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Abstract. In this study, we define [Nγ, αβ]q−summability and statistical (Nγ, αβ) summability. We also
establish some inclusion relation and some related results for this new summability methods. Further we
apply Korovkin type approximation theorem through statistical (Nγ, αβ) summability and we apply the
classical Bernstein operator to construct an example in support of our result. Furthermore, we present a
rate of convergence which is uniform in Korovkin type theorem by statistical (Nγ, αβ) summability.

1. Introduction, Notations and Known Results

The study of the Korovkin-type approximation theory is a well-established area of research, which
concern with the problem of approximation a function f by means of a sequence An of positive linear
operators. The concept of statistical convergence for sequence real numbers was defined by Fast [1] and
Steinhaus [2] independently in 1951. Statistical convergence has recently became an area of active research.
Currently, researchers in statistical convergence have devoted their effort to statistical approximation [4–
12]. It is well-known that every convergent sequence is statistically convergent but converse is not always
true. Also, statistically convergent sequence do not need to be bounded. So, this type convergence is quite
effective in the approximation theory. First we recall the following definitions:

Let K be a subset of N, the set of natural numbers and Kn = {k ≤ n : k ∈ K}. The natural density of K
is defined by δ(K) = limn

1
n |Kn| provided it exists, where |Kn| denotes the cardinality of set Kn. A sequence

x = (xk) is called statistically convergent (st−convergent) to the number `, denoted by st− lim x = `, for each
ε > 0, the set Kε = {k ∈N : |xk − `| ≥ ε} has natural density zero, that is

lim
n→∞

1
n
|{k ≤ n : |xk − `| ≥ ε}| = 0.

The idea αβ−statistical convergence was introduced by Aktuğlu in [20] as follows:
Let α(n) and β(n) be two sequences positive number which satisfy the following conditions:

(i) α and β are both non-decreasing,
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(ii) β(n) ≥ α(n),

(iii) β(n) − α(n) −→ ∞ as n −→ ∞

and let Λ denote the set of pairs (α, β) satisfying (i)-(iii). For each pair (α, β) ∈ Λ, 0 < γ ≤ 1 and K ⊂ N, we
define δα,β(K, γ) in the following way

δα,β(K, γ) = lim
n→∞

∣∣∣∣K ∩ Pα,βn

∣∣∣∣
(β(n) − α(n) + 1)γ

,

where Pα,βn in the closed interval [α(n), β(n)]. A sequence x = (xk) is said to be αβ−statistically convergent of
order γ to ` or Sγαβ− convergent, if

δα,β({k : |xk − `| ≥ ε}, γ) = lim
n→∞

∣∣∣∣{k ∈ Pα,βn : |xk − `| ≥ ε
}∣∣∣∣

(β(n) − α(n) + 1)γ
= 0

and denote stγαβ − lim x = ` or xk −→ `[Sγαβ], where Sγαβ denotes the set of all αβ−statistically convergent of
order γ. Recently, Karakaya and Karaisa [14] have introduced weighted αβ−statistical convergence of order
γ, [Nαβ, s] and (Nαβ, s) summability methods. They have examined some inclusion relation and proved
Korovkin type approximation theorems through weighted αβ−statistical convergence.

In this work, we introduce [Nγ, αβ]q−summability and statistical (Nγ, αβ) summability methods. Further
we establish some inclusion relation and some related results for this new summability methods. Further-
more, we prove Korovkin’s theorem through statistical (αβ) summability order γ. The main motivation of
this paper is to define [Nγ, αβ]q−summability and statistical (Nγ, αβ) summability methods, which include
statistical (C, 1) summability, statistical lacunary summabilitiy and statisticalλ−convergent. Korovkin’s the-
orem have applied only for γ = 1 to statistical summabilitiy so far. But in this study we prove Korovkin’s
theorem for 0 < γ ≤ 1. So, our results obtained here for 0 < γ ≤ 1 are new and more comprehensive in
literature.

2. Statistical Summability Results

In this section, we introduce [Nγ, αβ]q−summability and statistical (Nγ, αβ) summability methods. We
establish some inclusion relation and some related results for this new summability methods.

Definition 2.1. Given a sequence x = (xn) for which

zγn(x) =
1

(β(n) − α(n) + 1)γ
∑

k∈Pα,βn

xk,

(i) A sequence x = (xk) is said to be (αβ)−summable of order γ to `, if zγn(x) −→ ` as n −→ ∞ and we can write
as (Nγ, αβ). Similarly, for γ = 1 the sequence x = (xk) is said to be (αβ)−summable to `, if zn(x) −→ ` as
n −→ ∞ .

(ii) A sequence x = (xk) is said to be statistical (αβ)−summable to ` or briefly statistically (Nγ, αβ) summable
of order γ to ` if for every ε > 0 the set Kε(αβ) := {k ∈ N : |zγk (x) − `| ≥ ε} has natural density zero, i.e.,
δ(Kε(αβ)) = 0. In this case we write δγ(αβ) − lim x = `. That is

lim
n→∞

1
n

∣∣∣{k ≤ n : |zγk (x) − `| ≥ ε}
∣∣∣ = 0.
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This definition includes the following special cases:

(i) Let λn be a none-decreasing sequence of positive numbers tending to∞ such that λn ≤ λn + 1, λ1 = 1.
If we take γ = 1, α(n) = n − λn + 1 and β(n) = n then statistical (Nγ, αβ) summability is reduced to
statistical λ−convergent, and [Nγ, αβ]q is reduced to strongly λq− convergence [18].

(ii) If we take γ = 1, α(n) = 1 and β(n) = n for all n then statistical (Nγ, αβ) summability is reduced to
statistical (C, 1) summability introduced in [16, 17] .

(iii) Recall that a lacunary sequence θ = {kr} is an increasing integer sequence such that k0 = 0 and
hr := kr − kr−1. If we take γ = 1, α(r) = kr−1 + 1 and β(r) = kr; then Pα,β(r) = [kr−1 + 1, kr]. But because
of [kr−1 + 1, kr] ∩N = (kr−1, kr] ∩N, we have statistical (Nγ, αβ) summability is reduced to statistical
lacunary summability introduced in [19].

(iv) If we take α(r) = kr−1 + 1 and β(r) = kr; then [Nγ, αβ]q is reduced to Nγ
θ(p) [3].

Definition 2.2. A sequence x = (xk) is said to [Nγ, αβ]q−summable to `, (0 < q < ∞), if

lim
n→∞

1
(β(n) − α(n) + 1)γ

∑
k∈Pα,βn

|xk − `|
q
−→ 0 as n −→ ∞.

We denote it by xk −→ `[Nγ, αβ]q. Similarly, for γ = 1 the sequence x = (xk) is said to be [N, αβ]q− summable to `.

Theorem 2.3. Let 0 < γ ≤ θ ≤ 1. Then, we get [Nγ, αβ]q ⊆ [Nθ, αβ]q and the inclusion is strict for some γ, θ such
that γ < θ.

Proof. Let x = (xk) ∈ [Nγ, αβ]q and γ, θ be given such that 0 < γ ≤ θ ≤ 1. Then, we have

1
(β(n) − α(n) + 1)γ

∑
k∈Pα,βn

|xk − `|
q
≤

1
(β(n) − α(n) + 1)θ

∑
k∈Pα,βn

|xk − `|
q

which gives [Nγ, αβ]q ⊆ [Nθ, αβ]q. Now, we show that this inclusion is strict. Let us consider the sequence
r = (rk) define by,

r = (rk) =

{
1, β(n) −

√
β(n) − α(n) + 1 + 1 ≤ β(n),

0, otherwise.

It is clear that

1
(β(n) − α(n) + 1)γ

∑
k∈Pα,βn

|rk − 0|q ≤

√
β(n) − α(n) + 1

(β(n) − α(n) + 1)γ
=

1
(β(n) − α(n) + 1)γ−1/2

.

Since 1
(β(n)−α(n)+1)γ−1/2 −→ 0 as n −→ ∞ for 1/2 < γ ≤ 1, so we have r = (rk) ∈ [Nγ, αβ]q. On the other hand, we

get √
β(n) − α(n) + 1 − 1

(β(n) − α(n) + 1)θ
≤

1
(β(n) − α(n) + 1)θ

∑
k∈Pα,βn

|rk − 0|q

and
√
β(n)−α(n)+1−1

(β(n)−α(n)+1)θ −→ ∞ as n −→ ∞ for 0 < θ < 1/2 then, we have r = (rk) < [Nθ, αβ]q. This completes the
proof.
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Theorem 2.4. Let x = (xk) is bounded. If (αβ)−statistical convergence of order γ to ` then it is statistical
(Nγ, αβ)−summable to ` but not conversely.

Proof. Because of (αβ)−statistical convergence of order γ to `, Kαβ(ε)/(β(k) − α(k) + 1)γ −→ 0 as k −→ ∞,
where Kαβ(ε) = { j ∈ Pα,βk : |x j − `| ≥ ε}. Then

|zγk (x) − `| =

∣∣∣∣∣∣∣∣∣
1

(β(k) − α(k) + 1)γ
∑
j∈Pα,βk

x j − `

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ 1
(β(k) − α(k) + 1)γ

β(k)∑
j=α(k)

(x j − `)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣ 1
(β(k) − α(k) + 1)γ

∑
j∈Kαβ(ε)

(x j − `)

∣∣∣∣∣∣∣∣ ≤ 1
(β(k) − α(k) + 1)γ

(sup
j
|x j − `|)Kαβ(ε) −→ 0

as k −→ ∞, this means that zγk (x) −→ ` as k −→ ∞. This implies that x is (Nγ, αβ)−summable to `. Therefore,
x is statistical (Nγ, αβ)−summable to `.

For converse, let α(n) = 1, γ = 1 and β(n) = n and the sequence y = (yn) define as

yn =

{
1, if n is even
−1, if n is odd. (1)

Indeed, y is not (αβ)−statistical convergence. On the other hand y is statistical (Nγ, αβ)−summable to 0.

Theorem 2.5. Let γ, θ be real numbers such that 0 < γ ≤ θ ≤ 1 and 0 < q < ∞. Then, we have
[Nγ, αβ]q ⊆ Sθαβ.

Proof. Assume that x = (xk) ∈ [Nγ, αβ]q summable to ` and for ε > 0, we get∑
k∈Pα,βn

|xk − `|
q =

∑
k∈Pα,βn
|xk−`|≥ε

|xk − `|
q +

∑
k∈Pα,βn
|xk−`|<ε

|xk − `|
q

≥

∑
k∈Pα,βn
|xk−`|≥ε

|xk − `|
q
≥

∣∣∣∣{k ∈ Pα,βn : |xk − `| ≥ ε
}∣∣∣∣ εq, (2)

Using (2), we obtain

1
(β(n) − α(n) + 1)γ

∑
k∈Pα,βn

|xk − `|
q
≥

1
(β(n) − α(n) + 1)γ

∣∣∣∣{k ∈ Pα,βn : |xk − `| ≥ ε
}∣∣∣∣ εq

≥
1

(β(n) − α(n) + 1)θ

∣∣∣∣{k ∈ Pα,βn : |xk − `| ≥ ε
}∣∣∣∣ εq

which means that x = (xk) ∈ Sθαβ.

The following statements are obtained in Theorem 2.5.

Corollary 2.6. Let γ be real number such that 0 < γ ≤ 1 and 0 < q < ∞. Then we have [Nγ, αβ]q ⊆ Sγαβ and
[Nγ, αβ]q ⊆ Sαβ.

Theorem 2.7. If x = (xk) is bounded and (αβ)−statistical convergence of order γ to ` then xk −→ `[Nγ, αβ]q.
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Proof. Assume that x = (xk) is bounded and (αβ)−statistical convergence of γ to `. Then for ε > 0, we get
δα,β(Kαβ(ε), γ) = 0. Since x = (xk) is bounded, there exists M > 0 such that |xk − `| ≤ M for k ∈ N. We obtain
that

1
(β(n) − α(n) + 1)γ

∑
k∈Pα,βn

|xk − `|
q = R1(n) + R2(n)

where

R1(n) =
1

(β(n) − α(n) + 1)γ
∑

k∈Pα,βn
k<Kαβ(ε)

|xk − `|
q,

R2(n) =
1

(β(n) − α(n) + 1)γ
∑

k∈Pα,βn
k∈Kαβ(ε)

|xk − `|
q.

If k < Kαβ(ε) then R1(n) < εq. For k ∈ Kαβ(ε) we get,

R2(n) ≤ (sup |xk − `|)
|Kαβ(ε)|

(β(n) − α(n) + 1)γ
≤

M|Kαβ(ε)|
(β(n) − α(n) + 1)γ

−→ 0, as n −→ ∞,

since δαβ(Kαβ(ε), γ) = 0. Therefore, xk −→ `[Nγ, αβ]q.

Theorem 2.8. Let (α, β) ∈ Λ. If lim infn
βn

αn−1 ≥ 1, then we have Sαβ ⊆ S, where S is denoted set of all statistically
convergent sequence space.

Proof. Assume that lim infn
β(n)
α(n)−1 ≥ 1. Then, there a exists θ > 0 such that lim infn

β(n)
α(n)−1 ≥ 1 +θ, then obtain

that

βn − α(n) + 1
β(n)

= 1 −
α(n) − 1
β(n)

≥ 1 −
1

1 + θ
=

θ
1 + θ

.

For a given ε > 0, we have{
k ≤ β(n) : |xk − `| ≥ ε

}
⊃

{
α(n) ≤ k ≤ β(n) : |xk − `| ≥ ε

}
.

Thus,

1
β(n)

∣∣∣{k ≤ β(n) : |xk − `| ≥ ε
}∣∣∣ ≥ β(n) − α(n) + 1

β(n)
1

β(n) − α(n) + 1

∣∣∣{α(n) ≤ k ≤ β(n) : |xk − `| ≥ ε
}∣∣∣

≥
θ

1 + θ
1

β(n) − α(n) + 1

∣∣∣∣{k ∈ Pα,βn : |xk − `| ≥ ε
}∣∣∣∣

Since st − lim x = `, we get stαβ − lim x = `. This step completes the proof.

3. Application to Korovkin Type Approximation

In this section, we get an analogue of classical Korovkin theorem by using the concept of statistical
(Nγ, αβ) summability.

Let C[a, b] be the linear space of all real-valued continuous functions f on [a, b] and let A be a linear
operator which maps C[a, b] into itself. We say A is positive operator, if for every non-negative f ∈ C[a, b],
we have A( f , x) ≥ 0 for x ∈ [a, b]. It is well-known that C[a, b] is a Banach space with the norm given by

‖ f ‖C[a,b]= sup
x∈[a,b]

| f (x)|.
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The classical Korovkin approximation theorem states as follows (see [20, 21])

lim
n→∞
‖ An( f , x) − f (x) ‖C[a,b]= 0⇔ lim

n→∞
‖ An(ei, x) − ei ‖C[a,b]= 0,

where ei = xi, i ∈ {0, 1, 2} and f ∈ C[a, b].

Theorem 3.1. Let (Lk) be a sequence of positive linear operator from C[a, b] in to C[a, b]. Then for all f ∈ C[a, b]

Nγ(st) − lim
k→∞
‖ Lk( f , x) − f (x) ‖C[a,b]= 0 (3)

if and only if

Nγ(st) − lim
k→∞
‖ Lk(e0, x) − e0 ‖C[a,b]= 0, (4)

Nγ(st) − lim
k→∞
‖ Lk(e1, x) − e1 ‖C[a,b]= 0, (5)

Nγ(st) − lim
k→∞
‖ Lk(e2, x) − e2 ‖C[a,b]= 0. (6)

Proof. Because of ei ∈ C[a, b] for (i = 0, 1, 2), conditions (4)-(6) follow immediately from (3). Let the conditions
(4)-(6) hold and f ∈ C[a, b]. By the continuity of f at x, it follows that for given ε > 0 there exists δ such that
for all t

| f (x) − f (t)| < ε, whenever ∀|t − x| < δ. (7)

Since f is bounded, we get

| f (x)| ≤M, −∞ < x, t < ∞.

Hence

| f (x) − f (t)| ≤ 2M, −∞ < x, t < ∞. (8)

By using (7) and (8), we have

| f (x) − f (t)| < ε +
2M
δ2 (t − x)2, ∀|t − x| < δ.

This implies that

−ε −
2M
δ2 (t − x)2 < f (x) − f (t) < ε +

2M
δ2 (t − x)2.

By using the positivity and linearity of {Lk}, we get

Lk(1, x)
(
−ε −

2M
δ2 (t − x)2

)
< Lk(1, x)

(
f (x) − f (t)

)
≤ Lk(1, x)

(
ε +

2M
δ2 (t − x)2

)
where x is fixed and so f (x) is constant number. Therefore,

−εLk(1, x) −
2M
δ2 Lk((t − x)2, x) < Lk( f , x) − f (x)Lk(1, x) < εLk(1, x) +

2M
δ2 Lk((t − x)2, x). (9)

On the other hand

Lk( f , x) − f (x) = Lk( f , x) − f (x)Lk(1, x) + f (x)Lk(1, x) − f (x)
= [Lk( f , x) − f (x)Lk(1, x) − f (x)Lk] + f (x)[Lk(1, x) − 1]. (10)

By inequality (9) and (10), we obtain

Lk( f , x) − f (x) < εLk(1, x) +
2M
δ2 Lk((t − x)2, x) + f (x) + f (x)[Lk(1, x) − 1]. (11)
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Now, we compute second moment

Lk((t − x)2, x) = Lk(x2
− 2xt + t2, x)

= x2Lk(1, x) − 2xLk(t, x) + Lk(t2, x)
= [Lk(t2, x) − x2] − 2x[Lk(t, x) − x] + x2[Lk(1, x) − 1].

Combing above equality with the relation (11), one can see that

Lk( f , x) − f (x) < εLk(1, x) +
2M
δ2 {[Lk(t2, x) − x2] − 2x[Lk(t, x) − x] + x2[Lk(1, x) − 1]} + f (x)(Lk(1, x) − 1)

= ε[Ln(1, x) − 1] + ε +
2M
δ2 {[Lk(t2, x) − x2] − 2x[Lk(t, x) − x] + x2[Lk(1, x) − 1]}

+ f (x)(Lk(1, x) − 1).

Because of ε is arbitrary, we obtain

‖ Lk( f , x) − f (x) ‖C[a,b] ≤

(
ε + M +

2Mb2

δ2

)
‖ Lk(e0, x) − e0 ‖C[a,b] +

4Mb
δ2 ‖ Lk(e1, x) − e1 ‖C[a,b]

+
2M
δ2 ‖ Lk(e2, x) − e2 ‖C[a,b]

≤ R
(
‖ Lk(e0, x) − e0 ‖C[a,b] + ‖ Lk(e1, x) − e1 ‖C[a,b] + ‖ Lk(e2, x) − e2 ‖C[a,b]

)
where R = max

(
ε + M + 2Mb2

δ2 , 4Mb
δ2

)
.

Finally, replacing Lk(t, x) by Tk(t, x) = 1
(β(k)−α(k)+1)γ

∑
j∈Pα,βk

L j(t, x) and for ε
′

> 0, we can write

M : =

{
k ∈N :‖ Tk(e0, x) − e0 ‖C[a,b] + ‖ Tk(e1, x) − e1 ‖C[a,b] + ‖ Tk(e2, x) − e2 ‖C[a,b]≥

ε
′

R

}
,

M1 : =

{
k ∈N :‖ Tk(e0, x) − e0 ‖C[a,b]≥

ε
′

3R

}
,

M2 : =

{
k ∈N :‖ Tk(e1, x) − e1 ‖C[a,b]≥

ε
′

3R

}
,

M3 : =

{
k ∈N :‖ Tk(e2, x) − e2 ‖C[a,b]≥

ε
′

3R

}
.

Then, M ⊂ M1 ∪M2 ∪M3, so we have δ(M) ≤ δ(M1) + δ(M2) + δ(M3). Thus, by conditions (4)-(6), we
obtain

Nγ(st) − lim
k→∞
‖ Lk( f , x) − f (x) ‖C[a,b]= 0.

which completes the proof.

We remark that our Theorem 3.1 is stronger than that of classical Korovkin approximation theorem as
well as Theorem of Gadjiev and Orhan [15]. For this purpose, we get the following example:

Example 3.2. Considering the sequence of Bernstein operators

Bn( f , x) =

n∑
k=0

f
(n

k

) (n
k

)
xk(1 − x)n−k; x ∈ [0, 1].

We define the sequence of linear operators as Kn : C[0, 1] −→ C[0, 1] with Kn( f , x) = (1 + yn)Bn( f , x), where y = (yn)
is defined in (1). Then, Bn(1, x) = 1, Bn(t, x) = x and Bn(t2, x) = x2 + x−x2

n and sequence (Kn) satisfies the conditions
(4)-(6). Therefore, we get

Nγ(st) − lim
k→∞
‖ Kn( f , x) − f (x) ‖C[a,b]= 0.
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On the other hand, we have Kn( f , 0) = (1 + yn) f (0), since Bn( f , 0) = f (0), thus we obtain

‖ Kn( f , x) − f (x) ‖∞≥ |Kn( f , 0) − f (0)| ≥ yn| f (0)|.

One can see that (Kn) is not satisfy the classical Korovkin theorem as well as Theorem of Gadjiev and Orhan [15],
since y is statistical (Nγ, αβ)−summable to 0 but neither convergent nor statistical convergent.

4. Rate of Statistical Summability (Nγ, αβ)

In this section, we estimate rate of statistical summability (Nγ, αβ) of a sequence of positive linear
operators defined C[a, b] into C[a, b]. Now, we give following definition:

Definition 4.1. Let (un) be a positive non-increasing sequence. We say that the sequence x = (xk) is a statistical
summable (Nγ, αβ) to ` with the rate o(un) if for every, ε > 0

lim
n→∞

1
un

∣∣∣∣{k ≤ n : |zγk − `| ≥ ε
}∣∣∣∣ = 0.

At this point, we can write xk − ` = Nγ(st) − o(un).

As usual we have the following auxiliary result.

Lemma 4.2. Let (an) and (bn) be two positive non-increasing sequences. Let x = (xk) and y = (yk) be two sequences
such that xk − L1 = Nγ(st) − o(an) and yk − L1 = Nγ(st) − o(bn). Then we have

(i) α(xk − L1) = Nγ(st) − o(an) for any scalar α,

(ii) (xk − L1) ± (yk − L2) = Nγ(st) − o(cn),

(iii) (xk − L1)(yk − L2) = Nγ(st) − o(anbn),

where cn = max{an, bn}.

Before proceeding further, let us give basic definition and notation on the concept of the modulus of
continuity. The modulus of continuity of f , ω( f , δ) is defined by

ω( f , δ) = sup
|x−y|≤δ
x,y∈[a,b]

| f (x) − f (y)|.

It is well-known that for a function f ∈ C[a, b],

lim
n→0+

ω( f , δ) = 0

for any δ > 0

| f (x) − f (y)| ≤ ω( f , δ)
(
|x − y|
δ

+ 1
)
. (12)

Theorem 4.3. Let (Lk) be sequence of positive linear operator from C[a, b] into C[a, b]. Assume that

(a) ‖ Lk(1, x) − x ‖C[a,b]= Nγ(st) − o(un),

(b) ω( f , ψk) = Nγ(st) − o(vn) where ψk =
√

Lk[(t − x)2, x].

Then for all f ∈ C[a, b], we get

‖ Lk( f , x) − f (x) ‖C[a,b]= Nγ(st) − o(zn)

where zn = max{un, vn}.
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Proof. Let f ∈ C[a, b] and x ∈ [a, b]. From (10) and (12), we can write

|Lk( f , x) − f (x)| ≤ Lk(| f (t) − f (x)|; x) + | f (x)||Lk(1, x) − 1|

≤ Lk

(
|x − y|
δ

+ 1; x
)
ω( f , δ) + | f (x)||Lk(1, x) − 1|

≤ Lk

(
(t − x)2

δ2 + 1; x
)
ω( f , δ) + | f (x)||Lk(1, x) − 1|

≤

(
Lk(1, x) +

1
δ2 Lk

(
(t − x)2; x

))
ω( f , δ) + | f (x)||Lk(1, x) − 1|

= Lk(1, x)ω( f , δ) +
1
δ2 Lk

(
(t − x)2; x

)
ω( f , δ) + | f (x)||Lk(1, x) − 1|.

By choosing
√
ψk = δ, we obtain

‖ Lk( f , x) − f (x) ‖C[a,b] ≤ ‖ f ‖C[a,b]‖ Lk(1, x) − x ‖C[a,b] +2ω( f , ψk) + ω( f , ψk) ‖ Lk(1, x) − x ‖C[a,b]

≤ H{‖ Lk(1, x) − x ‖C[a,b] +ω( f , ψk) + ω( f , ψk) ‖ Lk(1, x) − x ‖C[a,b]},

where H = max{2, ‖ f ‖C[a,b]}. From Definition 4.1, conditions (a) and (b), we get the desired the result.
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