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Abstract. In [32, 33], the fuzzy stability problems for the Cauchy additive functional equation and the
Jensen additive functional equation in fuzzy Banach spaces have been investigated.

Using the fixed point method, we prove the Hyers-Ulam stability of the following additive-quadratic-
cubic-quartic functional equation

f (x + 2y) + f (x − 2y) = 4 f (x + y) + 4 f (x − y) − 6 f (x) + f (2y) + f (−2y) − 4 f (y) − 4 f (−y) (1)

in fuzzy Banach spaces.

1. Introduction and Preliminaries

Katsaras [27] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure
on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of
view [19, 29, 45]. In particular, Bag and Samanta [3], following Cheng and Mordeson [10], gave an idea of
fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [28].
They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated
some properties of fuzzy normed spaces [4].

We use the definition of fuzzy normed spaces given in [3, 32, 33] to investigate a fuzzy version of the
generalized Hyers-Ulam stability for the functional equation (0.1) in the fuzzy normed vector space setting.

Definition 1.1. [3, 32–34] Let X be a real vector space. A function N : X ×R→ [0, 1] is called a fuzzy norm on X
if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
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(N3) N(cx, t) = N(x, t
|c| ) if c , 0;

(N4) N(x + y, s + t) ≥ min{N(x, s),N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1;
(N6) for x , 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in [32, 35].

Definition 1.2. [3, 32–34] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is said to be convergent
or converge if there exists an x ∈ X such that limn→∞N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit
of the sequence {xn} and we denote it by N-limn→∞ xn = x.

Definition 1.3. [3, 32, 33] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called Cauchy if for
each ε > 0 and each t > 0 there exists an n0 ∈N such that for all n ≥ n0 and all p > 0, we have N(xn+p−xn, t) > 1−ε.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each
Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector
space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is continuous at a
point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the sequence { f (xn)} converges to f (x0). If
f : X→ Y is continuous at each x ∈ X, then f : X→ Y is said to be continuous on X (see [4]).

The stability problem of functional equations originated from a question of Ulam [42] concerning the
stability of group homomorphisms. Hyers [22] gave a first affirmative partial answer to the question of
Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by Th.M.
Rassias [39] for linear mappings by considering an unbounded Cauchy difference. A generalization of the
Th.M. Rassias theorem was obtained by Găvruta [21] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Th.M. Rassias’ approach.

The functional equation
f (x + y) + f (x − y) = 2 f (x) + 2 f (y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is
said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the quadratic functional
equation was proved by Skof [41] for mappings f : X → Y, where X is a normed space and Y is a Banach
space. Cholewa [11] noticed that the theorem of Skof is still true if the relevant domain X is replaced by
an Abelian group. Czerwik [12] proved the Hyers-Ulam stability of the quadratic functional equation.
The stability problems of several functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem (see [1, 5, 6, 18, 23, 26, 40, 43, 44]).

In [25], Jun and Kim considered the following cubic functional equation

f (2x + y) + f (2x − y) = 2 f (x + y) + 2 f (x − y) + 12 f (x). (2)

It is easy to show that the function f (x) = x3 satisfies the functional equation (2), which is called a cubic
functional equation and every solution of the cubic functional equation is said to be a cubic mapping.

In [30], Lee et al. considered the following quartic functional equation

f (2x + y) + f (2x − y) = 4 f (x + y) + 4 f (x − y) + 24 f (x) − 6 f (y). (3)

It is easy to show that the function f (x) = x4 satisfies the functional equation (3), which is called a quartic
functional equation and every solution of the quartic functional equation is said to be a quartic mapping.

Let X be a set. A function d : X × X→ [0,∞] is called a generalized metric on X if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
We recall a fundamental result in fixed point theory.
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Theorem 1.4. [7, 14] Let (X, d) be a complete generalized metric space and let J : X → X be a strictly contractive
mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0 x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L d(y, Jy) for all y ∈ Y.

In 1996, G. Isac and Th.M. Rassias [24] were the first to provide applications of stability theory of
functional equations for the proof of new fixed point theorems with applications. By using fixed point
methods, the stability problems of several functional equations have been extensively investigated by a
number of authors (see [8, 9, 35–38]).

The theory of probabilistic normed spaces(briefly, PN-spaces) is important as a generalization of deter-
ministic result of linear normed spaces and also in the study of random operator equations. The PN-spaces
may also provide us the appropriate tools to study the geometry of nuclear physics and have important
application in quantum particle physics particularly in string theory and ε∞ where studied by El. Naschie
[15]. The Hyers-Ulam stability of different functional equations in random normed spaces, PN-spaces and
fuzzy normed spaces has been recently studied in [31]-[34].

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability of the additive-
quadratic-cubic-quartic functional equation (1) in fuzzy Banach spaces for an odd case. In Section 3, we
prove the Hyers-Ulam stability of the additive-quadratic-cubic-quartic functional equation (1) in fuzzy
Banach spaces for an even case.

Throughout this paper, assume that X is a vector space and that (Y,N) is a fuzzy Banach space.

2. Hyers-Ulam Stability of the Functional Equation (1): an Odd Case

One can easily show that an odd mapping f : X→ Y satisfies (1) if and only if the odd mapping mapping
f : X→ Y is an additive-cubic mapping, i.e.,

f (x + 2y) + f (x − 2y) = 4 f (x + y) + 4 f (x − y) − 6 f (x).

It was shown in [17, Lemma 2.2] that 1(x) := f (2x) − 2 f (x) and h(x) := f (2x) − 8 f (x) are cubic and additive,
respectively, and that f (x) = 1

61(x) − 1
6 h(x).

One can easily show that an even mapping f : X → Y satisfies (1) if and only if the even mapping
f : X→ Y is a quadratic-quartic mapping, i.e.,

f (x + 2y) + f (x − 2y) = 4 f (x + y) + 4 f (x − y) − 6 f (x) + 2 f (2y) − 8 f (y).

It was shown in [16, Lemma 2.1] that 1(x) := f (2x)−4 f (x) and h(x) := f (2x)−16 f (x) are quartic and quadratic,
respectively, and that f (x) = 1

121(x) − 1
12 h(x).

For a given mapping f : X→ Y, we define

D f (x, y) : = f (x + 2y) + f (x − 2y) − 4 f (x + y) − 4 f (x − y) + 6 f (x)
− f (2y) − f (−2y) + 4 f (y) + 4 f (−y)

for all x, y ∈ X.
Using the fixed point method, we prove the Hyers-Ulam stability of the functional equation D f (x, y) = 0

in fuzzy Banach spaces: an odd case.
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Theorem 2.1. Let ϕ : X2
→ [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤
L
8
ϕ
(
2x, 2y

)
for all x, y ∈ X. Let f : X→ Y be an odd mapping satisfying

N
(
D f (x, y), t

)
≥

t
t + ϕ(x, y)

(4)

for all x, y ∈ X and all t > 0. Then

C(x) := N- lim
n→∞

8n
(

f
( x

2n−1

)
− 2 f

( x
2n

))
exists for each x ∈ X and defines a cubic mapping C : X→ Y such that

N
(

f (2x) − 2 f (x) − C(x), t
)
≥

(8 − 8L)t
(8 − 8L)t + 5L(ϕ(x, x) + ϕ(2x, x))

(5)

for all x ∈ X and all t > 0.

Proof. Letting x = y in (4), we get

N
(

f (3y) − 4 f (2y) + 5 f (y), t
)
≥

t
t + ϕ(y, y)

(6)

for all y ∈ X and all t > 0.
Replacing x by 2y in (4), we get

N
(

f (4y) − 4 f (3y) + 6 f (2y) − 4 f (y), t
)
≥

t
t + ϕ(2y, y)

(7)

for all y ∈ X and all t > 0.
By (6) and (7),

N
(

f (4y) − 10 f (2y) + 16 f (y), 4t + t
)

≥ min
{
N
(
4( f (3y) − 4 f (2y) + 5 f (y)), 4t

)
, (8)

N
(

f (4y) − 4 f (3y) + 6 f (2y) − 4 f (y), t
)}

≥
t

t + ϕ(y, y) + ϕ(2y, y)

for all y ∈ X and all t > 0. Letting y := x
2 and 1(x) := f (2x) − 2 f (x) for all x ∈ X, we get

N
(
1(x) − 81

(x
2

)
, 5t
)
≥

t

t + ϕ
(

x
2 ,

x
2

)
+ ϕ
(
x, x

2

) (9)

for all x ∈ X and all t > 0.
Consider the set

S := {1 : X→ Y}

and introduce the generalized metric on S:

d(1, h) = inf{µ ∈ R+ : N(1(x) − h(x), µt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)
, ∀x ∈ X,∀t > 0},

where, as usual, infφ = +∞. It is easy to show that (S, d) is complete. (See the proof of [31, Lemma 2.1].)
Now we consider the linear mapping J : S→ S such that

J1(x) := 81
(x

2

)
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for all x ∈ X.
Let 1, h ∈ S be given such that d(1, h) = ε. Then

N(1(x) − h(x), εt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

N(J1(x) − Jh(x),Lεt) = N
(
81
(x

2

)
− 8h

(x
2

)
,Lεt
)

= N
(
1

(x
2

)
− h
(x

2

)
,

L
8
εt
)

≥

Lt
8

Lt
8 + ϕ

(
x
2 ,

x
2

)
+ ϕ
(
x, x

2

) ≥ Lt
8

Lt
8 + L

8 (ϕ(x, x) + ϕ(2x, x))

=
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(1, h) = ε implies that d(J1, Jh) ≤ Lε. This means that

d(J1, Jh) ≤ Ld(1, h)

for all 1, h ∈ S.
It follows from (9) that

N
(
1(x) − 81

(x
2

)
,

5L
8

t
)
≥

t
t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(1, J1) ≤ 5L
8 .

By Theorem 1.4, there exists a mapping C : X→ Y satisfying the following:
(1) C is a fixed point of J, i.e.,

C
(x

2

)
=

1
8

C(x) (10)

for all x ∈ X. Since 1 : X→ Y is odd, C : X→ Y is an odd mapping. The mapping C is a unique fixed point
of J in the set

M = {1 ∈ S : d( f , 1) < ∞}.

This implies that C is a unique mapping satisfying (10) such that there exists a µ ∈ (0,∞) satisfying

N(1(x) − C(x), µt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jn1,C)→ 0 as n→∞. This implies the equality

N- lim
n→∞

8n1

( x
2n

)
= C(x)

for all x ∈ X;
(3) d(1,C) ≤ 1

1−L d(1, J1), which implies the inequality

d(1,C) ≤
5L

8 − 8L
.

This implies that the inequality (5) holds.
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By (4),

N
(
8nD1

( x
2n ,

y
2n

)
, 8nt
)
≥

t

t + ϕ
(

x
2n ,

y
2n

)
for all x, y ∈ X, all t > 0 and all n ∈N. So

N
(
8nD1

( x
2n ,

y
2n

)
, t
)
≥

t
8n

t
8n + Ln

8nϕ
(
x, y
)

for all x, y ∈ X, all t > 0 and all n ∈N. Since limn→∞
t

8n
t

8n + Ln
8n ϕ(x,y) = 1 for all x, y ∈ X and all t > 0,

N
(
DC(x, y), t

)
= 1

for all x, y ∈ X and all t > 0. Thus the mapping C : X→ Y is cubic, as desired.

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 3. Let X be a normed vector space with norm ‖ · ‖. Let
f : X→ Y be an odd mapping satisfying

N
(
D f (x, y), t

)
≥

t
t + θ(‖x‖p + ‖y‖p)

(11)

for all x, y ∈ X and all t > 0. Then

C(x) := N- lim
n→∞

8n
(

f
( x

2n−1

)
− 2 f

( x
2n

))
exists for each x ∈ X and defines a cubic mapping C : X→ Y such that

N
(

f (2x) − 2 f (x) − C(x), t
)
≥

(2p
− 8)t

(2p − 8)t + 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 23−p and we get the desired result.

Theorem 2.3. Let ϕ : X2
→ [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 8Lϕ
(x

2
,

y
2

)
for all x, y ∈ X. Let f : X→ Y be an odd mapping satisfying (4). Then

C(x) := N- lim
n→∞

1
8n

(
f
(
2n+1x

)
− 2 f (2nx)

)
exists for each x ∈ X and defines a cubic mapping C : X→ Y such that

N
(

f (2x) − 2 f (x) − C(x), t
)
≥

(8 − 8L)t
(8 − 8L)t + 5ϕ(x, x) + 5ϕ(2x, x)

(12)

for all x ∈ X and all t > 0.



C. Park, D. Shin, R. Saadati, J. Lee / Filomat 30:7 (2016), 1833–1851 1839

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S→ S such that

J1(x) :=
1
8
1 (2x)

for all x ∈ X.
Let 1, h ∈ S be given such that d(1, h) = ε. Then

N(1(x) − h(x), εt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

N(J1(x) − Jh(x),Lεt) = N
(1

8
1 (2x) −

1
8

h (2x) ,Lεt
)

= N
(
1 (2x) − h (2x) , 8Lεt

)
≥

8Lt
8Lt + ϕ (2x, 2x) + ϕ(4x, 2x)

≥
8Lt

8Lt + 8L(ϕ(x, x) + ϕ(2x, x))

=
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(1, h) = ε implies that d(J1, Jh) ≤ Lε. This means that

d(J1, Jh) ≤ Ld(1, h)

for all 1, h ∈ S.
It follows from (9) that

N
(
1(x) −

1
8
1(2x),

5
8

t
)
≥

t
t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(1, J1) ≤ 5
8 .

By Theorem 1.4, there exists a mapping C : X→ Y satisfying the following:
(1) C is a fixed point of J, i.e.,

C (2x) = 8C(x) (13)

for all x ∈ X. Since 1 : X→ Y is odd, C : X→ Y is an odd mapping. The mapping C is a unique fixed point
of J in the set

M = {1 ∈ S : d( f , 1) < ∞}.

This implies that C is a unique mapping satisfying (13) such that there exists a µ ∈ (0,∞) satisfying

N(1(x) − C(x), µt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jn1,C)→ 0 as n→∞. This implies the equality

N- lim
n→∞

1
8n 1(2

nx) = C(x)

for all x ∈ X;
(3) d(1,C) ≤ 1

1−L d(1, J1), which implies the inequality

d(1,C) ≤
5

8 − 8L
.

This implies that the inequality (12) holds.
The rest of the proof is similar to the proof of Theorem 2.1.
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Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 3. Let X be a normed vector space with norm ‖ · ‖.
Let f : X→ Y be an odd mapping satisfying (11). Then

C(x) := N- lim
n→∞

1
8n

(
f
(
2n+1x

)
− 2 f (2nx)

)
exists for each x ∈ X and defines a cubic mapping C : X→ Y such that

N
(

f (2x) − 2 f (x) − C(x), t
)
≥

(8 − 2p)t
(8 − 2p)t + 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−3 and we get the desired result.

Theorem 2.5. Let ϕ : X2
→ [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤
L
2
ϕ
(
2x, 2y

)
for all x, y ∈ X. Let f : X→ Y be an odd mapping satisfying (4). Then

A(x) := N- lim
n→∞

2n
(

f
( x

2n−1

)
− 8 f

( x
2n

))
exists for each x ∈ X and defines an additive mapping A : X→ Y such that

N
(

f (2x) − 8 f (x) − A(x), t
)
≥

(2 − 2L)t
(2 − 2L)t + 5L(ϕ(x, x) + ϕ(2x, x))

(14)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Letting y := x

2 and h(x) := f (2x) − 8 f (x) for all x ∈ X in (8), we get

N
(
h(x) − 2h

(x
2

)
, 5t
)
≥

t

t + ϕ
(

x
2 ,

x
2

)
+ ϕ
(
x, x

2

) (15)

for all x ∈ X and all t > 0.
Now we consider the linear mapping J : S→ S such that

Jh(x) := 2h
(x

2

)
for all x ∈ X.

Let 1, h ∈ S be given such that d(1, h) = ε. Then

N(1(x) − h(x), εt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

N(J1(x) − Jh(x),Lεt) = N
(
21
(x

2

)
− 2h

(x
2

)
,Lεt
)

= N
(
1

(x
2

)
− h
(x

2

)
,

L
2
εt
)

≥

Lt
2

Lt
2 + ϕ

(
x
2 ,

x
2

)
+ ϕ
(
x, x

2

) ≥ Lt
2

Lt
2 + L

2 (ϕ(x, x) + ϕ(2x, x))

=
t

t + ϕ(x, x) + ϕ(2x, x)



C. Park, D. Shin, R. Saadati, J. Lee / Filomat 30:7 (2016), 1833–1851 1841

for all x ∈ X and all t > 0. So d(1, h) = ε implies that d(J1, Jh) ≤ Lε. This means that

d(J1, Jh) ≤ Ld(1, h)

for all 1, h ∈ S.
It follows from (15) that

N
(
h(x) − 2h

(x
2

)
,

5L
2

t
)
≥

t
t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 5L
2 .

By Theorem 1.4, there exists a mapping A : X→ Y satisfying the following:
(1) A is a fixed point of J, i.e.,

A
(x

2

)
=

1
2

A(x) (16)

for all x ∈ X. Since h : X→ Y is odd, A : X→ Y is an odd mapping. The mapping A is a unique fixed point
of J in the set

M = {1 ∈ S : d( f , 1) < ∞}.

This implies that A is a unique mapping satisfying (16) such that there exists a µ ∈ (0,∞) satisfying

N(h(x) − A(x), µt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jnh,A)→ 0 as n→∞. This implies the equality

N- lim
n→∞

2nh
( x

2n

)
= A(x)

for all x ∈ X;
(3) d(h,A) ≤ 1

1−L d(h, Jh), which implies the inequality

d(h,A) ≤
5L

2 − 2L
.

This implies that the inequality (14) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.6. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector space with norm ‖ · ‖. Let
f : X→ Y be an odd mapping satisfying (11). Then

A(x) := N- lim
n→∞

2n
(

f
( x

2n−1

)
− 8 f

( x
2n

))
exists for each x ∈ X and defines an additive mapping A : X→ Y such that

N
(

f (2x) − 8 f (x) − A(x), t
)
≥

(2p
− 2)t

(2p − 2)t + 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.5 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 21−p and we get the desired result.
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Theorem 2.7. Let ϕ : X2
→ [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 2Lϕ
(x

2
,

y
2

)
for all x, y ∈ X. Let f : X→ Y be an odd mapping satisfying (4). Then

A(x) := N- lim
n→∞

1
2n

(
f
(
2n+1x

)
− 8 f (2nx)

)
exists for each x ∈ X and defines an additive mapping A : X→ Y such that

N
(

f (2x) − 8 f (x) − A(x), t
)
≥

(2 − 2L)t
(2 − 2L)t + 5ϕ(x, x) + 5ϕ(2x, x)

(17)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S→ S such that

Jh(x) :=
1
2

h (2x)

for all x ∈ X.
Let 1, h ∈ S be given such that d(1, h) = ε. Then

N(1(x) − h(x), εt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

N(J1(x) − Jh(x),Lεt) = N
(1

2
1 (2x) −

1
2

h (2x) ,Lεt
)

= N
(
1 (2x) − h (2x) , 2Lεt

)
≥

2Lt
2Lt + ϕ (2x, 2x) + ϕ(4x, 2x)

≥
2Lt

2Lt + 2L(ϕ(x, x) + ϕ(2x, x))

=
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(1, h) = ε implies that d(J1, Jh) ≤ Lε. This means that

d(J1, Jh) ≤ Ld(1, h)

for all 1, h ∈ S.
It follows from (15) that

N
(
h(x) −

1
2

h(2x),
5
2

t
)
≥

t
t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 5
2 .

By Theorem 1.4, there exists a mapping A : X→ Y satisfying the following:
(1) A is a fixed point of J, i.e.,

A (2x) = 2A(x) (18)

for all x ∈ X. Since h : X→ Y is odd, A : X→ Y is an odd mapping. The mapping A is a unique fixed point
of J in the set

M = {1 ∈ S : d( f , 1) < ∞}.
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This implies that A is a unique mapping satisfying (18) such that there exists a µ ∈ (0,∞) satisfying

N(h(x) − A(x), µt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jnh,A)→ 0 as n→∞. This implies the equality

N- lim
n→∞

1
2n h(2nx) = A(x)

for all x ∈ X;
(3) d(h,A) ≤ 1

1−L d(h, Jh), which implies the inequality

d(h,A) ≤
5

2 − 2L
.

This implies that the inequality (17) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.8. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector space with norm ‖ · ‖.
Let f : X→ Y be an odd mapping satisfying (11). Then

A(x) := N- lim
n→∞

1
2n

(
f
(
2n+1x

)
− 8 f (2nx)

)
exists for each x ∈ X and defines an additive mapping A : X→ Y such that

N
(

f (2x) − 8 f (x) − A(x), t
)
≥

(2 − 2p)t
(2 − 2p)t + 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.7 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−1 and we get the desired result.

3. Hyers-Ulam Stability of the Functional Equation (1): an Even Case

Using the fixed point method, we prove the Hyers-Ulam stability of the functional equation D f (x, y) = 0
in fuzzy Banach spaces: an even case.

Theorem 3.1. Let ϕ : X2
→ [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤
L
16
ϕ
(
2x, 2y

)
for all x, y ∈ X. Let f : X→ Y be an even mapping satisfying f (0) = 0 and (4). Then

Q(x) := N- lim
n→∞

16n
(

f
( x

2n−1

)
− 4 f

( x
2n

))
exists for each x ∈ X and defines a quartic mapping Q : X→ Y such that

N
(

f (2x) − 4 f (x) −Q(x), t
)
≥

(16 − 16L)t
(16 − 16L)t + 5L(ϕ(x, x) + ϕ(2x, x))

(19)

for all x ∈ X and all t > 0.
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Proof. Letting x = y in (4), we get

N
(

f (3y) − 6 f (2y) + 15 f (y), t
)
≥

t
t + ϕ(y, y)

(20)

for all y ∈ X and all t > 0.
Replacing x by 2y in (4), we get

N
(

f (4y) − 4 f (3y) + 4 f (2y) + 4 f (y), t
)
≥

t
t + ϕ(2y, y)

(21)

for all y ∈ X and all t > 0.
By (20) and (21),

N
(

f (4x) − 20 f (2x) + 64 f (x), 4t + t
)

≥ min
{
N
(
4( f (3x) − 6 f (2x) + 15 f (x)), 4t

)
, (22)

N
(

f (4x) − 4 f (3x) + 4 f (2x) + 4 f (x)), t
)}

≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Letting 1(x) := f (2x) − 4 f (x) for all x ∈ X, we get

N
(
1(x) − 161

(x
2

)
, 5t
)
≥

t

t + ϕ
(

x
2 ,

x
2

)
+ ϕ
(
x, x

2

) (23)

for all x ∈ X and all t > 0.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Now we consider the linear mapping J : S→ S such that

J1(x) := 161
(x

2

)
for all x ∈ X.

Let 1, h ∈ S be given such that d(1, h) = ε. Then

N(1(x) − h(x), εt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

N(J1(x) − Jh(x),Lεt) = N
(
161
(x

2

)
− 16h

(x
2

)
,Lεt
)

= N
(
1

(x
2

)
− h
(x

2

)
,

L
16
εt
)

≥

Lt
16

Lt
16 + ϕ

(
x
2 ,

x
2

)
+ ϕ
(
x, x

2

) ≥ Lt
16

Lt
16 + L

16 (ϕ(x, x) + ϕ(2x, x))

=
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(1, h) = ε implies that d(J1, Jh) ≤ Lε. This means that

d(J1, Jh) ≤ Ld(1, h)

for all 1, h ∈ S.
It follows from (23) that

N
(
1(x) − 161

(x
2

)
,

5L
16

t
)
≥

t
t + ϕ(x, x) + ϕ(2x, x)
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for all x ∈ X and all t > 0. So d(1, J1) ≤ 5L
16 .

By Theorem 1.4, there exists a mapping Q : X→ Y satisfying the following:
(1) Q is a fixed point of J, i.e.,

Q
(x

2

)
=

1
16

Q(x) (24)

for all x ∈ X. Since 1 : X → Y is even, Q : X → Y is an even mapping. The mapping Q is a unique fixed
point of J in the set

M = {1 ∈ S : d( f , 1) < ∞}.

This implies that Q is a unique mapping satisfying (24) such that there exists a µ ∈ (0,∞) satisfying

N(1(x) −Q(x), µt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jn1,Q)→ 0 as n→∞. This implies the equality

N- lim
n→∞

16n1

( x
2n

)
= Q(x)

for all x ∈ X;
(3) d(1,Q) ≤ 1

1−L d(1, J1), which implies the inequality

d(1,Q) ≤
5L

16 − 16L
.

This implies that the inequality (19) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 4. Let X be a normed vector space with norm ‖ · ‖. Let
f : X→ Y be an even mapping satisfying f (0) = 0 and (11). Then

Q(x) := N- lim
n→∞

16n
(

f
( x

2n−1

)
− 4 f

( x
2n

))
exists for each x ∈ X and defines a quartic mapping Q : X→ Y such that

N
(

f (2x) − 4 f (x) −Q(x), t
)
≥

(2p
− 16)t

(2p − 16)t + 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 24−p and we get the desired result.

Theorem 3.3. Let ϕ : X2
→ [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 16Lϕ
(x

2
,

y
2

)
for all x, y ∈ X. Let f : X→ Y be an even mapping satisfying f (0) = 0 and (4). Then

Q(x) := N- lim
n→∞

1
16n

(
f
(
2n+1x

)
− 4 f (2nx)

)
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exists for each x ∈ X and defines a quartic mapping Q : X→ Y such that

N
(

f (2x) − 4 f (x) −Q(x), t
)
≥

(16 − 16L)t
(16 − 16L)t + 5ϕ(x, x) + 5ϕ(2x, x)

(25)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S→ S such that

J1(x) :=
1

16
1 (2x)

for all x ∈ X.
Let 1, h ∈ S be given such that d(1, h) = ε. Then

N(1(x) − h(x), εt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

N(J1(x) − Jh(x),Lεt) = N
( 1

16
1 (2x) −

1
16

h (2x) ,Lεt
)

= N
(
1 (2x) − h (2x) , 16Lεt

)
≥

16Lt
16Lt + ϕ (2x, 2x) + ϕ(4x, 2x)

≥
16Lt

16Lt + 16L(ϕ(x, x) + ϕ(2x, x))

=
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(1, h) = ε implies that d(J1, Jh) ≤ Lε. This means that

d(J1, Jh) ≤ Ld(1, h)

for all 1, h ∈ S.
It follows from (23) that

N
(
1(x) −

1
16
1(2x),

5
16

t
)
≥

t
t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(1, J1) ≤ 5
16 .

By Theorem 1.4, there exists a mapping Q : X→ Y satisfying the following:
(1) Q is a fixed point of J, i.e.,

Q (2x) = 16Q(x) (26)

for all x ∈ X. Since 1 : X → Y is even, Q : X → Y is an even mapping. The mapping Q is a unique fixed
point of J in the set

M = {1 ∈ S : d( f , 1) < ∞}.

This implies that Q is a unique mapping satisfying (26) such that there exists a µ ∈ (0,∞) satisfying

N(1(x) −Q(x), µt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jn1,Q)→ 0 as n→∞. This implies the equality
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N- lim
n→∞

1
16n 1(2

nx) = Q(x)

for all x ∈ X;
(3) d(1,Q) ≤ 1

1−L d(1, J1), which implies the inequality

d(1,Q) ≤
5

16 − 16L
.

This implies that the inequality (25) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 4. Let X be a normed vector space with norm ‖ · ‖.
Let f : X→ Y be an even mapping satisfying f (0) = 0 and (11). Then

Q(x) := N- lim
n→∞

1
16n

(
f
(
2n+1x

)
− 4 f (2nx)

)
exists for each x ∈ X and defines a quartic mapping Q : X→ Y such that

N
(

f (2x) − 4 f (x) −Q(x), t
)
≥

(16 − 2p)t
(16 − 2p)t + 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−4 and we get the desired result.

Theorem 3.5. Let ϕ : X2
→ [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤
L
4
ϕ
(
2x, 2y

)
for all x, y ∈ X. Let f : X→ Y be an even mapping satisfying f (0) = 0 and (4). Then

T(x) := N- lim
n→∞

4n
(

f
( x

2n−1

)
− 16 f

( x
2n

))
exists for each x ∈ X and defines a quadratic mapping T : X→ Y such that

N
(

f (2x) − 16 f (x) − T(x), t
)
≥

(4 − 4L)t
(4 − 4L)t + 5L(ϕ(x, x) + ϕ(2x, x))

(27)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Letting h(x) := f (2x) − 16 f (x) for all x ∈ X in (22), we get

N
(
h(x) − 4h

(x
2

)
, 5t
)
≥

t

t + ϕ
(

x
2 ,

x
2

)
+ ϕ
(
x, x

2

) (28)

for all x ∈ X and all t > 0.
Now we consider the linear mapping J : S→ S such that

Jh(x) := 4h
(x

2

)
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for all x ∈ X.
Let 1, h ∈ S be given such that d(1, h) = ε. Then

N(1(x) − h(x), εt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

N(J1(x) − Jh(x),Lεt) = N
(
41
(x

2

)
− 4h

(x
2

)
,Lεt
)

= N
(
1

(x
2

)
− h
(x

2

)
,

L
4
εt
)

≥

Lt
4

Lt
4 + ϕ

(
x
2 ,

x
2

)
+ ϕ
(

x
2 , x
) ≥ Lt

4
Lt
4 + L

4 (ϕ(x, x) + ϕ(2x, x))

=
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(1, h) = ε implies that d(J1, Jh) ≤ Lε. This means that

d(J1, Jh) ≤ Ld(1, h)

for all 1, h ∈ S.
It follows from (28) that

N
(
h(x) − 4h

(x
2

)
,

5L
4

t
)
≥

t
t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 5L
4 .

By Theorem 1.4, there exists a mapping T : X→ Y satisfying the following:
(1) T is a fixed point of J, i.e.,

T
(x

2

)
=

1
4

T(x) (29)

for all x ∈ X. Since h : X → Y is even, T : X → Y is an even mapping. The mapping T is a unique fixed
point of J in the set

M = {1 ∈ S : d( f , 1) < ∞}.

This implies that T is a unique mapping satisfying (29) such that there exists a µ ∈ (0,∞) satisfying

N(h(x) − T(x), µt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jnh,T)→ 0 as n→∞. This implies the equality

N- lim
n→∞

4nh
( x

2n

)
= T(x)

for all x ∈ X;
(3) d(h,T) ≤ 1

1−L d(h, Jh), which implies the inequality

d(h,T) ≤
5L

4 − 4L
.

This implies that the inequality (27) holds.
The rest of the proof is similar to the proof of Theorem 2.1.
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Corollary 3.6. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector space with norm ‖ · ‖. Let
f : X→ Y be an even mapping satisfying f (0) = 0 and (11). Then

T(x) := N- lim
n→∞

4n
(

f
( x

2n−1

)
− 16 f

( x
2n

))
exists for each x ∈ X and defines a quadratic mapping T : X→ Y such that

N
(

f (2x) − 16 f (x) − T(x), t
)
≥

(2p
− 4)t

(2p − 4)t + 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.5 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 22−p and we get the desired result.

Theorem 3.7. Let ϕ : X2
→ [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 4Lϕ
(x

2
,

y
2

)
for all x, y ∈ X. Let f : X→ Y be an even mapping satisfying f (0) = 0 and (4). Then

T(x) := N- lim
n→∞

1
4n

(
f
(
2n+1x

)
− 16 f (2nx)

)
exists for each x ∈ X and defines a quadratic mapping T : X→ Y such that

N
(

f (2x) − 16 f (x) − T(x), t
)
≥

(4 − 4L)t
(4 − 4L)t + 5ϕ(x, x) + 5ϕ(2x, x)

(30)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S→ S such that

Jh(x) :=
1
4

h (2x)

for all x ∈ X.
Let 1, h ∈ S be given such that d(1, h) = ε. Then

N(1(x) − h(x), εt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

N(J1(x) − Jh(x),Lεt) = N
(1

4
1 (2x) −

1
4

h (2x) ,Lεt
)

= N
(
1 (2x) − h (2x) , 4Lεt

)
≥

4Lt
4Lt + ϕ (2x, 2x) + ϕ(4x, 2x)

≥
4Lt

4Lt + 4L(ϕ(x, x) + ϕ(2x, x))

=
t

t + ϕ(x, x) + ϕ(2x, x)
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for all x ∈ X and all t > 0. So d(1, h) = ε implies that d(J1, Jh) ≤ Lε. This means that

d(J1, Jh) ≤ Ld(1, h)

for all 1, h ∈ S.
It follows from (28) that

N
(
h(x) −

1
4

h(2x),
5
4

t
)
≥

t
t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 5
4 .

By Theorem 1.4, there exists a mapping T : X→ Y satisfying the following:
(1) T is a fixed point of J, i.e.,

T (2x) = 4T(x) (31)

for all x ∈ X. Since h : X → Y is even, T : X → Y is an even mapping. The mapping T is a unique fixed
point of J in the set

M = {1 ∈ S : d( f , 1) < ∞}.

This implies that T is a unique mapping satisfying (31) such that there exists a µ ∈ (0,∞) satisfying

N(h(x) − T(x), µt) ≥
t

t + ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jnh,T)→ 0 as n→∞. This implies the equality

N- lim
n→∞

1
4n h(2nx) = T(x)

for all x ∈ X;
(3) d(h,T) ≤ 1

1−L d(h, Jh), which implies the inequality

d(h,T) ≤
5

4 − 4L
.

This implies that the inequality (30) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.8. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a normed vector space with norm ‖ · ‖.
Let f : X→ Y be an even mapping satisfying f (0) = 0 and (11). Then T(x) := N- limn→∞

1
4n

(
f
(
2n+1x

)
− 16 f (2nx)

)
exists for each x ∈ X and defines a quadratic mapping T : X→ Y such that

N
(

f (2x) − 16 f (x) − T(x), t
)
≥

(4 − 2p)t
(4 − 2p)t + 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.7 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−2 and we get the desired result.
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