to a point X, where

x=pP Nk, rrynGepsEwy) L — A +7))F)

, is the unique solution of the variational inequality

k
(A=yhx 2 -x) <0,Vx € [ |F(T') N GEPS(F;, W)).
i=1

4. Application

If T(s) = T for all s > 0 and C; = C;, = C, then we have the following corollary.

Corollary 4.1. Let H be a real Hilbert space, F1, F, ..., Fx be bifunctions from C X C to R satisfying (Al) — (A4),
Wi, Wy, ..., Wi be ui—inverse strongly monotone mapping on H, A be a strongly positive linear bounded operator on
H with coefficient A and 0 <y < %, f : H — H be a p—contraction. Suppose that T be a nonexpansive mapping on

C such that (., F(T) N GEPS(F;,¥;) # 0. Define the sequence {x,,} as follows.

x1 € H, and u(i) eC,
Fi(uyy, y) + <‘I’1xn,y - u<”> + 2y -ulul —x,) 20, forally e C,
Fa(?, y) + (Waxy, y —ull) + L(y - uf),u(z) x,) =0, forall y € C,

Fk(uik’,y)+<‘lkan,y u® + Ly —uP,ul —x,) > 0, forall y € C,

W Z (1)
n = k i=1 Un's
Xn+1 = An) f(Xn) + Buxy + (1 = )] — 0y A)TPcw,ds,

where {a}, {Bn} C [0,1] and {r,} C (0, 00) are the sequences satzsfymg the conditions (C1) — (C3) in Theorem 3.2.
Then the sequence {x,} converges strongly to a point X, where X € ﬂ,=1 F(T) N GEPS(F;, ;) solves the variational
inequality (A —yf)x, X —x) <0.

We apply Theorem 3.2 for finding a common fixed point of a nonexpansive semigroup mappings and
strictly pseudo-contractive mapping and inverse strongly monotone mapping.
Recall that, a mapping T : C — C is called strictly pseudo-contractive if there exists k with 0 < k < 1 such
that
ITx — Tyll* < llx = yl* + k(I = T)x — (I - T)yll?, forallx,y € C.

If k = 0, then T is nonexpansive. Put | = —T, where T : C — C is a strictly pseudo-contractive mapping. |

is %‘-mverse strongly monotone and J~1(0) = F(T). Indeed, for all x, y € C we have

I = Nx = (I = Dyl < llx =yl + KlIJx = Jyll*.
Also
I = Dx = =Dyl < llx =yl + 1Jx = JylPF = 2¢x =y, Jx = Jy).

So, we have

1-
O L N
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Corollary 4.2. Let H be a real Hilbert space, F1, F, ..., Fx be bifunctions from C X C to R satisfying (Al) — (A4),
Wi, Wy,..., Wy be pj—inverse strongly monotone mapping on H, A be a strongly positive linear bounded operator
on H wzth coefficient A and 0 <y < = f H — H be a p—contraction. Suppose that T : C — H be a k-strictly

pseudo-contractive mapping for some 0 < k < 1 such that N, F(T) N GEPS(F;,W;) # 0. Define the sequence {x,}
as follows.

x1 € H, and u(i) eC,
Fi(u 511),y) +(Wix,, v — M(1)> + (y (1) (1) —xy) 20, forally € C,
Fa(u?, y) + (Waxy, y —ull) + L(y - u(z) (2) =X,y 20, forally € C,

Fk(u(k) )+ (Wix, v — u >+ (y u(k) —x,) 20, forally e C,

. Z (l)
n — k i= 1
Xpt1 = anyf(xn) + Buxn + (1 = o)l — anA)PcJwyds,

where | : C — H is a mapping defined by Jx = kx + (1 — k)Tx and {a,},{pn} C [0,1] and {r,} C (0, ) are the
sequences satisfying the conditions (C1) — (C3) in Theorem 3.1. Then the sequence {x,} is strongly convergent to a
point %, where ¥ € (\_, F(T) N GEPS(F;, W, solves the variational inequality {(A — y f)%, X — x) < 0.

Proof. Note that S : C — H is a nonexpansinve mapping and F(T) = F(S). By Lemma 2.3 in [41] and Lemma
2.2 in [37], we have PcS : C; — C is a nonexpansive mapping and F(PcS) = F(S) = F(S). Therefore, the
result follows from Corollary 4.1. [

5. Numerical Examples

In this section, we show numerical examples which grantee the main theorem. The programming has
been provided with Matlab according to the following algorithm.

Example 5.1. Suppose that H = R,C; =[-1,1],C; =[0,1] and
Fi(x,y) = =3x% + xy + 2%, Fa(x, y) = —4x* + xy + 312, F3(x, y) = —5x* + xy + 4.

Also, we consider Wi(x) = x, W, = 2x and W3(x) = 7. Suppose that A = {5, f(x) = 75 with coefficient y = 1
and T(s) = e is a nonexpansive semigroup on C,. It is easy to check that Wy, \V,, W3, A, f and T(s) satisfy
all conditions in Theorem 3.1. For each y € C; there exists z € C; such that

Fiz,y)+(WYix,y —z) + 1(y—z,z -x)>0

& 377 +zy+2y +x(y—2z)+ (y zZ)(z—x) =0
=3 Zry +((r+1)z—(r—1)x)y—37’z —xzr —z> +2x > 0.
Set G(y) = 2ry? + ((r + 1)z — (r — 1)x)y — 3rz> — xzr — 22 + zx. Then G(y) is a quadratic function of y with
coefficients a = 2r,b = (r + 1)z — (r — 1)x and ¢ = —3rz% — xzr — z> + zx. So
A = b —4ac
= [(r+ 1Dz — (r— Dx]* — 8r(=3rz* — xzr — z* + zx)
= X*(r-1>%+2zx(r-1)(Gr+1) + 22(5r + 1)2
= [(x(r—1)+z(Gr+1)*

1-
Since G(y) > 0 for all y € Cy, if and only if A = [(x(r — 1) + z(57 + 1))]* < 0. Therefore, z = 5 +r1x, which

(1)_ 1_711

yields T S0 = Uy 5 1
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By the same argument, for F, and F3, one can conclude

_ @ _ 1- 27’n
Tr<7‘2) = U, = —77’n n 1xn/
10—
T = ,®= 977
e M= 50, 107"
Then
w, = ”541) + “512) + “:(43)
no- 3
1 1-r, 1-2r, 10-1,
= — + + :
351 71 T S0, w101
] n+8 9 2n—-1
By choosing r, = ——, t, = n, and a;,, = W’ﬁ” T 1m-9

sequence {x,}

200n% — 101 — 81

800n2 — 8901 + 81 (1 —e"
Xn+l =

1002 =907 "+ T100072 — 900 "

.

Choose x1 = 1000. By using MATLAB software, we obtain the following table and figure of the result.

n Xp n Xy n Xy

1 1000 11 0.001780587335 21 0.0000000003224455074

2 1098.409511 12 0.0003806958425 22 0.00000000006766467135

3 305.4917461 13 0.00008116570943 23 0.00000000001418205647

4 73.2742215 14 0.00001726216226 24 0.000000000002969041259

5 16.71274356 15 0.000003663196562 25 | 0.0000000000006208956961
6 3.722532274 16 | 0.0000007758152752 | 26 | 0.000000000000007698339387
7 0.8179356809 17 | 0.0000001640073634 | 27 | 0.0000000000001297089212
8 0.1781302867 | 18 | 0.00000003461280635 | 28 | 0.00000000000002707018951
9 | 0.03854703081 | 19 | 0.000000007293416021 | 29 | 0.000000000000005644205174
10 | 0.008300951942 | 20 | 0.000000001534585156 | 30 | 0.000000000000001175770771

1200

1000

800

600

Squence value

400

200

0 5 10 15 20 i kil i
lteration steps

0

1410

we have the following algorithm for the
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Example 5.2. Theorem 3.2 can be illustrated by the following numerical example where the parameters are given as
follows:

H=[-10,10] , Ci1=[-1,1],C =[0,1],A =1, f(x) = ;—C

Wi()=x , Wy =2x,Wsx) = %,%(x) = 3x, Ws(x) = 4x

1 n n+1

T ﬁn:2n+1'r”: n
T(s)=e® , y=Lt =n.

Oy

Moreover,
Fi(x,y) = =3x* + xy + 2y* , Fa(x,y) = —6x* + xy + 51
Fa(x,y) = 4> + xy +3y* , Fs(x,y) = —8x* + xy + 71
Fs(x,y) = =5x% + xy + 4y°.

By the same argument in Example 5.1, we compute uld fori=1,2,3,4,5 as follows:

1-r,

Trf}) = u1(11) = 51, + 1xn/

T = = ;r_ o

Tfi?) = MS) = 9(1)8,1%3(”'

Trﬁf’ = u5,4) = 111;"?:"1 Xn,

To=u' = 115;,14:”1 e
Then

w, = I/lgll) + M;Z) + ...+ Ll,(f)

5
1 1= 1-2r, 10 —r, 1-3r, 1—4r,
R e Sl et e T TP S o

1x,.

Choose x; = 10. The detailed results of proposed iterative in Theorem 3.2 are presented in the following
table and figure.

Xy n Xn n Xy

10 11 0.004288752976 21 0.000003269796382

4.187523857 12 0.002073897432 22 | 0.000001606140362
1.810011289 13 0.001005587742 23 | 0.0000007895721035
0.8111798915 14 | 0.0004887121222 | 24 | 0.0000003884328747

0.37213169 15 | 0.0002379837774 | 25 | 0.000000191218571
0.173392393 16 | 0.0001160888527 | 26 | 0.00000009419138076
0.08167872103 | 17 | 0.00005671409128 | 27 | 0.00000004642361668
0.03878661445 | 18 | 0.00002774424594 | 28 | 0.00000002289261628
0.0185321898 19 | 0.00001358854452 | 29 | 0.0000000112944317
0.008897703796 | 20 | 0.000006662503243 | 30 | 0.00000000557482625

S0 0NO Ul WN RS
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Sqguence value

1] I B P A A A A A A AR A P

lteration steps

Example 5.3. Let
x x
H= [_]-O/ 10] 7 Cl - [O/ 1]/ CZ - [_1/ 1]/A - E/f(x) - E

W) = Wo(x) =0, Wa(x) = x, Wa(x) = 2x, Ws(x) = —

10
Welx) =3x , Wy(x) =4x
1 n n+1
ap = —
n
Ts)=¢e* , y=1t=n

e

n

Moreover,
Fitv,y) =1 - -y) , Fs(x,y) =52 +xy + 4%

Fa(x,y) = —x*(x —y)* , Fe(x,y) = —6x* + xy + 5¢/%;
F3(x,y) = =3x* +xy +2y* , Fr(x,y) = —8x* + xy + 7y%;
Fi(x,y) = —4x* + xy + 3y°.

By the same argument in Example 5.1, we compute uld fori=1,2as follows: Forany y € Cy and r > 0, we have
1
F(z,y) + ;(y—z,z—x) >0 (y-2)r2+z—r-x)>0.

. ~1++/T+4 o 1+ T,
This implies that rz> + z — r — x = 0. Therefore, z = +r(r+x) which yields T o) = +(r+x)
Also, we have

F(z,y)+ %(y—z,z—x) >0 2P+ 22 +z-x)y —rz* =22 +2x > 0.

Set J(y) = —r22y* + (212> + z — x)y — 1z* = 22 + zx. Then J(y) is a quadratic function of y with coefficients
a=-122b=2r2+z—xandc=—-rz* — 2% + zx. So

A

[2r2% + z — x]* + 4rZ?(—rz* — 2% + zx)
(z - x)2.

Since J(y) = 0 for all y € H, if and only if A = (z — x)* = 0. Therefore,z = T ¢ = x.
Then
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=1+ /1 +4r,(r, +x
Trﬂ) — ug[l) — n( n n),
n 21,
Tp=ud = x,
1-r
To=u? = — "y,
oo 5r,+17"
@ _ 1- 21’n
T =i’ = 7w
10—
To=u® = —— 1 5
i = 90r, +10°"
1-3r
Te=u? = "X,
o 1, +17"
1-4r
To = u(7) = — "y,
A 157, +1°"
Then
oo P+ u@ 4y
L 7
We have
; 10n2+3n+1x 202 +7n—-1(1—-e"
= Wy .
i 30m2—10n " 30m2+ 10n n "

1413

Choose x; = 10. The detailed results of proposed iterative in Theorem 3.2 are presented in the following

table and figure.

n Xn n X n X

1 10 11 0.0239156544 21 0.00001930391707
2 7.414282455 12 0.01166047726 22 0.000009519419651
3 5.25738677 13 0.005695329069 23 0.000004697209017
4 3.188403646 14 0.002786256225 24 0.000002319056949
5 1.720431319 15 0.001365047089 25 0.000001145527389
6 | 0.8702902283 | 16 | 0.000669619601 | 26 | 0.0000005661151488
7 0.4279164132 | 17 | 0.0003288520367 | 27 | 0.0000002798942327
8 0.2082805371 | 18 | 0.0001616632095 | 28 0.000000138439269
9 0.1011375703 | 19 | 0.00007954524563 | 29 | 0.00000006849968096
10 | 0.04914122712 | 20 | 0.00003917150569 | 30 | 0.00000003390554052
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