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Computation of the Greatest Regular Equivalence

Ivan Stankovića, Ivana Micića, Zorana Jančića
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Abstract. The notion of social roles is a centerpiece of most sociological theoretical considerations. Regular
equivalences were introduced by White and Reitz in [29] as the least restrictive among the most commonly
used definitions of equivalence in social network analysis. In this paper we consider a generalization of
this notion to a bipartite case. We define a pair of regular equivalences on a two-mode social network and
we provide an algorithm for computing the greatest pair of regular equivalences.

1. Introduction

One of the main problems of the social network analysis is to find similarities between entities which
indicate that they have the same role or position in a network. These similarities were formalized first
by Lorrain and White [27], Breiger et al. [8] and Burt [9] by the concept of a structural equivalence. Two
entities are considered to be structurally equivalent if they have identical links to the rest of the network.
Structural equivalences are extensively studied in [1, 2, 4, 16–19, 21, 22]. In order to generalize the concept of
a structural equivalence, White and Reitz [29] introduced the notion of a regular equivalence. Two entities
are said to be regularly equivalent if they are equally related to equivalent others [5, 20]. Afterwards, a
regular equivalences have been studied in numerous papers (cf. [23, 24]).

The regular equivalence approach is important because it provides a method for identifying ”roles”
from the patterns of ties present in a network. Rather than relying on attributes of actors to define social
roles and to understand how social roles give rise to patterns of interaction, regular equivalence analysis
seeks to identify social roles by identifying regularities in the patterns of network ties – whether or not the
occupants of the roles have names for their positions. The regular equivalences enable the clustering of
the set of actors only with respect to their relationship to each other. The aim of this paper is to introduce
the generalization of the notion of regular equivalence which provides the clustering based on the actors
relationship to some other group of actors (e.g. the group of students can be clustered by their interest in
attending the certain group of exams).

We consider a two-mode network – an ordered triple (A,B,R), where A and B are non-empty sets
and R is a relation between A and B, and we define the pair of regular equivalences (E,F), as the pair of
equivalences (E,F), on A and B respectively, which satisfies E ◦ R = R ◦ F. Similar relational equalities have
been extensively studied by Ćirić, Ignjatović et others in [10–15, 24–26], where the greatest solutions to these
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equalities were computed. Based on the general ideas of this study and of the well known Paige-Tarjan
partition refinement procedure [28], we provide an efficient algorithm for computing the greatest pair of
regular equivalences.

The paper is organized as follows. In Section 2 we recall some basic properties of relations in general,
and of equivalence relations. In particular, we define the right and left residuals. In Section 3 we define
pairs of regular equivalences on a two-mode network, and we examine their main properties. Section 4
contains our main results on the computation of the greatest pair of regular equivalences on a network.
Specifically, we provide an algorithm for computing the greatest pair of regular equivalences on a network
and we give an illustrative computational example.

2. Preliminaries

Let A be a non-empty set. Any subset R ⊆ A × A is called a relation on A, and equality, inclusion, union
and intersection of relations on A are defined as for subsets of A × A. The set of all relations on A will be
denoted by R(A). The inverse of a relation R ∈ R(A) is a relation R−1

∈ R(A) defined by (b, a) ∈ R−1 if and
only if (a, b) ∈ R, for all a, b ∈ A. For a relation ϕ ∈ R(A) we define a subset Domϕ of A and Imϕ of A by
Domϕ = {a ∈ A | (∃b ∈ A) (a, b) ∈ ϕ} and Imϕ = {b ∈ A | (∃a ∈ A) (a, b) ∈ ϕ}. We call Domϕ the domain of ϕ
and Imϕ the image of ϕ.

For non-empty set A, and relations R,S ∈ R(A), the composition of R and S is a relation R ◦ S ∈ R(A)
defined by

(a, c) ∈ (R ◦ S) ⇔ (∃b ∈ A)
(
(a, b) ∈ R ∧ (b, c) ∈ S

)
, (1)

for all a, c ∈ A. For non-empty set A, a relation R ∈ R(A), and subsets Y,Z ⊆ A, we define subsets Y ◦ R ⊆ A
and R ◦ Z ⊆ A by

b ∈ Y ◦ R ⇔ (∃a ∈ A)
(
a ∈ Y ∧ (a, b) ∈ R

)
, a ∈ R ◦ Z ⇔ (∃b ∈ A)

(
(a, b) ∈ R ∧ b ∈ Z

)
, (2)

for all a, b ∈ A. To simplify our notation, for a non-empty set A and subsets Y,Z ⊆ A we will write

Y ◦ Z =

1 if Y ∩ Z , ∅,
0 if Y ∩ Z = ∅,

(3)

i.e., Y ◦ Z is the truth value of the statement ”Y ∩ Z , ∅”.
For non-empty sets A, arbitrary relations R,S,T,S1,S2,Si ∈ R(A), where i ∈ I, and arbitrary subsets

Y,Z,V ⊆ A, the following is true:

(R ◦ S) ◦ T = R ◦ (S ◦ T), (4)
S1 ⊆ S2 implies R ◦ S1 ⊆ R ◦ S2 and S1 ◦ T ⊆ S2 ◦ T, (5)

R ◦
(⋃

i∈I

Si

)
=

⋃
i∈I

(R ◦ Si),
(⋃

i∈I

Si

)
◦ T =

⋃
i∈I

(Si ◦ T) (6)

(Y ◦ R) ◦ S = Y ◦ (R ◦ S), (Y ◦ R) ◦ Z = Y ◦ (R ◦ Z), (R ◦ S) ◦ V = R ◦ (S ◦ V), (7)

Let A and B be non empty sets. Any subset of the Cartesian product A × B is called a relation between A
and B. The set of all relations between A and B will be denoted by R(A,B). Note that, despite the notation,
the inverse relation R−1 is not an inverse of the relation R ∈ R(A,B) in the sense of composition of relations,
i.e., R ◦ R−1 and R−1

◦ R are not the equality relations on A in general. Let us also note that if A is a finite
set with |A| = n, then R and S can be treated as n × n Boolean matrices, and R ◦ S is their matrix product.
Moreover, if we consider Y and Z as 1× n Boolean matrices, i.e., Boolean vectors of length n, then Y ◦R can
be treated as the matrix product of Y and R, R ◦ Z as the matrix product of R and Zt (the transpose of Z),
and Y ◦ Z as the scalar product of vectors Y and Z.
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Recall that an equivalence on a set A is any reflexive, symmetric and transitive relation on A. The set
of all equivalence relations on the set A is denoted by E(A). Let E be an equivalence on a set A. By Ea we
denote the equivalence class of an element a ∈ A with respect to E, i.e., Ea = {b ∈ A | (a, b) ∈ E}. The set of all
equivalence classes of E is denoted by A/E and called the factor set of A with respect to E.

We recall some basic properties of equivalences:

Lemma 2.1. Let E,F ∈ E(A) be a equivalences on A. Then, relation E ∩ F is also a equivalence relation.

Lemma 2.2. Let P,Q ∈ E(A) and P ⊆ Q. Then P ◦Q = Q.

For non empty sets A and subsets Y ⊆ A and Z ⊆ A we define the right residual of Z by Y as a relation
Y \ Z ⊆ A × A, given by:

(a, b) ∈ Y \ Z ⇔ (a ∈ Y⇒ b ∈ Z)

and the left residual of Z by Y as a relation Z /Y ⊆ A × A given with

(a, b) ∈ Z /Y ⇔ (b ∈ Y⇒ a ∈ Z).

Moreover, we define a relation Y |Z on A as follows

(a, b) ∈ Y |Z ⇔ (a ∈ Y⇔ b ∈ Z),

for every a, b ∈ A. Obviously, Y |Z = Y \ Z ∩ Y /Z. It is easy to check that

Y \ Z =
⋃
{R ∈ 2A×A

|Y ◦ R ⊆ Z}, Z /Y =
⋃
{R ∈ 2A×A

|R ◦ Y ⊆ Z},

and hence, the following is true

Y ◦ R ⊆ Z ⇔ R ⊆ Y \ Z, R ◦ Y ⊆ Z ⇔ R ⊆ Z /Y.

Lemma 2.3. Let E,F ⊆ A × A be equivalence relations on A, such that E ⊆ F. Then E ⊆ Fa
|Fa, for all a ∈ A.

Proof. Let (b, c) ∈ E. Then (b, c) ∈ F. Thus b ∈ Fa if and only if c ∈ Fa, or equivalently (b, c) ∈ Fa
|Fa.

3. Regular Equivalences

A two-mode social network is an ordered triple A = (A,B,R), where A and B are non-empty sets and
R ∈ R(A,B).

A pair of equivalence relations (E,F), where E ∈ E(A) and F ∈ E(B), on the two-mode network A is
called a pair of regular equivalences if and only if:

E ◦ R = R ◦ F. (8)

It is not hard to prove the following theorem.

Theorem 3.1. Let A = (A,B,R) be a two-mode social network, E ∈ E(A) and F ∈ E(B). Then, (E,F) is a pair of
regular equivalences if and only if the following holds:

E ◦ R ◦ F = E ◦ R ∩ R ◦ F. (9)

The following theorem gives the basic characterization of regular equivalences on two-mode networks.

Theorem 3.2. Let A = (A,B,R) be a two-mode social network, E ∈ E(A) and F ∈ E(B). Then, (E,F) is a pair of
regular equivalences if and only if the following holds:

(E,F) ⊆ ((R ◦ Fb)|(R ◦ Fb), (Ea
◦ R)|(Ea

◦ R)), for all a ∈ A, b ∈ B. (10)
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Proof. Let (E,F) be a pair of regular equivalences. Then according to the previous theorem we have
E ◦ R ◦ F ⊆ R ◦ F. This is equivalent to:

(a, b) ∈ E ◦ R ◦ F implies (a, b) ∈ R ◦ F, for all a ∈ A, b ∈ B.

Thus, whenever there exists c ∈ A such that (a, c) ∈ E and (c, b) ∈ R ◦ F then (a, b) ∈ R ◦ F. Therefore (a, c) ∈ E
implies (a, c) ∈ (R ◦ Fb) / (R ◦ Fb), for every b ∈ B.

According to the fact that E is symmetric, we obtain:

E = E−1
⊆ ((R ◦ Fb) / (R ◦ Fb))−1 = (R ◦ Fb) \ (R ◦ Fb), for all b ∈ B.

So,

E ⊆ ((R ◦ Fb) / (R ◦ Fb))
⋂

((R ◦ Fb) \ (R ◦ Fb)) = (R ◦ Fb) | (R ◦ Fb), for all b ∈ B.

In a similar way we prove that F ⊆ (Ea
◦ R)|(Ea

◦ R), for all a ∈ A.
On the other hand, let (10) holds. Let (a, b) ∈ E ◦ R ◦ F, then there exists c ∈ A such that (a, c) ∈ E and

(c, b) ∈ R ◦ F, that is, (a, c) ∈ E and c ∈ R ◦ Fb. According to (10), (a, c) ∈ E implies (a, c) ∈ (R ◦ Fb) | (R ◦ Fb), for
every b ∈ B. Therefore, a ∈ R ◦ Fb, i.e., (a, b) ∈ R ◦ F, which means E ◦ R ◦ F ⊆ R ◦ F, that is, E ◦ R ◦ F = R ◦ F,
since E is an equivalence relation.

In an analogue way we show that E ◦R ◦ F ⊆ E ◦R, i.e., E ◦R ◦ F = E ◦R. Thus, (E,F) is a pair of regular
equivalences.

Lemma 3.3. LetA = (A,B,R) be a two-mode social network, (E,F) be a pair of regular equivalences and (P,Q) be a
pair of equivalences such that (E,F) ⊆ (P,Q). Then the following holds:

(E,F) ⊆
(
(R ◦Qb) | (R ◦Qb) , (Pa

◦ R) | (Pa
◦ R)

)
, for all a ∈ A, b ∈ B. (11)

Proof. According to the Theorem 3.1 the pair of regular equivalences (E,F) satisfies

E ◦ R ◦ F ⊆ E ◦ R and E ◦ R ◦ F ⊆ R ◦ F.

Since E,F,P and Q are equivalence relations such that E ⊆ P and F ⊆ Q, we conclude P◦E = P and F◦Q = Q.
Therefore we obtain the following:

E ◦ R ◦ F ◦Q ⊆ R ◦ F ◦Q, P ◦ E ◦ R ◦ F ⊆ P ◦ E ◦ R,

i.e.,

E ◦ R ◦Q ⊆ R ◦Q, P ◦ R ◦ F ⊆ P ◦ R. (12)

In the similar way as in the proof of the Theorem 3.2, we can prove that the first inequality in (12) implies
E ⊆ (R◦Qb) | (R◦Qb), for every b ∈ B, and the second implies F ⊆ (Pa

◦R) | (Pa
◦R), for every a ∈ A. Therefore,

inequalities in (12) imply (E,F) ⊆
(
(R ◦Qb) | (R ◦Qb), (Pa

◦ R) | (Pa
◦ R)

)
, for every a ∈ A and b ∈ B.

4. Computing the Greatest Pair of Regular Equivalences

The following theorem gives the procedure for computing the greatest pair of regular equivalences on
the given network.

Theorem 4.1. LetA = (A,B,R) be a two-mode network. Further let E ∈ E(A) and F ∈ E(B) be equivalences on A
and B respectively.

Define the sequences {(Ek,Fk)}k∈N and {(Xk,Pk)}k∈N as follows: Initially for k = 1,

(X1,P1) = (UA,UB), (13)

(E1,F1) = (E,F) ∩
(
(R ◦Ub

B) | (R ◦Ub
B), (Ua

A ◦ R) | (Ua
A ◦ R)

)
(14)
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where a ∈ A and b ∈ B are arbitrary elements.
Further, for each k ∈ N repeat the following step: Find a ∈ A and b ∈ B such that (Xa

k,P
b
k) , (Ea

k,F
b
k) and set

(Xk+1,Pk+1) = (Xk,Pk) ∩ (Ea
k |E

a
k,F

b
k |F

b
k), (15)

(Ek+1,Fk+1) = (Ek,Fk) ∩
(
R ◦ Fb

k |R ◦ Fb
k , Ea

k ◦ R |Ea
k ◦ R

)
∩

(
R ◦ (Pb

k − Fb
k)|R ◦ (Pb

k − Fb
k) , (Xa

k − Ea
k) ◦ R | (Xa

k − Ea
k) ◦ R

)
, (16)

until (Xk,Pk) = (Ek,Fk). Then:

(a) The sequences {(Ek,Fk)}k∈N and {(Xk,Pk)}k∈N are descending;

(b) For every k ∈N, Ek ⊆ Xk and Fk ⊆ Pk;

(c) For every k ∈N, for all c ∈ A and d ∈ B the following holds :

Ek ⊆ (R ◦ Pd
k) | (R ◦ Pd

k), Fk ⊆ (Xc
k ◦ R) | (Xc

k ◦ R); (17)

(d) There exists n ∈ N such that (Xn,Pn) = (En,Fn) and (En,Fn) is the greatest pair of regular equivalences
contained in (E,F).

Proof. (a) This follows directly from the definition of the sequences;
We prove the statement (b) by induction on k ∈N.
For k = 1, it evidently holds.
Suppose Em ⊆ Xm, for k = m, and prove Em+1 ⊆ Xm+1. Since {Ek}k∈N is descending, we have that

Em+1 ⊆ Em, and by Lemma 2.3 we have Em+1 ⊆ Ea
m |Ea

m. Moreover, according to induction hypothesis we
have Em+1 ⊆ Em ⊆ Xm, and thus:

Em+1 ⊆ Xm ∩ (Ea
m |E

a
m) = Xm+1,

which was to be proved. Analogous, we prove Fk ⊆ Pk.
We prove the statement (c) also by induction on k ∈N.
In the case k = 1 directly from the definition of E1 and the fact that UB has only one equivalence class,

we obtain that (22) holds.
For k = 2, X2 = X1 ∩ (Ea

1 |E
a
1) for some a ∈ A. Since P1 = UB it has one equivalence class and we will

denote it Pb
1. According to the definition of P2, we conclude that P2 is also an equivalence relation and it

has exactly two equivalence classes Fb
1 and Pb

1 − Fb
1. Now, according to the definition of E2 we have:

E2 = E1 ∩ (R ◦ (Pa
1 − Fb

1)) | (R ◦ (Pb
1 − Fb

1)) ∩ (R ◦ Fb
1) | (R ◦ Fb

1),

which means,

E2 ⊆ (R ◦ Pd
2) | (R ◦ Pd

2), for every d ∈ B. (18)

In a similar way we prove F2 ⊆ (Xc
2 ◦ R) | (Xc

2 ◦ R) for every c ∈ A. Hence for k = 2 inequality (22) holds.
Suppose that for k = m inequality (22) is true. Then for every d ∈ B:

Em ⊆ (R ◦ Pd
m) | (R ◦ Pd

m).

Consider the equivalence relation Pm+1 = Pm∩ (Fb
m |Fb

m), for some b ∈ A such that Pb
m , Fb

m . According to
(b), Fb

m ⊂ Pb
m. This means that except of the equivalence class Pb

m, all equivalence classes of the equivalence
relations Pm and Pm+1 are the same. Moreover, Pm has the equivalence class Pb

m, whereas Pm+1 instead of
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Pb
m has two equivalence classes Fb

m and Pb
m − Fb

m. Therefore, for any equivalence class Pd
m+1, d ∈ B, such that

Pd
m+1 , Fb

m and Pd
m+1 , (Pb

m − Fb
m), according to the induction hypothesis we have:

Em+1 ⊆ Em ⊆ (R ◦ Pd
m) | (R ◦ Pd

m) = (R ◦ Pd
m+1) | (R ◦ Pd

m+1). (19)

Therefore, for every d ∈ B, such that Pd
m+1 , Fb

m and Pd
m+1 , (Pb

m − Fb
m), the first inequality in (22) holds.

For equivalence classes Fb
m and Pb

m − Fb
m, according to the definition of Em+1 the following holds:

Em+1 = Em ∩ ((R ◦ Fb
m) | (R ◦ Fb

m)) ∩ ((R ◦ (Pb
m − Fb

m)) | (R ◦ (Pb
m − Fb

m))).

Hence, for k = m + 1 the first inequality (22) is satisfied. In a similar way we can show that the second
inequality in (22) holds, which was to be proved.

(d) As the set A and B are finite, there is a finite number of relations on A and B so there exists k ∈ N
such that (Xk,Pk) = (Ek,Fk).

Next, for such k, according to (c) and by Theorem 3.2, we conclude that (Ek,Fk) is a pair of regular
equivalences. In order to prove that (Ek,Fk) is the greatest pair of regular equivalences we will show that
for an arbitrary pair of regular equivalences (P,Q) the following holds:

(P,Q) ⊆ (Ek,Fk) k ∈N.

This will be proved by induction, too. First we consider the case k = 1. Since (P,Q) is a pair of regular
equivalences and UA,UB are equivalences such that P ⊆ UA and Q ⊆ UB, the conditions of the Lemma 3.3
are satisfied, and hence,

(P,Q) ⊆
(
(R ◦Ub

B) | (R ◦Ub
B), (Ua

A ◦ R) | (Ua
A ◦ R)

)
.

Now, since (P,Q) ⊆ (E,F) also holds, we obtain (P,Q) ⊆ (E1,F1).
Next, suppose that (P,Q) ⊆ (Em,Fm) holds and prove (P,Q) ⊆ (Em+1,Fm+1).
According to (b), (Em,Fm) ⊆ (Xm,Pm). Also, according to Lemma 2.3, Em ⊆ Ea

m |Ea
m and Fm ⊆ Fb

m |Fb
m, for

all a ∈ A and b ∈ B. Thus Em ⊆ Xm+1 and Fm ⊆ Pm+1.
Therefore, by the induction hypothesis (P,Q) ⊆ (Em,Fm) ⊆ (Xm+1,Pm+1) the conditions of the Lemma 3.3

are satisfied and we obtain:

(P,Q) ⊆
(
(R ◦ Pb

m+1) | (R ◦ Pb
m+1), (Xa

m+1 ◦ R) | (Xa
m+1 ◦ R)

)
, for all a ∈ A, b ∈ B.

This directly implies that (P,Q) ⊆ (Em+1,Fm+1), which was to be proved.

In the sequel, according to the previous theorem, for a given two-mode networkA, and a pair of equiv-
alences (E,F) we provide an algorithm for computing the greatest pair of regular equivalences contained in
(E,F).

Algorithm 4.2 (Construction of the greatest pair of regular equivalences). The input of this algorithm is a two-
mode network A, and equivalences E ∈ E(A) and F ∈ E(B), and the output is the greatest pair of regular
equivalences contained in (E,F).

The procedure builds the sequences of pairs of equivalences {(Xk,Pk)}k∈N and {(Ek,Fk)}k∈N in the following
way:
(A1) In the first step we set (X1,P1) = (UA,UB), where (UA,UB) is the pair of universal relations on A and

B, and we compute (E1,F1) using formula (14), where a ∈ A and b ∈ B are arbitrary elements;
(A2) After the k-th step let the pairs of equivalences (Xk,Pk) and (Ek,Fk) be computed;
(A3) In the next step we do the following: If there exists a pair (a, b) ∈ A × B, such that the pair of

classes (Xa
k,P

b
k) is not equal to (Ea

k,F
b
k), then using formula (15) we compute the pair (Xk+1,Pk+1) and

using formula (16) we compute (Ek+1,Fk+1). Otherwise, if such a pair of elements does not exist, the
procedure terminates and the last computed pair (Xk,Pk) is the greatest pair of regular equivalences
contained in (E,F).
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The initial pair of equivalences (X1,P1), is the pair (UA,UB), that is, R1, as well as P1 has only one
equivalence class, and, in the worst case, the last pair of equivalences (Xk,Pk), for some k ∈ N, is the pair
(IdA, IdB). Therefore, in the worst case, Xk has n equivalence classes and Pk has m equivalence classes, where
n = |A| and m = |B|. According to that and the fact that in every step of this algorithm we split at least one
equivalence class into two classes, we obtain that this algorithm terminates after at most m + n − 1 steps.

If we adopt this procedure to the case one-mode networks we obtain a method for computing the
greatest regular equivalence:

Theorem 4.3. Let (A,R) be a network and U = A × A the universal relation on A, and E ∈ E(A) an equivalence on
A.

Define sequences {Ek}k∈N and {Rk}k∈N of equivalences on A as follows: Initially for k = 1

R1 = U, E1 = E ∩
(
(R ◦Ua)|(R ◦Ua)

)
,

where a is an arbitrary element of A.
Further, for each k ∈ N repeat the following: Find a ∈ A such that Ra

k , Ea
k and set

Rk+1 = Rk ∩ (Ea
k|E

a
k), (20)

Ek+1 = Ek ∩
(
(R ◦ (Ra

k − Ea
k))|(R ◦ (Ra

k − Ea
k))

)
∩

(
(R ◦ Ea

k)|(R ◦ Ea
k)
)
, (21)

until Rk = Ek. Then:

(a) Sequences {Ek}k∈N and {Rk}k∈N are descending;

(b) For every k ∈N, Ek ⊆ Rk;

(c) For all k ∈N and c ∈ A the following holds :

Ek ⊆ (R ◦ Rc
k)|(R ◦ Rc

k); (22)

(d) For every k ∈N, Rk and Ek are equivalence relations;

(e) The procedure terminates after at most |A| −1 steps and the last computed equivalence En is the greatest regular
equivalence contained in E.

According to the previous theorem we obtain an algorithm for computing the greatest regular equivalence.

Algorithm 4.4. The inputs of the algorithm are a network (A,R) and an equivalence EinE(A). The algorithm
computes the greatest regular equivalence on this network contained in E.

The procedure constructs the sequence of equivalences {Rk}k∈N and {Ek}k∈N, in the following way:

(A1) In the first step we set

R1 = U

E1 = E ∩
(
(R ◦Ua)|(R ◦Ua)

)
.

(A2) After the kth step let Rk and Ek be equivalences that have been constructed.

(A3) In the next step we do the following: If there exists a ∈ A such that Ra
k , Ea

k then construct the equivalence
Rk+1 by means of the formula (20) and the equivalence Ek+1 by means of the formula (21). Otherwise, the
procedure of constructing the sequence {Rk}k∈N and {Ek}k∈N terminates and Ek+1 is the greatest right invariant
equivalence onA contained in E.
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Let us analyze the computational time of this algorithm. Let n denote the number of actors of A.
In the step (A1) in order to compute E1, we first need to compute the composition of R and Ua, and the
computational time of this step is O(n2). Further, we need to compute the relation (R◦Ua)|(R◦Ua), which is
realized in time O(n2). Finally, the relation E1 is an intersection of the relation E and the previously mentioned
relation, and the computational time of executing the intersection is O(n2). Hence, the computational time
of the step (A1) is O(n2).

In (A3) we find a ∈ A, such that Ra
k , Ea

k, if it exists, in time O(n2).
Computing of Rk+1 using formula (20) can be done in time O(n2) and the computing of Ek+1 using

formula (21) can be done in O(n2).
As it is stated by the Theorem 4.3(e), the number of steps of the previous algorithm is at most n − 1.
Summing up, we get that the total computation time for the whole algorithm is O(n3).
It should be noted that several algorithms for computing the greatest regular equivalence have been

previously provided by several authors. The well known REGE algorithm [6, 29–31] is an iterative algorithm,
within each iteration a search is implemented to optimize a matching function. The computational time of
this algorithm is O(n5).

Next, a direct approach has been proposed by Batagelj et al. [2, 3, 18]. This method is based on
constructing the objective function in the terms of regular equivalence and then using an optimization
procedure to minimize objective function, and it performs a good results when dealing with graphs of
smaller size.

Another approach has been developed by Boyd and Everett in [7]. Our method for computing the
greatest regular equivalence on a one-mode network is similar to this one. However, the algorithm
suggested by Boyd and Everett runs in O(n4), where n is the number of states of A. This is due to the fact
that in each step of this algorithm the relation πi is computed in the time O(n3).

The following example illustrates the work of the algorithm.

Example 4.5. Let A be a two-mode network with A = {a1, a2, . . . , a8}, B = {b1, b2, . . . , b12}, and a relation R given
by the following relations:

R =



1 1 1 1 1 1 1 0 1 0 1 1
0 0 1 1 1 1 1 1 1 0 0 1
0 1 1 1 0 0 0 0 1 1 0 0
1 1 0 1 1 0 0 0 0 1 0 1
0 1 1 1 1 1 1 0 0 0 1 0
1 0 1 1 0 1 0 0 0 0 1 1
0 0 1 1 1 0 1 0 0 0 1 1
1 1 0 0 1 1 1 0 0 1 1 1


Initial relations E and F are given by:

Estart =



1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1


Fstart =



1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1


Using procedure from Theorem 4.1 we obtain:
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(X1,P1) = (UA,UB) and (E1,F1) = (Estart,Fstart)
In the second step we are choosing elements a ∈ A and b ∈ B such that (Xa

1,P
b
1) , (Ea

1,F
b
1). For a1 ∈ A we have

that Xa
1 , Ea

1, and therefore we choose a1 ∈ A and any element (e.g. b1 ∈ B) from the set B. Hence,

X2 = X1 ∩ Ea1
1 |E

a1
1 =



1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1



P2 = P1 ∩ Fb1
1 |F

b1
1 =



1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1



E2 = E1 ∩
(
(R ◦ (Pb1

1 − Fb1
1 )) | (R ◦ (Pb1

1 − Fb1
1 ))

)
∩

(
(R ◦ Fb1

1 ) | (R ◦ Fb1
1

)
) =



1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1



F2 = F1∩
(
((Ra1

1 −Ea1
1 )◦R) | ((Ra1

1 −Ea1
1 )◦R)

)
∩

(
(Ea1

1 ◦R) | (Ea1
1 ◦R)

)
=



1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1


In the sequel, regarding the fact that (R2,P2) , (E2,F2) we choose elements a1 ∈ A and b8 ∈ B because they satisfy

(Ra1
2 ,P

b8
2 ) , (Ea1

2 ,F
b8
2 ).
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R3 = R2 ∩ Ea1
2 |E

a1
2 =



1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1



P3 = P2 ∩ Fb8
2 |F

b8
2 =



1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1



E3 = E2 ∩
(
(R ◦ (Pb8

2 − Fb8
2 ))|(R ◦ (Pb8

2 − Fb8
2 ))

)
∩

(
(R ◦ Fb8

2 ) | (R ◦ Fb8
2 )

)
=



1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1



F3 = F2∩
(
((Ra1

2 −Ea1
2 )◦R) | ((Ra1

2 −Ea1
2 )◦R)

)
∩

(
(Ea1

2 ◦R) | (Ea1
2 ◦R)

)
=



1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1


Similarly as in the previous step we obtain:
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R4 = R3 ∩ Ea4
3 |E

a4
3 =



1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1



P4 = P3 ∩ Fb1
3 |F

b1
3 =



1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1



E4 = E3 ∩
(
(R ◦ (Pb1

3 − Fb1
3 ))|(R ◦ (Pb1

3 − Fb1
3 ))

)
∩

(
(R ◦ Fb1

3 ) | (R ◦ Fb1
3 )

)
=



1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1



F4 = F3∩
(
((Ra4

3 −Ea4
3 )◦R) | ((Ra4

3 −Ea4
3 )◦R)

)
∩

(
(Ea4

3 ◦R) | (Ea4
3 ◦R)

)
=



1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1


In the last step we have obtained that (R4,P4) = (E4,F4) and thereby the pair of equivalences (E4,F4) is the greatest

regular equivalences contained in (Estart,Fstart).

5. Conclusion

In this paper we have developed an efficient algorithm for computing the greatest regular equivalences
on one-mode and two-mode networks. This algorithm, in the one-mode case, perform a more efficient
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computation time than the existing algorithms. The method computes the exact regular equivalence.
However when dealing with social networks it is usually better to have a good approximation of the
solution than the exact one, which we intend to deal in our further research.
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[10] M. Ćirić, J. Ignjatovic, M. Bašić, I. Jančić, Nondeterministic automata: Simulation, bisimulation and structural equivalence,
Information Sciences 261 (2014) 185-218;
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